
A Fast Algorithm for Enumerating Bipartite Perfect
Matchings

Takeaki UNO
Foundations of Informatics Research Division, National Institute of Informatics, 2-1-2

Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan. uno@nii.ac.jp

Abstract: In this paper, we propose an algorithm for enumerating all the
perfect matchings included in a given bipartite graph G = (V,E). The algorithm
is improved by the approach which we proposed at ISAAC98. Our algorithm
takes O(log |V |) time per perfect matching while the current fastest algorithm
takes O(|V |) time per perfect matching.

Keyword: enumeration, enumerating algorithm, perfect matching.

1 Introduction

Enumeration is a fundamental problem for optimization, data bases, decision
making, and many other scientific problems. Numerous problems are solved, or
investigated by enumerating related objects. Therefore, enumeration algorithms
need to be intensively analyzed in order to find ways to solve these problems.

At ISAAC’98, we proposed a new approach for speeding up enumeration
algorithms. Currently, there had been only few studies on speeding up enumer-
ation algorithms. Almost all their techniques are depend on the structures of
their problems, hence their techniques can not be applied to other algorithms
immediately. Those algorithms often use data structures, which is also make
the improvement difficult to be generalized. Our approach, which we named
“trimming and balancing,” is a general method for speeding up enumeration al-
gorithms. It is not depend on structures of problems, and does not rely on data
structures. Therefore, by using the approach, we can speedup several algorithms
which we can not with the existing methods. In this paper, we speed up an
algorithm for enumerating bipartite perfect matching by using the approach.

Let G = (V = V1 ∪ V2, E) be an undirected bipartite graph with vertex sets
V1 and V2 and an edge set composed of edges in V1 × V2. A matching M of the
graph G is an edge set such that no two edges of M share their endpoints. If all
vertices of G are incident to some edges of a matching M, then we say that M is
a perfect matching. Let N be the number of perfect matchings in G. We consider
the problem of enumerating all the perfect matchings in a given bipartite graph.

For this problem, some algorithms have been proposed. In 1993, K. Fukuda
and T. Matsui proposed an enumeration algorithm [1]. The running time of the
algorithm is O(|V |1/2|E|+N(|E|+|V |)) time. In 1997, we proposed an algorithm
[3] running in O(|V |1/2|E| + N |V |) time. Our algorithm in this paper reduces
the time complexity to O(|V |1/2|E|+N log |V |) time.

In the next section, we explain the framework of “trimming and balancing.”
In Section 3, we explain the basic algorithm arising from Fukuda and Matsui’s
algorithm, and we describe our improvement in section 4.

2 Approach for Speeding Up Enumeration Algorithms

This section explains our approach, which we proposed at ISAAC 98. Here,
we omit the details and proofs. Readers should refer [4, 5]. The approach uses
an amortized analysis. The analysis bounds time complexities of enumeration
algorithms with two parameters. Since decrease of these two parameters result
smaller time complexities, the goal of the approach is to improve algorithms to
get small parameters. The way of improvement is to add two phases to each
iteration of the algorithms, which decreases each parameter, respectively.

Firstly, we explain the amortized analysis. Consider enumeration algorithms
based on recursive. For a given enumeration algorithm and its input, we define
the enumeration tree by T = (V, E), where V is the set of all iterations occurring
in the algorithm, and an edge of E ⊆ V × V connects two vertices iff one of
them occurs in the other. In this paper, we define an iteration by computation
in a recursive call excluding the computation in recursive calls occurring in the
recursive call. For a vertex v of a tree, let D(v) be the set of descendants of v,
Ch(v) be the set of children of v. For a vertex x ∈ V, we denote the computation
time in x by t(x), and define t̂(T) = maxx∈T {t(x)/|D(x)|}.

The idea of the amortized analysis is to distribute the computation time of
an iteration x to all the children of x such that each children y receives compu-
tation time proportional to t(y) or |D(y)|. This is for the balance of amount of
computation time which the descendants of children receive. This distribution
almost amortizes computation time of iterations. By adding several modifica-
tions to this idea, we can avoid the bad cases, and can state that the sum of
computation time in an enumeration tree T is O(t̂(T)x∗(T)) per iteration. Here
x∗(T) is a parameter of T which is bounded by the following ways.

