
(C) Springer Verlag, Lecture Notes on Computer Sience

An Algorithm for Enumerating all Directed Spanning
Trees in a Directed Graph

Takeaki UNO

Department of Systems Science, Tokyo Institute of Technology, 2-12-1 Oh-okayama,

Meguro-ku, Tokyo 152, Japan. uno@is.titech.ac.jp

Abstract: A directed spanning tree in a directed graph G = (V,A) is a spanning

tree such that no two arcs share their tails. In this paper, we propose an algorithm for

listing all directed spanning trees of G. Its time and space complexities are O(|A| +
ND(|V |, |A|)) and O(|A|+DS(|V |, |A|)), where D(|V |, |A|) and DS(|V |, |A|) are the time
and space complexities of the data structure for updating the minimum spanning tree

in an undirected graph with |V | vertices and |A| edges. Here N denotes the number of

directed spanning trees in G.

Keywords directed spanning tree, listing, enumerating algorithm

1 Introduction

Let G = (V,A) be a directed graph with vertex set V and arc set A. An arc is specified

by both of its endpoints. One of them is called its head and the other is called its tail.

A directed spanning tree of G is a spanning tree in which no two arcs share their tails.

Each vertex is the tail of exactly one arc of the directed spanning tree except for a special

vertex r. We call r the root of the spanning tree.

Directed spanning trees have been studied in many fields. For instance, many problems

on road and telephone networks have been formulated as some optimization problems of

directed spanning trees. Some of them have complicated objective functions, and we can

hardly solve them in efficient time. For those problems, one of the most simple approaches

is to use enumerating. The branch-and-bound method, which is one of the most popular

approaches, can be also considered as a kind of enumerating. In this method, the time

complexity of the enumerating algorithm greatly influences to its speed. Therefore, im-

provements of enumerating algorithms largely enhance the efficiency for those problems.

In this paper, we consider the problem of enumerating all directed spanning trees with

the root r of the given graph G. This problem has been studied for nearly 20 years. In

1978, H. N. Gabow and E. W. Myers proposed an algorithm which runs in O(|A|+N |A|)
time and O(|A|) space [1]. Here N denotes the number of directed spanning trees in G.

In 1992, H. N. Kapoor and H. Ramesh improved the time complexity to O(|A| + N |V |)

1

[2]. Since a directed spanning tree requires O(|V |) time for outputting, it is the optimal
algorithm in the sense of both time and space complexities if we have to output all of them

explicitly. On the other hand, in undirected graphs, compact output methods have been

studied to shorten the size of outputs [2, 3]. They output a spanning tree by differences

from the previous outputted tree. By outputting all spanning trees in a special order,

we can reduce the total size of outputs to O(N). A. Shioura, A. Tamura and T. Uno

proposed an optimal algorithm with the compact output method for enumerating all

undirected spanning trees [3]. In their algorithm, they utilizes the reverse search. Our

method in this note is also based on this reverse search technique. It can be also considered

a kind of the back tracking method, which is used in [2].

Here we propose an algorithm for enumerating all directed spanning trees in O(|A| +
ND(|V |, |A|)) time. Our algorithm constructs and preserves an undirected graph with

|V | vertices and at most |A| weighted edges. This graph is modified after each directed
spanning tree is encountered. To update the data structure for finding new directed

spanning trees, we delete, add or change the weight of an edge, and find the minimum

spanning tree of the graph in each iteration of the algorithm. Since only few edges are

changed in each iteration, we construct the minimum spanning tree of the changed graph

from the previous one by some updating spanning tree algorithm.

Therefore the time complexity of our algorithm depends on the time complexity of the

updating algorithm, which is denoted by D(|V |, |A|). The space complexity also depends
on the updating algorithm. We denote its space complexity by DS(|V |, |A|). The update
operations are adding, deleting and changing the weight of an edge. Some data struc-

tures are proposed for these updating operations of the minimum spanning tree. G. N.

Frederickson proposed an O(|A|1/2) time data structure [5], and D. Eppstein, Z. Galil, G.

F. Italiano and A. Nissenzweig improved the time complexity into O(|V |1/2 log(|A|/|V |))
[4]. Their time complexities are smaller than O(|V |). There use only O(|A|) space, thus
we do not lose the optimality of space complexity by our improvement.

