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“*Proposed edge-based LSH algorithm

" R-tree for pre-filtering
" LSH for INSIDE, plus probing for WITHIN
=Simple but effective and efficient

“*Experimental results

*+*Conclusions



Motivation & Concepts: INSIDE

** Basis: Well-known crossing number algorithm
" Inside iff number of intersections == odd
= Requires checking each edge = inefficient

“* Enhancements:
|) Exploiting MBR for pre-filtering

2) Locality-sensitive hashing (LSH) for further acceleration
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Motivation & Concepts:WITHIN

«* Case: Point P outside of MBR but within a distance of d,,

= A rectangle centered at P, edge length being two times d,,
* If no overlap = point surely not WITHIN distance




Scalability: Polygons, Points, Edges
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Efficient Geo-Fencing: Framework

“» Two stages
1) R-tree-based pre-filtering
2) LSH adapted to crossing number algorithm
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Efficient Geo-Fencing: R-tree
Based Pre-filtering
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Efficient Geo-Fencing:
INSIDE Detection
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Hash table of edges
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A separate hash table for each
polygon

A fixed number of buckets, N,
for each hash table

Hash function

= T= (Xmax - Xmin) I'N

= HashKey(x) = int ((x = X_..)/T)
An edge (x1,yl)—(x2,y2)
stored in buckets from key| to
key2,

= keyl=HashKey(xl),

key2=HashKey(x2)



Efficient Geo-Fencing:
WITHIN Detection

Buckets probed for WITHIN d,, of polygon
| “* LSH with multi-probing

Xo, Xp Xy Xg  Xg Xy
i P * Inside polygon ¢ P,
:d =.§-d—>
"%—-\‘\h_ “ Inside inner ring « P,
T
«— / B = QOutside outer ring « P
dth ﬁ . \‘\.fr
1 . . .
= ’ » Optimization P;
\\\ ’P%» P = Range of a point
\ P T da = Divide outer area into 4
b Bl ranges
dthI = Only check edge in the same
range with the point

BO Bl BZ B3 BN-l



Geo-Fencing: Evaluation Setup

**Training dataset

* Two point files: Point500 (39,289 instances), Point1000 (69,619
instances)

" Two polygon files: Poly 10 (30 instances), Poly |5 (40 instances)
* Ground truth available (different combinations of inputs and

predicates)

“*Two predicates
= INSIDE & WITHIN 1000

= Execution times without overhead (file /O, data conversion)

= Accuracy & efficiency (4 methods)

“* Environment
= A laptop PC (Intel Core i5 CPU, 64-bit Windows 7)
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Geo-Fencing: Example Experiments

% 100% accuracy with test set

“*Running time without system overhead
* Measured via Windows QueryPerformanceCounter(): 100 runs

= LSH+R-tree: Execution speed-up by 970% for INSIDE and by 370% for WITHIN
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Other Optimizations

* Execution profiling showed that I/O processing required
considerable time

= Large amounts of text data needed to be read

“* Therefore we applied several I/O optimizations
= Reading data in larger blocks, not line-by-line
" Writing pairing results in large blocks
= Optimized number conversion: text-float to binary-float

= Multi-threading

** Batch processing
= Multiple points at a time, find candidate pairs for each polygon

" Precise pairing for each polygon (CPU cache optimization)
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Conclusions

«* Different levels of approximation

* Polygon as MBR: pre-filtering via R-tree
= Edges in bucket: LSH

“*LSH table per polygon
= Compatible with R-tree

* Fixed number of buckets, less affected by the distribution and
shapes of polygons

“*Simple, effective and efficient
= 100% accuracy, high speed
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