
(C) Springer Verlag, Lecture Notes on Computer Science

A New Approach for Speeding Up Enumeration
Algorithms and Its Application for Matroid Bases

Takeaki UNO
Dept. Industrial Engineering and Management, Tokyo Institute of Technology,

2-12-1 Oh-okayama, Meguro-ku, Tokyo 152, Japan. uno@me.titech.ac.jp

Abstract: We propose a new approach for speeding up enumeration algo-
rithms. The approach does not rely on data structures deeply, instead utilizes
analysis of computation time. It speeds enumeration algorithms for directed
spanning trees, matroid bases, and some bipartite matching problems. We show
one of these improved algorithms: one for enumerating matroid bases. For a given
matroid M with m elements and rank n, an existing algorithm runs in O(T)
time per base. We improved the time complexity to O(T/n), or O(T/m(m−n)).

1 Introduction

Enumeration algorithms for many graph and geometry objects have been devel-
oped, and one of the most important and interesting fields of related to these
algorithms devoted to making them faster. Although there are numerous algo-
rithms and numerous ways to improve enumeration algorithms, especially for
spanning trees and paths, no general technique or framework for their improve-
ments has been proposed. Most enumeration algorithms have been taking ad-
vantage of data structures that speed their iterations. So if we can not speed the
iterations, we cannot obtain a fast algorithm in the usual way.

In this paper, we describe a new approach, “trimming and balancing” to
making enumeration algorithms faster. It is not based on the use of data struc-
tures and it speeds enumeration algorithms without speeding iterations. It can
thus be used to improve many enumeration algorithms that have not been im-
proved in the usual way. By applying our approach, we can reduce the time
complexity of the enumeration algorithm for perfect matchings from O(m) per
matching to O(n), that of the enumeration algorithm for maximum matchings
from O(m) per matching to O(n), and that of the enumeration algorithm for
directed spanning trees from O(n) per tree to O(log n). Here m and n denote the
number of edges and vertices of the given graph. In this paper, we also report
an enumeration algorithm for matroid bases that has improved by using the
trimming and balancing approach. The problem of enumerating matroid bases
includes some other enumeration problems, spanning trees and maximal sets of
independent columns of a matrix. There are some studies on enumeration al-
gorithms for these problems, especially spanning trees [2, 1]. Although several
algorithms achieve optimal time and space complexities, they require the use of
data structures that are not simple. Our Trimming and Balancing algorithms for
these problems attain smaller, or at least not larger time complexities without
using complicated data structures.

Our approach adds two new phases to an enumeration algorithm, which we
call a trimming phase and a balancing phase. An iteration of a modified algo-
rithm may take much more computation time than that of the original algorithm,

but the total time complexity of the modified algorithm is often considerably
smaller than that of the original algorithm. Some our algorithms take much
more computation time in an iteration than the original algorithm, but it at-
tains smaller time complexities. In the next section, we describe the framework
of trimming and balancing. A trimming and balancing algorithm surely termi-
nate in short time, but to prove it is not so easy by using usual analysis of time
complexity. Hence we also describe a technique for analyzing time complexities
in the next section.

2 Framework of Trimming and Balancing

To explain the concept of trimming and balancing, we use here a simple binary
partition algorithm for enumerating of all the bases in the given matroid M.
The structure of the algorithm is quite simple. For a given matroid M = (E, I),
we denote the cardinality of its grand set by m and we denote its rank by n.
For a base B of M, we denote the elementary circuit of e /∈ B by Cir(B, e). We
also denote the elementary cut set of an element e ∈ B by Cut(B, e). For an
element e of M, we denote the matroid obtained by contracting e by M/e, and
the matroid obtained by deleting e by M\ e. To obtain elementary circuits and
elementary cuts, the simple algorithm uses an independent set oracle algorithm,
or an elementary circuit oracle algorithm. The former checks whether the given
set is independent or not, and the latter outputs the elementary circuit included
in the union of the given base and element. We denote the time complexity of
these oracle algorithms by Tind(m,n) and Tcir(m,n). To contract and delete
an element of the matroid, we use matroid subroutines whose time complexity
are denoted by Tcnt(m,n) and Tdel(m,n). Assume that the contraction and the
deletion of k elements simultaneously also take only Tcnt(m,n) and Tdel(m,n)
time.