2 The Reverse Search and the Parent-Child Rela-

tionship

We use a technique called reverse search for enumeration problems. The reverse search

requires a parent-child relationship on those objects to be enumerated. The relationship

has to satisfy: i) each object except for a specified object r0 has a parent object and ii)

each object is not a proper ancestor of itself.

Let us consider the graph representation of this parent-child relationship. An object

corresponds to a node v of the graph and an edge (v, u) is included in the graph if and only

if u corresponds to its parent. By the condition of the relationship, the graph contains no

cycle and forms a rooted spanning tree. This tree is called an enumeration tree. In Figure

1, we show an example of an enumeration tree. The reverse search traverses all nodes

2

1

0

2

3

Fig1: The enumeration tree. The emphasized line of the graph is T0.

of the enumeration tree by some depth-first-search scheme from the specified object r0.

Even if the size of the enumeration tree is huge, only a small memory space is required,

since we can traverse it by only finding the parent and all children of the current object.

Hence an important point in speeding up reverse search is “How to enumerate all children

efficiently fast.”

To enumerate all directed spanning trees, we define a parent-child relationship among

them as below. Let T0 be a depth-first-search tree of the given graph G. A depth-

first-search tree is a directed spanning tree which arises from the traversal route of a

depth-first-search. We assume that any search traverses an arc from its head to tail.

Using this specified directed tree T0, we introduce the parent-child relationship. In the

relationship, T0 corresponds to the specified object r0. Let the indices of the vertices of G

be as the order of the traversal of the depth first search. Similarly, we define the indices

of arcs of G by indices of their tails. The parent of a directed spanning tree Tc �= T0 is

defined by the directed spanning tree Tp = Tc \ f ∪ e where e is the minimum index arc

e in T0 \ Tc and f is the arc of Tc sharing its tail with e. Since f shares its tail only one

arc of Tc, Tp is uniquely defined. From the definition of the index, there always exists a

path from the root to the head of e. Hence e is not contained in any cycle and Tp forms

a directed spanning tree. In this parent-child relationship, Tc is not a proper ancestor of

itself, as Tp contains just one more arc of T0 than Tc.

3

To output directed spanning trees compactly, we consider differences between a di-

rected spanning tree and the one outputted just before by the reverse search. Some of

them may have O(|V |) differences, but the total differences over all directed spanning
trees does not reach O(|V |N). Since the reverse search traverses the enumeration tree by
the depth-first-search, the total amount is twice the sum of differences between a child

and its parent over all directed spanning trees. Any directed spanning tree differs by only

two arcs from its parent, thus the total the size of outputs can be reduced into O(N) by

outputting only differences.

Next we show the method of enumerating all children of a directed spanning tree Tp.

Let v∗(Tp) be the minimum index among arcs in T0 \ Tp. Exceptionally, we define v∗(T0)

by ∞. Let us construct Tc by removing an arc e from Tp whose index is less than v∗(Tp)

and adding an arc f �= e sharing its tail with e. If Tc forms a tree, it is a child of Tp from

the definition. Conversely, in the case that Tp = Tc \f ∪e is the parent of Tc, the index of

e is less than v∗(Tp). Thus all children of Tp can be found by the above method. To find

children, we deal with only vertices and arcs whose indices are less than v∗(Tp). Hence

we call them valid.

For a tree T , we call an arc not in T a back-arc, if its tail is an ancestor of its head, and

otherwise a non-back-arc. In the above method, if f is a back-arc of Tp, then Tc = Tp\e∪f

contains a cycle and is not a directed spanning tree. If f is a non-back-arc of Tp, there

always exists a path from r to the head of f in Tc and Tc contains no cycle. Hence each

child of Tp is obtained by adding a valid non-back-arc f and removing an arc e sharing its

tail with f . Valid non-back-arcs have a one-to-one correspondence with the children and

the number of children is same as the number of valid non-back-arcs. By maintaining the

set of all valid non-back-arcs, finding all children can be accomplished sufficiently easily.

We now describe the framework of our algorithm.

ALGORITHM: Enum Directed Spanning Trees(G)

Step 1: Find T0 by a depth-first-search.

Step 2: Assign indices for each vertex.

Step 3: Classify arcs not in T0 into the back-arc set and the non-back-arc set.

Sort them in order of their indices.

Step 4: Call Enum Directed Spanning Trees Iter(T0).

ALGORITHM: Enum Directed Spanning Trees Iter(Tp)

Step 1: For each valid non-back-arc f of Tp, do the following.