Let P be the set of paths of T from the root to a leaf, and α > 1 be a constant
number. x∗(T) is less than or equal to the maximum number of vertices in a

path P ∈ P satisfying T (x) >
α− 1
α

∑

u∈Ch(x)

T (u).

This is a result of [4, 5]. From this, we can get the following lemma.

Lemma 1. If the enumeration tree satisfies the following conditions for a con-
stant c, then x∗(T) = O(logc/(c−1) t(x0)).

(1) t(x) ≥ t(y) for any child y of a vertex x
(2) If a vertex w satisfies t(w) < 4c2, then |D(w)| is constant.
(3) If a vertex w satisfies t(w) ≥ 4c2, then Ch(w) can be split into two subset Ch1(w) and
Ch2(w) such that

∑
u∈Ch1(w) t(u),

∑
u∈Ch2(w) t(u) ≥ (1/c)t(w)− c satisfies.

Proof. We set α = 2c + 1. On vertex w satisfying t(w) > α−1
α

∑
u∈Ch(w),

2c+1
2c t(w) >

∑
u∈Ch1(w) t(u)+

∑
u∈Ch2(w) t(u) holds. Hence, from the assumption

(3), we have

∑

u∈Ch2(w)

t(u) ≤ 2c+ 1
2c

t(w) −
∑

u∈Ch1(w)

t(u)

≤ 2c+ 1
2c

t(w) − 2
2c

t(w) + c

≤ 2c− 1
2c

t(w) +
t(w)
4c

=
4c− 1
4c

t(w).

Similarly, we have
∑

u∈Ch1(w) t(u) ≤ 4c−1
4c

t(w).Hence, we get t(u) ≤ 4c−1
4c

t(w),
for any child u of w. From the assumption (2), there are at most constant num-
ber of vertices satisfying t(w) < 4c2 on any path P ∈ P. Hence, P has at most

log4c/(4c−1) t(x0)+O(1) vertices x satisfying T (x) >
α− 1
α

∑

u∈Ch(x)

T (u). There-

fore, x∗(T) = O(logc/(c−1) t(x0)). ��
From this, we can improve the algorithm by decreasing t̂(T) and bounding

x∗(T) with the three conditions of the lemma. For this purpose, our approach
“trimming and balancing” does these by adding two phases. The first phase
“trimming phase” reduces the input, i.e., removes unnecessary parts from the
inputs, to decrease t(x) so that the order of t̂(T) is reduced. The second phase
“balancing phase” balance the size of subproblems so that each subproblem y
has not so small size after the trimming phase, to satisfy the conditions of the
lemma. We describe the framework of trimming and balancing approach.

Algorithm Enumeration Init (X)
Step 1: X := trimming phase (X)
Step 2: Call Enumeration (X)

Algorithm Enumeration (X)
Step 1: For i := 1 to (the number of subproblems)
Step 2: Generate the input Xi of subproblem i by balancing phase
Step 3: Xi := trimming phase to (Xi)
Step 4: Call Enumeration (Xi)
Step 5: End for

3 An Algorithm for Perfect Matchings

In this section, we explain the basic algorithm arising from Fukuda and Matsui’s
algorithm[1]. In the next section, we improve this algorithm by “trimming and
balancing” approach. For a given bipartite graph G = (V1∪V2, E), we denote the
set of all the perfect matchings in G by M(G). For an edge subset E′, let G \E′

be the graph obtained by deleting all the edges of E′ from G. The algorithm
utilizes the following properties to enumerate perfect matchings.

Property 1. Let E1 and E2 be edge sets such that E1 ∪ E2 is the set of edges
incident to a vertex v, and E1 ∩ E2 = ∅. Then, M(G \ E1) ∩M(G \ E2) = ∅.
and M(G \ E1) ∪M(G \ E2) = M(G).