By using these algorithms, we can obtain a simple binary partition algorithm.
For a given matroid M = (E, I) and its base B, we find a partitioning element
e ∈ B and an element f /∈ B such that B \ e∪ f forms a base. If there is another
base in M, such a pair of elements always exists. We spend O((m−n)Tcir(m,n))
or O((m − n)nTind(m,n)) time to find them. By using e, we divide the prob-
lem into two subproblems: enumerating all bases including e and enumerating
all those not including e. All bases including e are bases of M/e. All bases not
including e are also bases of M\ e. Hence they can be enumerated by recursive
calls: one inputs M/e, and the other inputs M\ e. Thus we obtain an enumera-
tion algorithm simply by using algorithms for constructing these two matroids,
and it runs in O((m−n) min{Tcir(m,n), nTind(m,n)}+Tcnt(m,n)+Tdel(m,n))
time. We denote the computation time by T (m,n).

Our trimming and balancing approach reduces the time complexity of enu-
meration algorithms like this one by adding a trimming phase and a balancing
phase. The trimming phase removes unnecessary parts from the input. In the
above algorithm considered here, for example, unnecessary parts are elements
included in all bases, or included in no base. These elements can be contracted
or removed, hence we can transform the problem into a smaller one. The new
problem includes many outputs for its size rather than the original problem.
We show in a later section that a matroid M including no unnecessary element
contains Ω(n(m−n)) bases. By the trimming phase, the computation time of an

iteration will be not so large for the number of outputs, so the total computation
time per output will be small.

The trimming phase does not always decrease the total computation time.
Suppose that the algorithm input is a matroid composed of one circuit {e1, ..., em}.
As we can see, no element is unnecessary. Now we suppose that the algorithm
chooses the element e1 as a partitioning element. Since only one base does not in-
clude e1, one of the subproblems terminates immediately. To construct the other
subproblem, e1 is contracted and we obtain a matroid almost identical to the
original matroid: one composed of only one circuit with m− 1 elements. Hence
the total computation time will be O(T (m,m−1)+T (m−1, m−2)+...+T (2, 1)).
Under the condition that T (m,n) is polynomial, the sum is O(mT (m,n)), which
is O(T (m,n)) per base.

Why does the worst case running time not decrease? The answer is that
the way of partitioning the problem is not good. We therefore reduce the time
complexity by adding a balancing phase. It partitions the original problem into
“good subproblems” such as subproblems that are not small after trimming by,
for example, choosing a good element for partitioning. If we add a balancing
phase, the structure of the recursion will be balanced. Hence, if the number of
outputs is small for the input size, then the both of the subproblems generated
will be small, and the total time complexity will also be small.

The problem of enumerating bases of a circuit can be partitioned into one
subproblem which is to enumerate bases including elements {e1, ..., e�m/2�}, and
another subproblem which is to enumerate bases including {e�m/2�+1, ..., em}. All
the bases include m−1 elements of {e1, ..., em}, the problem is surely partitioned.
By using this partitioning rule in this case, we can partition the problem into
two subproblems of almost equal sizes, thus the total computation time will be
reduced to O((logm)T (m,m− 1)) or smaller. In fact, this way of trimming can
not attain our result. In later section, we describe the other way of trimming
which is utilized in our algorithm for enumerating matroid bases.

