BB
BNUS S M Media
w Nfa;icmal University 9 0 DEVE|I:||_'|I'|"E'I1.'
of Singapore .
v Authority

School 0f Computing COSMIC

Edge-Based Locality Sensitive Hashing
for Efficient Geo-Fencing Applications

YiYu’, Suhua Tang*, Roger Zimmermann'

"Media Management Research Lab, School of Computing,
National University of Singapore

* ATR Adaptive Communications and Research Laboratories, Kyoto

ACM SIGSPTATIAL GIS 2013, Nowv. 7, 2013
Orlando, Florida, USA

Outline

\/

)

“*Proposed edge-based LSH algorithm

" R-tree for pre-filtering
" LSH for INSIDE, plus probing for WITHIN
=Simple but effective and efficient

“*Experimental results

*+*Conclusions

Motivation & Concepts: INSIDE

** Basis: Well-known crossing number algorithm
" Inside iff number of intersections == odd
= Requires checking each edge = inefficient

“* Enhancements:
|) Exploiting MBR for pre-filtering

2) Locality-sensitive hashing (LSH) for further acceleration
A ®

V1,8

Vl,ll

MBR: minimum
bounding
rectangle

Motivation & Concepts:WITHIN

«* Case: Point P outside of MBR but within a distance of d,,

= A rectangle centered at P, edge length being two times d,,
* If no overlap = point surely not WITHIN distance

Scalability: Polygons, Points, Edges

Y axis (m)

05

-15 -1 -05 0 0.5 1 1.5 2 2.5 3
X axis (m) x104

edges of |15 polygons

ﬂﬂﬂﬂﬂﬂ-ﬂﬂﬂﬂﬂﬂ

285 255 235 196 264 250 240 239 226 226 242 3, 2, 250 217
15 20

—> Problem: scalability with the number of edges

Efficient Geo-Fencing: Framework

“» Two stages
1) R-tree-based pre-filtering
2) LSH adapted to crossing number algorithm

Polygon Point
file file

% MBRs |R-tree based

£ in R-tree pre-filtering

Q&

é Polygon cache Pairing engine

C y

S Edaes in LSH-based LSH-based

> LSI_gltable » INSIDE » WITHIN

o detection detection
INSIDE WITHIN

result result

Efficient Geo-Fencing: R-tree
Based Pre-filtering

Y axis (m)

Efficient Geo-Fencing:
INSIDE Detection

Xo X1 X5 X3 X4 \ XN
R |
) pe
\\\ T X
RN =
e e e

BO Bl BZ B3 BN-l

Hash table of edges

/
*

A separate hash table for each
polygon

A fixed number of buckets, N,
for each hash table

Hash function

= T= (Xmax - Xmin) I'N

= HashKey(x) = int ((x = X_..)/T)
An edge (x1,yl)—(x2,y2)
stored in buckets from key| to
key2,

= keyl=HashKey(xl),

key2=HashKey(x2)

Efficient Geo-Fencing:
WITHIN Detection

Buckets probed for WITHIN d,, of polygon
| “* LSH with multi-probing

Xo, Xp Xy Xg Xg Xy
i P * Inside polygon ¢ P,
:d =.§-d—>
"%—-\‘\h_ “ Inside inner ring « P,
T
«— / B = QOutside outer ring « P
dth ﬁ . \‘\.fr
1 . . .
= ’ » Optimization P;
\\\ ’P%» P = Range of a point
\ P T da = Divide outer area into 4
b Bl ranges
dthI = Only check edge in the same
range with the point

BO Bl BZ B3 BN-l

Geo-Fencing: Evaluation Setup

**Training dataset

* Two point files: Point500 (39,289 instances), Point1000 (69,619
instances)

" Two polygon files: Poly 10 (30 instances), Poly |5 (40 instances)
* Ground truth available (different combinations of inputs and

predicates)

“*Two predicates
= INSIDE & WITHIN 1000

= Execution times without overhead (file /O, data conversion)

= Accuracy & efficiency (4 methods)

“* Environment
= A laptop PC (Intel Core i5 CPU, 64-bit Windows 7)

10

Geo-Fencing: Example Experiments

% 100% accuracy with test set

“*Running time without system overhead
* Measured via Windows QueryPerformanceCounter(): 100 runs

= LSH+R-tree: Execution speed-up by 970% for INSIDE and by 370% for WITHIN

150 —— BkNN BR-tree 150 — BKNN B R-tree
LSH B R-tree+LSH LSH B R-tree+LSH
s F
élOO i - élOO 3
= £ 7
O . 7 s |7
© ©
& 50 & 50
> >
< <
O At\ L L L 0 _42 L L L
Point500, Point1000, Point500, Point1000, Point500, Point1000, Point500, Point1000,
Poly10 Poly10 Poly15 Poly15 Poly10 Poly10 Poly15 Poly15

(@) INSIDE predicate (b) WITHIN 1000 predicate

Other Optimizations

* Execution profiling showed that I/O processing required
considerable time

= Large amounts of text data needed to be read

“* Therefore we applied several I/O optimizations
= Reading data in larger blocks, not line-by-line
" Writing pairing results in large blocks
= Optimized number conversion: text-float to binary-float

= Multi-threading

** Batch processing
= Multiple points at a time, find candidate pairs for each polygon

" Precise pairing for each polygon (CPU cache optimization)

12

Conclusions

«* Different levels of approximation

* Polygon as MBR: pre-filtering via R-tree
= Edges in bucket: LSH

“*LSH table per polygon
= Compatible with R-tree

* Fixed number of buckets, less affected by the distribution and
shapes of polygons

“*Simple, effective and efficient
= 100% accuracy, high speed

Acknowledgments

The work presented was in part supported by the Singapore National Research
Foundation under its International Research Centre @ Singapore Funding Initiative
and administered by the IDM Programme Office.

13

Further information at:
http://eiger.ddns.comp.nus.edu.sg

yuy@comp.nus.edu.sg
rogerz@comp.nus.edu.sg

14