Proof. A perfect matching M of G including an edge of E1 is a perfect matching
of G \ E2 and vice versa. A perfect matching M of G including an edge of E2

is a perfect matching of G \ E1 and vice versa. M includes exactly one edge of
E1 ∪ E2, hence the statement holds. ��

By using this property, the enumeration problem can be partitioned into two
subproblems of G \ E1 and G \ E2, if both G \ E1 and G \ E2 include a perfect
matching, respectively. G \Ei has a perfect matching iff a perfect matchings M
satisfy M ∩ Ei = ∅. Hence, we find two distinct perfect matchings M and M ′,
and set E1 and E2 so that E1 includes an edge e ∈ M \M ′ and E2 includes an
edge e ∈ M ′ \M.

A perfect matching M can be found in O(|V |1/2|E|) time [2]. To find another
perfect matching M ′, we use alternating cycles. For a perfect matching M and a
cycle C, if any two edges in C \M are not adjacent, then we call C an alternating
cycle. In an alternating cycle, edges of M and edges not in M appear alterna-
tively. By exchanging edges along an alternating cycle, we can obtain a perfect
matching different from M. Alternating cycles satisfy the following condition [1].

Property 2. For a perfect matching M, there exists another perfect matching iff
there exists an alternating cycle. ��

To find alternating cycles, we utilize a directed graph DG(G,M) defined
for a graph G and a matching M. The vertex set of DG(G,M) is given by V.
The arc set of DG(G,M) is given by orienting edges of M from V1 to V2, and
edges of E \M in the opposite direction. For any directed cycle C in the graph
DG(G,M), arcs of M and the other arcs appear alternatively in the cycle of G
corresponding to C. Hence, we can find an alternating cycle by finding a directed
cycle of DG(G,M). For conciseness, we treat an edge (u, v) (or (v, u)) of G and
an arc (u, v) of DG(G,M) as the same object, for example, arcs of DG(G,M)
which are included in M means arcs of DG(G,M) corresponding to the edges
of M.

By using these properties, we can construct the following enumeration algo-
rithm. We note that we do not need to find a perfect matching in each iteration
since we give M or M ′ to subproblems when we generate recursive calls.

ALGORITHM Basic Algorithm (G)
Step 1: If (G includes no perfect matching) then stop.
Step 2: M := (a perfect matching of G)
Step 3: Call Basic Algorithm Iter (G,M)

ALGORITHM Basic Algorithm Iter (G,M)
Step 1: Construct DG(G,M).
Step 2: Find an alternating cycle C by finding a directed cycle of DG(G,M).
Step 3: If (no directed cycle exists) then output M ; stop

e1

e2
e3

1

2

3

4
e4

e4

e3
e1

e2

Fig. 1. An example of partitioning a problem: E1 is composed of e1 and e2, and E2 is
composed of e3 and e4. M ′ is obtained from M with an alternating cycle (1,2,3,4).

Step 4: M ′ := the perfect matching obtained from M and C
Step 5: e := an edge in M \M ′ ; v := an endpoint of e
Step 6: E1 := {e} ; E2 := { all the edges incident to v except for e}
Step 7: Call Basic Algorithm Iter (G \E2,M)
Step 8: Call Basic Algorithm Iter (G \E1,M

′)

Let x be a vertex of an enumeration tree of the basic algorithm, and Gx =
(Vx, Ex) and Mx be the input graph and input matching of x, The time com-
plexity of x is O(|Ex|+ |Vx|), which is the computation time in Steps 1 through
8 except for the computation done in generated recursive calls in Steps 7 and
8. Since each leaf of an enumeration tree corresponds to an output, and each
internal vertex of the tree has two children, the number of iterations is less than
twice the number of outputs, which is 2N. Hence, the time complexity of this
basic algorithm is O(|E||V |1/2 + (|E|+ |V |)N).

4 Improving the Basic Algorithm

In this section, we improve the basic algorithm by adding a trimming phase
and a balancing phase. The trimming phase is composed of two parts, removing
edges included in no perfect matching or all perfect matchings, and replacing
consecutive degree 2 vertices by an edge.