Next we show our technique for analyzing the time complexity of enumera-
tion algorithms. Before explaining our analysis, we introduce a virtual tree which
is called an enumeration tree. Enumeration tree is defined for an enumeration
algorithm and an input, and captures the structure of the recursive calls oc-
curring in the algorithm. For a given enumeration algorithm and its input, let
V be a vertex set whose elements correspond to all recursive calls occurring in
the algorithm. We consider an edge set E on V × V such that each whose edge
connects two vertices if and only if a recursive call corresponding to one of the
vertices occurs in the other. Since the structure of a recursive algorithm contains
no circulation, the graph T = (V, E) forms a tree. This tree is called an enumer-
ation tree of the algorithm. The root vertex of the tree corresponds to the start
of the algorithm. To analyze enumeration algorithms, we show some properties
of enumeration trees which are satisfied for any input.

To analyze the time complexity of an enumeration algorithm, we consider
the following distribution rule on the enumeration tree. Let D(x) be the number
of descendants of a vertex x of T , and T (x) be an upper bound of the compu-
tation time on x. Suppose that T̂ is an upper bound of maxx∈T {T (x)/D(x)}.
Our analysis uses an arbitrary constant number α. Using these upper bounds
and this constant, we distribute the computation time. The distribution is done

from a parent vertex to its children in the top-down manner. Let Tp(x) be the
computation time distributed to x by the parent of x. x has computation time
Tp(x)+T (x).We store αT̂ of Tp(x)+T (x) on x, and distribute Tp(x)+T (x)−αT̂
to the children of x. We have two distribution rules type 1 and 2 as the fol-
lowing. In each case, we distribute the computation time of each child recur-
sively. Type 1 is that each child y receives computation time proportional to
the number of the descendants of y. The computation time distributed to y is
(Tp(x)+T (x)−αT̂)D(y)/(D(x)−1). Type 2 is that each child y receives compu-
tation time proportional to the computation time of y. If a child y receives more
than αT̂D(y) then we distribute as the same way of type 1. The computation
time distributed to y is (Tp(x) + T (x) − αT̂)T (y)/(D(x) − 1).

By this distribution rule, some vertices may receive much computation time.
Thus we define excess vertices as those satisfying Tp(x) + T (x) > αT̂D(x) and
we stop the distribution on the excess vertices. The children of an excess vertex
receive no computation time from their parent. Note that the above distribution
rule is also applied to the descendants of excess vertices. By this new rule, Tp(x)
for any vertex x is bounded by αT̂D(x) since the computation time distributed
from a parent to its child is proportional to the number of descendants of the
child.

After this distribution, no vertex except excess vertices has more than O(T̂)
on it. We then distribute the computation time on each excess vertex to all its
descendants uniformly. Since the computation time on any excess vertex x is
bounded by (α+1)T̂D(x), each descendant receives at most (α+1)T̂ time from
an excess ancestor. Let X∗ be an upper bound of the maximum number of the
excess vertices on a path from the root to a leaf. Using X∗, we have an upper
bound O(T̂X∗) of the time complexity per iteration. From these, we obtain the
following theorem.
Theorem 1. An enumeration algorithm runs in O(T̂X∗) time per iteration. �

Our analysis requires T̂ andX∗. To obtain a good upper bound of the compu-
tation time, we have to set X∗ and T̂ to sufficiently good values. As a candidate
of T̂ , we can utilize maxx∈T {T (x)/D̄(x)} where D̄(x) is a lower bound of D(x).
Although it is hard to identify excess vertices in the enumeration tree, we can
obtain an efficient upper bound. Let x and y be excess vertices such that y is an
ancestor of x and no other excess vertex is in the path Pyx from y to x in the
enumeration tree. Note that Pyx has at least one internal vertex.
Lemma 2. If we use type 2 rule on all vertices, a vertex w of Pyx \ y satisfies
the condition that T (w) > α−1