Step 2: Construct Tc by adding f and removing an arc e.

Output it by the difference from the previous outputted one.

Step 3: List all valid non-back-arcs of Tc in order of their indices.

Step 4: Call Enum Directed Spanning Trees(Tc) recursively.

4

Step 1 to 3 of the algorithm Enum Directed Spanning Trees(G) runs in O(|A|)
time. The construction of a child of Tp in Step 2 ofEnum Directed Spanning Trees Iter

may be done in O(1) by swapping two arcs. Step 3 lists all valid non-back-arcs of Tc,

and the number of them is equal to the number of children of Tc in the enumeration tree.

Thus total time spent until Step 3 is the time to find one valid non-back-arc of Tc per one

outputted directed tree.

The earlier algorithm [2] takes O(|V |) time for finding one non-back-arc in the worst
case and it is the bottle neck of the time complexity while other parts of the algorithm

take only O(1) time. Our improvement on this part reduces its time complexity to the

time necessary to update the minimum spanning tree of an undirected graph. In the next

section, we show a data structure which is the key to the improvement.

3 An Improved Data Structure

To enumerate all valid non-back-arcs sufficiently fast in Step 3, we show the following

two conditions. They are also stated in [2]. We denote the tail of e by v and the nearest

common ancestor of v and the head of f by w.

Lemma 1 Let Tc = Tp \ e ∪ f be a child of Tp. A valid non-back-arc of Tp is a valid

non-back-arc of Tc if its index is less than v∗(Tc).

Proof : Since T0 is a depth-first-search tree, the index of the tail of f is larger than

v∗(Tc). Thus for all valid vertices of Tc, all its descendants in Tc are also descendants Tp.

Therefore any valid vertex is not an ancestor of a vertex v in Tc if it is not an ancestor in

Tp.

Lemma 2 Let P be the vertex set of the interior points of the path from the head of e

to w on Tp, where interior points of the path are vertices of the path which are not its

endpoints. A back-arc of Tp is a non-back-arc of Tc if and only if its head is a descendant

of v and its tail is in P .

Proof : A descendant of v is also a descendant of all vertices of P but not in Tc. Thus if

the head of a back-arc is a descendant of v and its tail is in P , it is a non-back-arc of Tc.

Conversely, only descendants of v have ancestors which are not ancestors in Tc and only

vertices of P have descendants which are not descendants in Tc. Thus any back-arc of Tp

has the head in descendants of v and a tail in P if it is a non-back-arc of Tc.

From these lemmas, the valid non-back-arc set of Tc is composed by those back-arcs

of Tp and valid non-back-arcs of Tp whose indices are less than v∗(Tc). By listing both of

them in order of their indices, we can obtain the non-back-arc set sorted by their indices.

The former can be listed easily if we have the set of valid non-back-arcs of Tp sorted by

5

e

f ff

Fig2: The way of B(T) changes.

their indices. But the latter is hard to list with only simple data structures. We use the

following data structure shown as below.

For a directed spanning tree Tp, let B(Tp) be an undirected graph with vertex set V

and edge set composed by arcs of Tp, valid back-arcs of Tp and some of other rest back-

arcs. B(T0) is an undirected graph composed by T0 and all of its back-arcs. The weight

of edges in the graph B(Tp) is defined as 0 for arcs of Tp and (|V |+1 − index) for others.

The minimum spanning tree of B(Tp) is Tp.

By removing a valid arc e of Tp from the undirected graph B(Tp), the minimum

spanning tree of B(Tp) is split into two. One of them contains all descendants of v and

the other contains the rest. The minimum spanning tree of the graph B(Tp)\e is obtained

by adding the minimum weight cut edge b, which has endpoints in both of those two trees.

From above lemmas, b is a valid non-back-arc of Tc if and only if the tail of b is in P .

In the case that b does not exist, no back-arc of Tp is a non-back-arc of Tc. Since b is a

back-arc of Tp, the tail of b is in the path from v to r and its head is a descendant of v.

From the definition of the weight, no back-arc connects a descendant of v and an interior

point of the path from the tail of b to v. We show an example of the way of B(T) changes

in Figure 2. Emphasized lines are a part of the minimum spanning tree. Doted lines are

eliminated and a new edge will be inserted.