To explain the first part, we prove a lemma. Let Trim′(DG(G,M)) be the
graph obtained by removing the arcs included in no directed cycle, and Trim′(G)
be the undirected version of Trim′(DG(G,M)). We denote the edges of M in-
cluded in Trim′(G) by Trim′(M). Let IS(G) be the graph obtained by removing
all the isolated vertices of G.

Lemma 2. M(G) = {M ′ ∪ (M \ Trim′(M))|M ′ ∈ M(IS(Trim′(G)))}

Proof. An edge e is included in no directed cycle of DG(G,M) if and only if
e is included in all the perfect matchings, or no perfect matching. Hence, all
the edges in M \ Trim′(M) are included in any perfect matching of G. Since

a

e
f

b

c
d

Fig. 2. An instance of DG(G,M). Bold lines are edges of M. Arcs a, b, c, d, e and f are
included in no directed cycle. a, b, d and e are included in no perfect matching, and c
and f are included in all the perfect matchings.

any edge of Trim′(G) is incident to no edge of M \ Trim′(M), M ′ ∪ (M \
Trim′(M)) is included in M(G) for any M ′ ∈ M(IS(Trim′(G))). Moreover,
for any M ∈ M(G), if a vertex v is incident to no edge of Trim′(M), then no
edge of Trim′(G) is incident to v. Hence, Trim′(M) is a perfect matching of
IS(Trim′(G)). Therefore, the lemma holds. ��

Arcs included in no directed cycle can be detected by strongly connected
component decomposition. Hence, we obtain Trim′(G) in O(|E| + |V |) time.
Next we state the following lemma to explain the second part of the trimming
algorithm.

Lemma 3. Suppose that two vertices u and v are incident to only edges (w1, u), (u, v)
and (v, w2), and w1 �= w2. Let G′ be the graph obtained by removing (w1, u), (u, v)
and (v, w2) from G, and adding (w1, w2) to it. Then, M(G) = {M∪{(u, v)}|M ∈
M(IS(G′)), (w1, w2) �∈ M}∪{M\{(w1, w2)}∪{(w1, u), (v, w2)}|M ∈ M(G′), (w1, w2) ∈
M} holds.

Proof. For any M ∈ M(G), exactly one of (w1, u), (v, w2) ∈ M and (u, v) ∈ M
hold. (w1, u), (v, w2) ∈ M if and only if M \ {(w1, u), (v, w2)} ∪ {(w1, w2)} ∈
M(IS(G′)). (u, v) ∈ M if and only if M \ {(w1, u), (v, w2)} ∪ {(w1, w2)} ∈
M(IS(G′)). Hence, the lemma holds. ��

Let Trim(DG(G,M)) be the graph obtained by applying this operation to
Trim′(DG(G,M)) while G includes a pair of vertices with degree 2 adjacent
to each other, and removing isolated vertices. Let Trim(G) be the undirected
version of Trim(DG(G,M)). T rim(G) is obtained in O(|E| + |V |) time. We
note that Trim′(DG(G,M)) = DG(Trim′(G),M ′) and Trim(DG(G,M)) =
DG(Trim(G),M ′′) hold for some perfect matchings M ′ of Trim′(G) and M ′′

of Trim(G).
In the trimming phase operated before beginning of an iteration x, we con-

struct Trim(Gx) and set Gx to Trim(Gx). After the trimming phase, we output
all edges of Mx \Trim′(Mx), and the changes by the operation of Lemma 3. By
this, when an iteration inputs an empty graph and output a perfect matchingM,
the all edges of M are already outputted, hence we can construct M by previous
outputs. Thus, we output only a word “matching” when we have to output a
perfect matching. since they are included in any perfect matching of the original
G. At the end of the iteration x, we cancel the outputs generated in the above.
By using this outputting method, we can reduce the computation time for the
output as much as the other part of the iteration.

Here we describe the trimming algorithm, inputting G,M and outputting
Trim(G).