α

∑
u∈C(w) T (u) where C(w) is the set of children

of w.
Proof. We show that all vertices w of Pyx \ y satisfy the condition that Tp(w) <
(α−1)T̂ (w) under the assumption that Pyx\y includes no such vertex. Any child
of y satisfies the condition since y is an excess vertex. Suppose that a vertex w
of Pyx \ y satisfies the condition that Tp(w′) ≤ (α − 1)T (w′), where w′ is the
parent of w. From the assumption, we have
Tp(w) = ((Tp(w′) + T (w′) − αT̂)T (w)) / (

∑
u∈C(w′) T (u))

≤ (αT (w′)T (w)) / (
∑

u∈C(w′) T (u))
≤ (αT (w)α−1

α

∑
u∈C(w) T (u)) / (

∑
u∈C(w′) T (u)) = (α− 1)T (w)

Since T (w) ≤ T̂D(w), we have Tp(w) ≤ (α−1)T̂D(w). This implies that Tp(x)+
T (x) ≤ αT̂D(x), and contradicts that x is an excess vertex. �

From this lemma, we can obtain X∗ by estimating an upper bound of the
number of vertices satisfying this condition in any path from the root to a leaf.
Similarly, we can obtain the following corollary.

Corollary 3. If we use type 1 rule on all vertices and T̂ = maxx∈T {T (x)/D̄(x)},
a vertex w of Pyx \ y satisfies that D̄(w) >

∑
u∈C(w)

α
α+1 D̄(u). �

These conditions can be easily checked, and are often sufficient to analyze.
In the next section, we describe a trimming and balancing algorithm for matroid
bases. To see trimming and balancing algorithms for directed spanning trees or
perfect matchings, refer [3, 4].

3 Trimming and Balancing Algorithms for Matroid Bases

In this section, we describe algorithms for trimming phase and balancing phase
of our enumeration algorithm for matroid bases. Our trimming algorithm is quite
simple. For a given matroid, if an element of the grand set forms a circuit, then
it is included in no base. We call the element a loop. In the matroid obtained
by deleting all loops, the set of bases is preserved. If the elementary cut of
an element is composed of only the element, it is included in all bases. These
elements can be contracted. The trimming algorithm contracts or deletes these
unnecessary elements. These conditions for all elements can be checked by finding
the elementary circuits for all elements outside a base. This can be done in
O((m− n) min{nTind(m,n), Tcir(m,n)}).

We next consider the balancing algorithm. By partitioning the given ma-
troid, we obtain two matroids M/e and M \ e. If one is a sufficiently smaller
than the other after trimming, the enumeration tree of the algorithm may be
biased. Hence we use a balancing algorithm to avoid it. To obtain our balancing
algorithm, we use the following properties of M/e and M\e for a base B of M.

Property 1 Suppose that e ∈ B and B′ is the base of M/e obtained by B \ e.
The following conditions hold for M/e and B′. (1) For any element f /∈ B, the
difference between Cir(B, f) and Cir(B′, f) is either e or nothing. (2) For any
element f ∈ B \ e, Cut(B, f) = Cut(B′, f). �

Property 2 The following conditions hold for e /∈ B. (1) For any element f /∈
B, the elementary circuits of f on B in M and of f on B in M\e are equal. (2)
For any element f ∈ B, the difference between the elementary cuts Cut(B, f) in
M and Cut(B, f) in M\ e is either nothing or e. �

Using these properties, we construct the balancing algorithm. First we ex-
amine the case in which some elements of E are loops in M/e. In this case, we
partition the original problem in a way that is based on the following properties.

Property 3 For two elements e and e′ of E such that {e, e′} is a circuit, B is
a base including e if and only if B \ e ∪ e′ is a base. �

Since M is trimmed, any loop {e′} of M/e composes a circuit of M with
e. Thus we can see that all bases of M including a loop e′ of M/e can be

enumerated by enumerating all bases including e. All bases including e′ are
constructed from the bases including e simply by replacing e with e′.