Therefore we can find a new valid non-back-arc of Tc by updating the minimum span-

ning tree. By removing b and applying the method repeatedly, we can enumerate all

new valid non-back-arcs of Tc. The algorithm is showed as follows. It outputs all new

non-back-arcs and updates the graph from B(Tp) to B(Tc).

ALGORITHM: Enum Non-back-arcs(Tp, B(Tp), e, f)

Step 1: Remove e from B(Tp).

Step 2: Update the minimum spanning tree by adding some edge b.

If b does not exist, then add f to B(Tp), and stop.

6

Step 3: If b is not a back-arc of Tc = Tp \ e ∪ f , then remove b and add f to B(Tp). Stop.

Step 4: Output b. Remove b from B(Tp). Go to Step 2

Lemma 3 The algorithm Enum Non-back-arcs outputs all back-arcs of Tp which are

valid non-back-arcs of Tc in the order of their indices. It takes O(D(|V |, |A|)) time and

O(D(|V |, |A|)) time for one output. Its space complexity is O(|A| + DS(|V |, |A|)).

Proof : Since the algorithm finds the maximum index one among those back-arcs, back-

arcs are outputted in the order of their indices. Therefore merging operation is done in

linear time of the number of non-back-arcs. To identify both the endpoints of the path

P , we have to find the nearest common ancestor of the head of e and the head of f . It

can be found in O(log |V |) time by D. D. Slater and R. E. Tarjan’s dynamic tree data
structure [6]. The updating operation, which is adding an edge, deleting an edge and

changing the root, of it is also done in O(log |V |) time. The time complexity of the rest
of the algorithm is O(D(|V |, |A|)) for one iteration. Because of the number of iterations,
the time complexity is O(D(|V |, |A|)) per one output.
By using this algorithm, we obtain the following theorem.

Theorem 3.1 Algorithm Enum Directed Spanning Trees enumerates all directed

spanning trees in O(|A| +ND(|V |, |A|)) time. It uses O(|A| + DS(|V |, |A|)) space.

Proof : By above lemmas, the time complexity of algorithm is O(|A|) for preprocessing,
O(log |V | + D(|V |, |A|)) time for one directed spanning tree and O(D(|V |, |A|)) time for
one new non-back-arc. Thus the time complexity satisfies the condition. The algorithm

changes the data structure for updating the minimum spanning tree if a recursive call

occurs. When the recursive call ends, we have to restore it. The restoring operation

is done by adding the deleted edge, deleting the added edge and changing the modified

weight. The total amount of these changes may increase by recursive calls, but the total

size of each of the added edges, deleted edges and weight changed edges does not exceed

|A|. Therefore they are stored in O(|A|) space.
The set of valid non-back-arcs and back-arcs are treated similarly. After a recursive

call, we can restore them by adding and removing the removed or added arcs. The total

space for storing them is O(|A|). Hence the space complexity is O(|A| +DS(|V |, |A|)).

Acknowledgment

We greatly thank to Associate Professor Akihisa Tamura of University of Electro-

Communications for his kindly advise. We also owe a special debt of gratitude of Research

Assistant Yoshiko T. Ikebe of Science University of Tokyo.

7

References

[1] H. N. Gabow, E. W. Myers, “Finding All Spanning Trees of Directed and Undirected

Graphs,” SIAM J. Comp., 7, 280-287, 1978.

[2] H. N. Kapoor and H. Ramesh, “Algorithms for Generating All Spanning Trees of

Undirected, Directed and Weighted Graphs,” Lecture Notes in Computer Science,

Springer-Verlag, 461-472, 1992.

[3] A. Shioura, A. Tamura and T. Uno, “An Optimal Algorithm for Scanning All Span-

ning Trees of Undirected Graphs, ” SIAM J. Comp., to be appeared.

[4] D. Eppstein, Z. Galil, G. F. Italiano and A. Nissenzweig, “Sparsification - A Tech-

nique for Speeding up Dynamic Graph Algorithms, ” FOCS 33, 60-69, 1992.

[5] G. N. Fredrickson, “Data Structure for On-line Updating of Minimum Spanning

Trees, with Applications, ” SIAM J. Comp., 14, No 4, 781-798, 1985.

[6] D. D. Sleator and R. E. Tarjan, “A Data Structure for Dynamic Trees,” J. Comp.

Sys. Sci. 26, 362-391, 1983.

[7] R. E. Tarjan, “Depth-First Search and Linear Graph Algorithm,” SIAM J. Comp. 1,

146-169, 1972.

8