ALGORITHM Trimming Perfect Matching (G,M)
Step 1: G := G\ (edges corresponding to arcs included in no directed cycle of DG(G,M))
Step 2: If (u and v are incident to only edges (w1, u), (u, v) and (v, w2), and w1 �= w2)

then E := E \ {(w1, u), (u, v)(v, w2)} ∪ (w1, w2) ; Go to Step 2
Step 3 Output G

In a trimming and balancing algorithm, we operate the trimming phase for
the generated subproblem before generating a recursive call, hence we assume
that the input graph G in each iteration satisfies G = Trim(G). This assumption
gives a lemma. Let cc(G) be the number of connected components of G, and f(G)
be |E| − |V |+ cc(G).

Lemma 4. |M(G)| ≥ f(G) ≥ |E|/5.

Proof. To prove the lemma, we estimate the lower bound of the number of
directed cycles in DG(G,M). For a strongly connected component Di = (Vi, Ei)
of DG(G,M), we set a graph C = (VC , EC) to a directed cycle of Di. The
number of directed cycles in C is |EC| − |VC|+1. If Ei \EC �= ∅, then the graph
(Vi, Ei \ EC) contains a directed path P = (VP , EP) whose endpoints are both
included in C and whose internal vertices and edges are not in C since Di is
strongly connected. P satisfies |EP \EC | − |VP \ VC | = 1. By adding P to C, at
least one directed cycle including P is generated since C is strongly connected.
This addition does not make C non-strongly connected. |EC|−|VC|+1 increases
only one by this addition. Hence, when EC = Ei holds, we have that the number
of directed cycles in Di is at least |Ei| − |Vi|+1. Therefore, DG(G,M) includes
at least

∑cc(Trim(G))
i=1 (|Ei|− |Vi|+1) = |E|− |V |+ cc(G) = f(G) directed cycles.

If Di is a directed cycle with length 2, then |Ei| − |Vi|+ 1 = 1 > 0.2|Ei|. If
Di is not a directed cycle with length 2, Di does not include consecutive vertices
with degree 2. Hence, |Ei| ≥ 1.25|Vi| holds, and we have |Ei|− |Vi|+1 = 0.2|Ei|.
Therefore, f(G) ≥ 0.2|Et|. ��

From this lemma, we can see that Gx has at least f(Gx) perfect matchings,
thusD(x) ≥ f(Gx). Since the trimming phase and the balancing phase explained
in below takes only O(|Ex|) time, we have t̂(T) = O(1). Next we explain the
balancing phase. In the balancing phase, we select edge sets E1 and E2 such that
f(Trim(G \ Ei)) ≥ f(G)/4 − 2.

If connected components D1, ..., Dk of G are at least two, there exists Di

satisfying f(Dj) ≤ f(G)/2. Since f(G) =
∑k

i=1 f(Di), any subsets E1 and E2

of edges incident to a vertex of Di satisfies f(Trim(G \ Ei)) ≥ f(G)/4.
In the case that G is connected, we get E1 and E2 by partitioning edges

incident to a vertex r ∈ V2. If f(Trim(G \ Ei)) ≥ f(G)/4 does not hold, then
we re-select E1 and E2. Suppose that f(Trim(G \ E2)) < f(G)/4. Let M be a
perfect matching of G including an edge e∗ ∈ E1. In DG(G,M), r is the head
of e∗ since e∗ ∈ M. We denote the tail of e∗ by r′. To re-select, we construct a
directed graph DG′ satisfying the following conditions.

e1

Fig. 3. An instance of DG′: dotted lines are arcs of DG(G, M) not in DG′, and each
dotted circle is DG′

i.

Property 3. There exists a directed subgraph DG′ of DG(G,M) satisfying:
(a) any directed cycle in DG′ includes e∗,
(b) any arc e of DG′ is included in a directed cycle, and
(c) f(DG′) ≥ 3f(G)/4.

Proof. Let Di = (Vi, Ei) be each strongly connected component of DG(G \
E2,M), and E′ be the set of the edges not included in any Di. We denote the
set of vertices in Vi which are heads of edges in E′ by V Hi, and those which are
tails of edges E′ by V Ti. Since DG(G,M) is strongly connected, V Hi, V Ti �= ∅.
Here we obtain DG′

i by the following operations for each i.