Suppose that e2, ..., ek are loops in M/e1. We then divide the problem into
the subproblems of enumerating bases including each ei, and of enumerating
bases not including any ei. Since any matroid M/ei can be constructed from
M/e1 simply by renaming e1 to ei, the time complexity of an iteration does not
increase.

Next we examine the case in which some elements of M\ e have elementary
cuts consisting of only those elements. The partitioning method we use in this
case is based on the following lemma.

Lemma 4. For a trimmed matroid M, let e1, ..., ek be elements satisfying the
condition that any base not including e1 always includes e2, ..., ek. All bases in-
clude at least k − 1 of these elements.

Proof. Suppose that there is a base not including ei and ej . From the assumption,
ei and ej are not e1. Since M is trimmed, by removing e1 and adding an element
to the base, we obtain a base not including e1 and ej , or not including e1 and
ei. This contradicts the assumption. �
Lemma 5. Let e1, ..., ek be elements satisfying the condition that any base not
including e1 always includes e2, ..., ek. For any base not including e1, there is
a base obtained by exchanging e1 and ei. Conversely, for any i and any base
including e1, there is a base obtained by exchanging e1 and ei.

Proof. To prove this lemma, we show that any circuit includes all ei, or includes
no ei. Suppose that a circuit C includes ei and does not include ej . By removing
ei from C, we can obtain an independent set. Let B be a base including the
independent set. From Lemma 4, B includes ej . Since the matroid is trimmed,
there is a base not including ej . Hence there is an element e′ whose elementary
circuit includes ej . Since Cir(B, ei) is C, e′ is not ei. By exchanging e′ and ej ,
we obtain a base including neither ei nor ej . This contradicts Lemma 4.

We now have that any circuit includes all ei or no ei. Hence for any base not
including e1, we have a base obtained by exchanging e1 and ei. For any i and
any base including e1, we also have a base obtained by exchanging e1 and ei. �

Let us consider that e2, ..., ek are included in any base of M \ e1. In this
case, we partition the problem into the subproblems of enumerating all bases
not including each ei and of enumerating all bases including all ei. Since any
matroid M \ ei can be constructed from M \ ei by renaming e1 to ei, each
additional subproblem is constructed in O(1) time. We now describe the details
of the algorithm as follows. Assume that M is trimmed.

ALGORITHM: T&B for Matroid Bases (M)
Step 1: Choose an element e ∈ B.
Step 2: Find a base B′ not including e.
Step 3: Generate and trim M/e and M\ e.
Step 4: If one of the subproblems loses some elements, partition the problem

again by using the balancing algorithm.
Step 5: Solve the subproblems by recursive calls.

This algorithm takes O(T (m,n)) time on an iteration. we bound the total
time complexity by a quite small order with the use of our analysis in the next
section.

4 Bounding the Amortized Time Complexity

To analyze the time complexity, we use the enumeration tree T of our algorithm.
For a vertex x of T , we denote the matroid by Mx. which a recursive call
corresponding to a vertex x inputs. Since x corresponds to an iteration, leaves
correspond to bases one-to-one, and any internal vertex has at least two children.
Hence the number of iterations does not exceed twice the number of bases. We
denote the size of the grand set of Mx by mx and the rank by nx.

We first establish a lower bound D̄(x). It is given by the lower bound on the
number of bases in a trimmed matroid.

Lemma6. A trimmed matroid M includes at least (m− n)n bases.

Proof. We prove the lemma by induction. Let B be a base of M. For each
element e in B, there is an element not in B whose elementary circuit includes
e. By exchanging e and the element, we obtain another base of M. The generated
bases are distinct, hence we have at least n other bases in the matroid. For each
element e′ not in B, we have an elementary circuit including at least one element
of B. By exchanging e′ and an element of the circuit, we can obtain m−n distinct
bases. Hence we have at leastm−n bases in the matroid. Therefore the condition
of the lemma holds if n = 1 or m− n = 1.

Assume that the condition of the lemma holds if m − n < k and n ≤ k′

hold, or m − n ≤ k and n < k′ hold. Under this assumption, we prove that
the condition of the lemma holds for the matroid M with m − n = k > 1 and
n = k′ > 1. Let e be an element of the grand set of M. If the matroids M/e
and M \ e lose no element by the trimming algorithm, M includes at least
(m− n− 1)n+ (m− n)(n− 1) = 2(m− n)n−m bases. Since m− n and n > 1,
we have 2(m− n)n−m > (m− n)n.

Let us consider the other cases. If M/e loses k (1 ≤ k ≤ m − n) elements
by the trimming algorithm, then the balancing algorithm partitions the bases of
M to bases of at least k+1 trimmed matroids with m− k− 1 elements and the
rank n− 1. Since these matroids have at least (m− k− 1− (n− 1))(n− 1) bases
from the assumption, M has at least (k+1)(m−k−n)(n−1) ≥ (m−n)n bases.

In the case that M \ e loses k (1 ≤ k ≤ n) elements, the bases of M are
partitioned to bases of k + 1 matroids with m − k − 1 elements and the rank
n−k. Since all these matroids have at least (m−k−1−(n−k))(n−k) bases by
the assumption, M has at least (k+1)(m−n− 1)(n− k) ≥ (m−n)n bases. �

Next we set X∗ to an upper bound on excess vertices. We set α to 30.
From Corollary 3, for X∗, we can use an upper bound of the number of vertices
x in a path from the root to a leaf satisfying the condition (a) that D̄(x) <

α
α+1

∑
u∈C(x) D̄(u). We show which vertices of T satisfy the condition. We first

consider the case that mx − nx = 1 or nx = 1. In this case, the balancing
algorithm generates mx − nx or nx subproblems with only one element in the
grand set. This element may be an excess vertex, although the number of this
type of excess vertices in the path from the root to a leaf is at most 1.

Next we consider the case that mx − nx, nx > 1. If both generated sub-
problems of x lose no element by the trimming algorithm, the number of bases
included in M/e or M\ e is at least (mx − nx − 1)nx + (mx − nx)(nx − 1) =
2(mx−nx)nx−mx. For a fixedmx, (mx−nx)nx takes its minimum value 2mx−2
when nx = 2 and nx = mx −2. Since 2mx −2 ≥mx/30 for any mx > 2, we have
(mx − nx)nx ≤ 29

30 (2(mx − nx)nx −mx). Hence x does not satisfy the condition
(a). Suppose that x is an excess vertex. Then a subproblem of x loses k elements
by the trimming algorithm. Thus we have 30

29
(mx − nx)nx > (k + 1)(mx − k −

nx)(nx − 1) or 30
29 (mx − nx)nx > (k+ 1)(mx − nx − 1)(nx − k) from the proof of

lemma 6. Hence we have 1.04nx

nx−1
> (k+1)(mx−k−nx)

(mx−nx)
, or 1.04(mx−nx)

mx−nx−1
> (k+1)(nx−k)

nx
.

The former condition holds only for k > mx−nx−4, and the latter condition
holds only for k > nx − 4. Thus any child y of x satisfies m− n ≤ 4 or n ≤ 4.
The rank and the cardinality of the grand set decrease strictly in the children,
hence there are at most 8 the above excess vertices in a path from the root to a
leaf. Therefore we can set X∗ to 9.

Since T (x) =O(T (mx, nx)), we set T̂ to maxx{O(T (mx, nx)/D̄(x))} =
O(T (m,n)/(mx − nx)nx). We obtain the following theorem.