(1) Choose a vertex v ∈ VHi. Set DG′
i = (V ′

i , E
′
i) to ({v}, ∅)

(2) If there exists a vertex u ∈ V Ti \ V ′
i , then find a directed path P from a

vertex of V ′
i to u such that all internal vertices of P are not included in V ′

i , add
P to DG′

i, and go to (2).
(3) If there exists a vertex u ∈ V Hi \ V ′

i , then find a directed path P from u to
a vertex of V ′

i such that all internal vertices of P are not included in V ′
i , add P

to DG′
i, and go to (3).

Here we set DG′ to (
⋃
V ′

i , E
′ ∪

⋃
E′

i). Since any arc of E′ is included in
only directed cycles of DG(G,M) including e∗, and (Vi, Ei) includes no directed
cycle, we can see that any directed cycle of DG′ includes e∗, thus DG′ satisfies
(a). Since any vertex v of DG′ is the tail of an arc of DG′, and is also the head
of an arc of DG′, we can see that DG′ includes directed paths from v to r and
r to v. Hence, DG′ satisfies (b).

Since removals of isolated vertices does not change the value of f, we have
f(H) = f(IS(H)) for any graph H. Since f(G) = f(G′) holds in Lemma 3, we
have f(Trim′(H)) = f(Trim(H)) for any graph H. Thus, from |E′

i| − |Vi| +

cc((Vi, E
′
i)) ≥ 0 and cc((V,E′ ∪

⋃
E′

i)) ≥
∑

cc((V ′
i , E

′
i))− cc(Trim(G\E2))+1,

DG′ satisfies (c) from the following inequation.

f(DG′) = f((V,E′ ∪
⋃

E′
i))

= |E′|+ (
∑

|E′
i|)− |V |+ cc((V,E′ ∪

⋃
E′

i))

≥ |E′|+ (
∑

|E′
i| − |Vi|+ cc((Vi, E

′
i)))− cc(Trim(G \ E2)) + 1

≥ |E′| − cc(Trim′(G \ E2)) + 1
= |E′| − (f(Trim′(G \ E2)) − (|E| − |E′|) + |V |) + 1
= |E| − |V |+ 1− f(Trim′(G \ E2))
= f(G) − f(Trim′(G \ E2))
≥ 3f(G)/4.��

Let d′(v) be the out-going degree of v in DG′, which is the number of arcs
of DG′ whose tails are v. We note that f(DG′) = cc(DG′) +

∑
v∈V ′(d(v) − 1)

where V ′ is the vertex set of DG′. This holds for any directed graph. Let Q
be a directed path from r to r′ including a maximum out-going degree vertex
w of DG′. Note that w �= r′ since d′(r′) = 1. Let T be a directed spanning
tree of DG′ including Q whose root is r. For a vertex v ∈ T, we recall that
D(v) is the set of all the descendants of v. We note that v is a descendant of v.
We also denote the set of all the arcs whose tails are v by L(v), and the set of
all the arcs whose tails are in D(v) by L(D(v)). For an arc set F ⊆ L(v), we
define D(F) = {v} ∪

⋃
(v,v′)∈F D(v′), and L(D(F)) = F ∪

⋃
(v,v′)∈F L(D(v′)).

|L(D(r))| − D(r) ≥ 3f(G)/4 holds. Since w is not a leaf of T, any leaf v of T
satisfies d′(v) ≤

∑
v∈V ′ d(v)/2, hence |L(D(v))| − D(v) ≥ 3f(G)/4 holds. By

using this, we re-construct E1 and E2 as follows.
(1) Find a vertex v∗ such that |L(D(v∗))| − |D(v∗)| ≥ 2f(G)/4, and

|L(D(u))| − |D(u)| < 2f(G)/4 for any child u of v∗.
(2) If an edge e ∈ L(v∗) satisfies L(D({e})) ≥ f(G)/4, then we set E2 to {e}. If not,

we add an arc of L(v) to E2 iteratively until |L(D(E2))| − |D(E2)| ≥ f(G)/4.
The obtainedE2 satisfies |L(D(E2))|−|D(E2)| < 2f(G)/4. Since |L(D(L(v∗)))|−

|D(L(v∗))| ≥ |L(D(v∗))| − |D(v∗)|, E2 �= L(v∗). Let E1 be the set of edges inci-
dent to v∗ and not included in E2. Then, the following lemma holds.