Theorem 7. We can enumerate all matroid bases in O(T (m,n)) preprocessing
time and O(T (m,n)/n(m−n)}) time per base, if the time complexities of oracle
algorithms are depend on the input size of contracted and deleted matroids. �

5 On Graphic Matroids

In the following sections, we show some applications of our algorithm for some
enumeration problems of matroid bases. Here we see the case of graphic ma-
troids. The grand set of a graphic matroid M is given by the edge set E of an
undirected graph G = (V,E), and its independent set is given by a forest of the
graph. If the graph is connected, any base is a spanning tree. Hence the prob-
lem is that of enumerating all spanning trees of given undirected graphs. There
are numerous studies for this problem, and numerous algorithms have been pro-
posed and improved. The time complexities of the enumeration algorithms have
been reduced from O(|E| + |V |) to O(|V |) and to O(1) per spanning tree. And
their space complexities have been reduced from O(|V ||E|) to O(|E|+ |V |). The
methods by which these algorithms were improved relied on some advanced data
structures, but our algorithm in this subsection requires neither complicated al-
gorithm nor advanced data structure.

Since any spanning tree of G has |V | − 1 edges, we have that the number of
elements m is |E| and the rank n is |V | − 1. A base of a graphic matroid can
be found by a graph search algorithm in O(m + n) time. The contraction and
the deletion of the matroid are also easy. M/e is given by the graph obtained
by contracting the edge e, and M\ e is given by the graph obtained by deleting
e. Since any independent set of the matroid includes no cycle, a circuit of the
matroid is a cycle in G. Thus an elementary circuit oracle algorithm with O(n)
running time can be constructed.

We thus have Tcnt(m,n) = O(n), Tdel(m,n) = O(m− n), and Tcir(m,n) =
O(n). The time complexity of an iteration of the trimming and balancing algo-
rithm using these oracle algorithms is bounded by O((m− n)n). Since all loops
are detected in O(m) time and all elements with elementary cuts composed of

only themselves can be found by the 2-connected component decomposition in
O(m+n) time, the time complexity of the trimming algorithm can be reduced to
O(m+n). Therefore the trimming and balancing algorithm takes O(m+n) time
for preprocessing and O(O((m−n)n)

(m−n)n
) = O(1) time per spanning tree. It requires

only O(m + n) memory. These complexities are equal to those of the optimal
algorithm reported by Shioura et al.[2]. Here we have the following theorem.

Theorem8. All bases of a graphic matroid can be enumerated by a trimming
and balancing algorithm in O(m+n+N) time and O(m+ n) memory where N
denotes the number of bases. �

6 On Linear Matroids

For an m-by-n matrix M with m > n, the grand set of the linear matroid
is given by the set of column vectors, and an independent set is given by a
set of independent column vectors. The independent set family is given by the
correction of all the independent sets. If the given matrix is not degenerate,
the bases of the linear matroid are all submatrices composed of n independent
column vectors. For a given non-singularm-by-nmatrix, we consider the problem
of enumerating all these n-by-n non-singular submatrices, which are composed
of n independent column vectors. For this problem, Y. Matsui [1] proposed an
enumeration algorithm with a time complexity of O(n2) per base.

A base of the linear matroid can be found easily. By some LDL or LU de-
composition algorithms, we can obtain a non-singular submatrix B in at most
O(n2m) time. Our algorithm for linear matroids utilizes an elementary circuit or-
acle algorithm. To obtain a fast elementary circuit oracle algorithm, we consider
a linear matroid equivalent to M. The matroid is given by a matrix U(M,B)
generated from M as follows. All ith column vectors of B are replaced by the
unit vector ei whose ith element is 1 and other elements are 0. A column vector
x /∈ B is replaced by the vector y satisfying By = x. Since a set of column
vectors of M is independent if and only if the set of column vectors correspond-
ing to them is independent in U(M,B), the linear matroid given by U(M,B) is
equivalent to M. We enumerate bases of the matroid instead of the bases of M.