Lemma 5. E1 and E2 satisfy f(Trim(G\E1)) ≥ f(G)/4−2, f(Trim(G\E2)) ≥
f(G)/4− 2.

Proof. First, we show f(Trim(G \ E2)) ≥ f(G)/4 − 2. Let e be an arc whose
tail v is in V \D(E2), and C be a directed cycle of DG′ including e. Suppose
that C includes an arc of E2. Since DG′ includes only directed cycles including
e∗, at most one arc of E2 is included in C. We obtain a directed cycle including
no arc of E2 as follows.
(1) If a directed r-v path in C includes an arc of E2, we replace the path of

C by the directed r-v path of T.

f1

f2

f3

f4

e1

Fig. 4. An instance of re-selected E1 = {f1, f2} and E2 = {f3, f4}. The circle is a
subgraph with a large number of arcs.

(2) If a directed v-r path of C includes an arc of C1, we replace the directed
v∗-r path of C by a directed v∗-r path including an arc of E1. We note that the
directed path exists since L(v∗) includes at least one arc of E1.

Therefore, e is included in Trim′(DG(G \C1,M)). From this, the out-going
degree of v in Trim′(DG(G \E2,M)) is d′(v). Similarly, the out-going degree of
v∗ in Trim′(DG(G \ E2,M)) is |E1| − 1. Thus,

f(Trim(G \ E2)) = f(Trim′(DG(G \ E2,M)))

≥ 1 + ((|E1| − 1)− 1) +
∑

v∈V \D(E2)

(d′(v) − 1)

= f(DG′)− 2− (|E2|+
∑

v∈D(E2)\{v∗}
(d′(v) − 1))

≥ 3f(G)/4 − 2− (|L(D(E2))| − |D(E2)|)
≥ f(G)/4 − 2.

We next show that f(Trim′(DG(G \ E1,M
′))) ≥ f(G)/4 − 2. Suppose that

C is an alternating cycle respect to M including an edge of E2 and M ′ is the
perfect matching obtained by C from M.

If an arc e of DG(G,M) satisfies the following two conditions, then G \ E1

contains both perfect matchings including e, and those not including e, hence e
is included in Trim′(DG(G \ E1,M

′)).

(1) There exists a directed cycle in DG(G,M) including e and an arc of E2.
(2) There exists a directed cycle in DG(G,M) including an arc of E2 and not including e.

Any arc e of L(D(E2)) satisfies (1). If e is not included in C, then e satisfies
(2) from the existence of C. Let B be the set of arcs of C ∩ L(D(v∗)) not
included in Trim′(DG(G \ E1,M

′)), and d′′(v) be the out-going degree of v in

Trim′(DG(G\E1,M
′)). For v ∈ D(E2)\{v∗}, d′′(v) = d′(v)−1 if v is the tail of

an arc of B, and d′′(v) = d′(v) otherwise. Similarly, we can see d′′(v∗) ≥ |E2|−1.
Since any arc of B is included in no directed cycle of Trim′(DG(G\E1,M

′)),
each strongly connected component on which an arc of B has its tail is distinct.
Hence, we have cc(Trim′(DG(G \ E1,M

′))) ≥ |B|. From these, we obtain

f(Trim(G \ E1,M
′))

= f(Trim′(DG(G \ E1,M
′)))

≥ cc(Trim′(DG(G \ E1,M
′))) +

∑

v∈D(E2)

(d′′(v) − 1)

= cc(Trim′(DG(G \ E1,M
′))) + (|E2| − 1)− 1 +

∑

v∈D(E2)\{v∗}
(d′(v) − 1)− |B|

= cc(Trim′(DG(G \ E1,M
′))) + (|L(D(E2))| − |B| − 1)− |D(E2)|

≥ |L(D(E2))| − |D(E2)| − 1
≥ f(G)/4 − 1.��

We describe the framework of our balancing phase as follows.

ALGORITHM Balancing Perfect Matching (G,M)
Step 1: r :=(a vertex of strongly connected component with the minimum value of f)
Step 2: E1 :=(the set composed of an edge e∗ incident to r)
Step 3: E2 :=(the set of edges incident to r except for e∗)
Step 4: If (f(Trim(G \ Ei)) ≤ f(G)/4) then
Step 5: Construct DG′

Step 6: E2 :=(a subset of L(r) with f(G)/4 ≤ |L(D(E2))| − |D(E2)| < 2f(G)/4)
Step 7: E1 :=(the set of edges incident to r and not included in E2)
Step 8: End if
Step 9 Output E1, E2

Adding this balancing algorithm, we describe our trimming and balancing
algorithm.

ALGORITHM Enum Perfect Matchings Iter (G,M)
Step 1: If G includes no edge, then output “matching” ; return
Step 2: E1, E2 :=Balancing Perfect Matching (G,M)
Step 3: C := a directed cycle of DG(G,M)
Step 4: M ′ := the perfect matching obtained by C from M
Step 5: For i := 1 to 2 do
Step 6: G := Trimming Perfect Matching (G \ Ei,M)

Output all edges of M not included in G
Step 8: Call Enum Perfect Matchings Iter (G, Trim(M))
Step 9: Output ”delete” and all edges of M not included in G
Step 10: Recover the original G by doing the reverse operation of Step 6
Step 11: End for

For this algorithm, t(x) = O(|Ex|) and |D(x)| ≥ |Ex| − |Vx| + cc(Gx) for
any iteration x. Thus we have t̂(T) = O(1). Moreover, we obtain the following
properties.

(1) For any child y of x, t(x) ≥ t(y).
(2) If t(x) is constant, then |D(x)| is constant since the size of Gx is constant.
(3) For any child y of x, t(y) ≥ t(x)/4− 1 from the balancing phase.

Hence, from lemma 1, any enumeration tree T generated by this algorithm sat-
isfies x∗(T) = O(log |E|) = O(log |V |). Therefore, we obtain the following theo-
rem.

Theorem 1. Perfect matchings in a bipartite graph G = (V,E) can be enumer-
ated in O(|E||V |1/2) preprocessing time and O(log |V |) time per perfect matching.

��

We note that the memory complexity of the algorithm is O(|E|+ |V |). The
analysis of the memory complexity is same as [3].

Acknowledgment

Wewould like to thank Professor Akihisa Tamura of the University of Electro-
Communications, and all the members of “myogadani-club” for their valuable
advice.

References

1. K. Fukuda and T. Matsui, “Finding All the Perfect Matchings in Bipartite
Graphs,” Appl. Math. Lett. 7, No. 1, 15-18 (1994).

2. J. E. Hopcroft and R. M. Karp, “An n5/2 Algorithm for Maximum Matching in
Bipartite Graphs,” SIAM J. Comp. 2, 225-231 (1973).

3. T. Uno, “Algorithms for Enumerating All Perfect, Maximum and Maximal Match-
ings in Bipartite Graphs,” Lecture Note in Computer Science 1350, Springer-
Verlag, Algorithms and Computation, 92-101 (1997).

4. T. Uno, “A New Approach for Speeding Up Enumeration Algorithms,” Lecture
Note in Computer Science 1533, Springer-Verlag, Algorithms and Computation,
287-296 (1998).

5. T. Uno, “A New Approach for Speeding Up Enumeration Algorithms and Its Ap-
plication for Matroid Bases,” Lecture Note in Computer Science 1627, Springer-
Verlag, Computing and Combinatorics (Proceeding of COCOON99), 349-359,
(1999)