As column vectors of B are unit vectors, the elementary circuit of a column
vector x can be found easily. The ith column vector of B is in Cir(B, x) if and
only if the ith element of x is not 0. In each iteration, we exchange ith column
vector of B and the other column vector x and thereby obtain the other base B′.
x is generally not a unit vector, thus we have to obtain U(M,B′). Since only x
is not a unit vector in B′, for any column vector z of M, we can obtain a vector
y satisfying B′y = z in O(n2) time. Thus we take O(n2(m− n)) time to obtain
U(M,B′).

We next show contract and delete operation of an element. The deleting
operation is simple, since it involves only the deletion of a column vector. And
because in each iteration we delete a column vector outside the base, we do not
need to obtain U(M,B′). To contract the matroid by the ith column vector xi,
we fix xi in B and consider only the bases including xi. Since xi is included in
any base, we can restrict the rest of the column vectors to the linear subspace
orthogonal to xi. Hence we consider the matrix obtained by deleting ith element
from all column vectors of M. As the linear matroid given by the matrix is

equivalent to M/xi, we enumerate the bases of the matroid instead of the bases
of M/xi.

Because each of the above operations takes at most O(n2(m−n)) time, for an
iteration x inputting anmx-by-nx matrix, the time complexity is O(n2

x(mx−nx))
Since n2(m− n)/n(m− n) = n, we obtain the following theorem.

Theorem 9. All bases of the linear matroid given by an m-by-n matrix are
enumerated in O(n2m) preprocessing time and O(n) time per base. �

7 On Matching Matroids

Matching matroids are given by bipartite graphs. For a bipartite graph G = (V1∪
V2, E), the grand set of a matching matroid is given by V1, and an independent
set of the matroid is given by a set of vertices of V1 covered by a matching of G.
A base B of a matching matroid is obtained by finding a maximum cardinality
matching M of G. For a vertex v ∈ V1 \B, u ∈ B is in Cir(B, v) if and only if
there is an alternating path from v to u in G. An alternating path is a path of G
satisfying that edges in M and edges not in M appear in the path alternatively.
By exchanging edges of M and the other edges along the alternating path from
v to u, we obtain the other maximum matching M ′ which covers v and does not
cover u. To obtain the elementary circuit of v, we find the vertices of the base to
which there are some alternating paths from v. We can find them in O(m+ n)
time by using a graph search algorithm [3].

To delete a vertex from a matching matroid is easy. It is done by deleting the
vertex from G. The contracted matroid is not obtained by reforming G. Instead,
we simply mark the vertex to contract, and never output marked vertices when
we find elementary circuit. By this modification of the elementary circuit oracle
algorithm, we can obtain the contracted matching matroid.

An iteration x takes O((|Ex|−|Vx|)(|E|+ |V |)) time where Ex and Vx denote
the edge set and vertex set of the input graph of x. Note that E is the edge set
of the graph of the original problem. From our analysis, we know that the time
complexity of this enumeration algorithm is O((|Ex|−|Vx|)(|E|+|V |))

|Vx|(|Ex|−|Vx|) = O(|E|+|V |)
per iteration. Therefore we have the following theorem.

Theorem 10. All bases of a matching matroid given by a bipartite graph G =
(V,E) can be enumerated in O(|E|+ |V |) time per base. �

References
1. Y. Matsui, “An Algorithm for Generating All the Bases of Equality Systems ,” Re-

search Report, Dept. of Math. Engineering and Info. Physics, University of Tokyo,
Tokyo (to appear).

2. A.Shioura, A.Tamura and T.Uno, “An Optimal Algorithm for Scanning All Span-
ning Trees of Undirected graphs, ” SIAM J.Comp.26, pp.678-692 (1997).

3. T.Uno, “Algorithms for Enumerating All Perfect, Maximum and Maximal Match-
ings in Bipartite Graphs,” LNCS 1350, Springer-Verlag, pp.92-101 (1997).

4. T.Uno, “A New Approach for Speeding Up Enumeration Algorithms”
LNCS 1533, Springer-Verlag, pp.287-296 (1998)

