Testing Assignments to
Constraint Satisfaction Problems

Yuichi Yoshida
(NIl & PFI)

Joint work with
Hubie Chen (Univ. Pais Vasco & IKERBASQUE)
Matt Valeriote (McMaster Univ.)

Constraint Satisfaction Problems (CSPs)

Given an instance 7 = (V,C):
e V: variable set over a finite domain D.
e C: set of constant-arity constraints.
Find an assignment f : V — D that satisfies all the constraints.

Examples:
e K-SAT
e k-LIN: system of linear equations on < k variables over Z,
e g-Coloring
¢ Unique Games (x = n(y) for a bijection 7 : D — D).

Constraint Satisfaction Problems (CSPs)

We are interested in how the difficulty of the problem changes by
varying constraints.

Definition (CSP)
A CSP (denoted CSPp(IN)) is specified by
e finite domain D = {1,...,q}
e constraint language I': a collection of relations over D.
e relation: a set of r-tuples (r: arity of R)

Example (g-Coloring)
e D={1,...,q}
¢ [has only one relation R = {(a,b) €{1,....,9%|a+ b}.

Constraint Satisfaction Problems (CSPs)

Definition (CSP instance of CSPp(IN))
An instance (denoted 7 = (V,C)) of CSPp(I') is specified by
e avariable set V

e aset C of constraints (R, S), where R € T'; S is a set of ar(R)
variables.

Constraint Satisfaction Problems (CSPs)

Definition (CSP instance of CSPp(IN))
An instance (denoted 7 = (V,C)) of CSPp(I') is specified by
e avariable set V

e aset C of constraints (R, S), where R € T'; S is a set of ar(R)
variables.

A large number of works on finding satisfying assignments
f:V—-D,ie., fls € R for every constraint (R, S) € C.

Testing Assignments to CSPs

Can we decide if an assignment
o satisfies a CSP instance or
e not?

= Yes, in linear time (in |V| + |C]).

20

Testing Assignments to CSPs

Can we decide if an assignment
o satisfies a CSP instance or
e not?

= Yes, in linear time (in |V| + |C]).

Can we more quickly test if an assignment
o satisfies a CSP instance or
e is far from satisfying assignments?

= Depends on ', but sometimes we can do even in constant time
(independent of |V| and |C|).

This work:
A characterization of constant-time testable I'.

Testing Assignments to CSPs

Definition (Testing CSPp(I"))
Input:
e c€(0,1)
* a (satisfiable) instance 7 = (V,C) of CSPp(I')
¢ weight function w : V — R with Y,y w(v) = 1.
e aquery access to an assignment f : V — D.
Output:
e Yes w.p. > 2/3 if f satisfies 7.
e No w.p. > 2/3 if fis e-far from satisfying 7, i.e.,

dist(f,g) == Z{w(v) |veV,f(v)#9(v)>e€

for any satisfying assignment g of 7.

Known Results

How does I affect the worst-case query complexity?

CSP Query complexity
2-Coloring Oo(1)

2-SAT Q(pee), O(Vn) [FLNT02]
3-Coloring, 3-SAT, 3-LIN | Q(n) [BSHRO05]

Horn 3-SAT Q(n) [BY13]

e The algebra associated with a CSP determines its query

complexity [Yos14].

e Trichotomy for Boolean CSPs [BY13]:

e Constant-query testable.
¢ Not constant-query testable, but sublinear-query testable.

¢ Not sublinear-query testable.

20

Main Result

Theorem (Dichotomy for general CSPs)

There exists an algebraic condition ‘A such that
o IfI satisfies A, then CSPp(I") is constant-query testable.
o Otherwise, CSPp(I) is not constant-query testable.

Main Result

Theorem (Dichotomy for general CSPs)
There exists an algebraic condition ‘A such that

o IfI satisfies A, then CSPp(I") is constant-query testable.
o Otherwise, CSPp(I) is not constant-query testable.

What'’s algebra?

Polymorphism
Definition (Polymorphism)

A function f : DX — D is called a polymorphism of [if forany R €
of arity r,

(b1,...,br)€R

Polymorphism

Definition (Polymorphism)

A function f : DX — D is called a polymorphism of [if forany R €
of arity r,

(@pnal)ieR

(af,...,a*)eR
Lf

(b1,...,br) eR

Pol(T"): the set of polymorphisms of I'.
(D, Pol(T")) is the algebra associated with T

Polymorphism

Example

e min is a polymorphism of Horn k-SAT for any k.
Consider R = {(u,v,w) | uUA v = w}.

(1,0,0) e R
(0,1,0) e R

1 min
(0,0,0) e R

e (ternary) majority is a polymorphism of 2-SAT.
* X+ y+ z (mod 2) is a polymorphism of 3-LIN.
e The only polymorphism of 3-SAT is f(x) = x; (projection).

10/20

Polymorphisms Determine Query Complexity

To study query complexity of CSP(I"), we only have to look at
polymorphisms!

Theorem ([Yos14])

LetT and I’ be constraint languages with Pol(I") = Pol(I""). If

CSP(I) is constant-query testable, then CSP(I"’) is constant-query
testable.

11/20

Main Result

Theorem (Dichotomy for general CSPs)
The following holds:

(i) If Pol(T') has a majority and a Maltsev operation (arithmetic),
then CSP(I") is constant-query testable.

(i) Otherwise, CSP(I") is not constant-query testable.

majority m : D3 — D: m(b, a,a) = m(a,b,a) = m(a, a,b) = a.
Maltsev p : D® — D: p(b,a,a) = p(a,a,b) = b.

12/20

Main Result

Theorem (Dichotomy for general CSPs)
The following holds:

(i) If Pol(T') has a majority and a Maltsev operation (arithmetic),
then CSP(I") is constant-query testable.

(i) Otherwise, CSP(I") is not constant-query testable.

majority m : D3 — D: m(b, a,a) = m(a,b,a) = m(a, a,b) = a.
Maltsev p : D® — D: p(b,a,a) = p(a,a,b) = b.

We only look at (i) as (ii) is obtained by a simple modification
of [FLN*02].

12/20

Arithmetic CSPs

Example
e 2-Coloring
e Unigue Games

e Modular arithmetic:
D =1{0,1,...,29}.
Relations:

e x =y (mod p) for p € {2,3,5}.

e x=a (mod p) forp € {2,3,5}and a € {0,1,...,p—1}.

e An example derived from finite Heyting algebra...

13/20

Constant-Query Tester for Arithmetic CSPs

The idea is transforming the given input (7, f) to a trivial one by a
sequence of reductions.

e Factoring reduction
¢ Splitting reduction
e Isomorphism reduction

14/20

Constant-Query Tester for Arithmetic CSPs

The idea is transforming the given input (7, f) to a trivial one by a
sequence of reductions.

e Factoring reduction
¢ Splitting reduction
e Isomorphism reduction

We look at these reductions for modular arithmetic.
It is convenient to identify the domain {0, 1, ..., 29} with F, X F3 X Fs.

14/20

Factoring Reduction

Shrink the domain of each variable by factoring by an irrelevant
congruence:

f(l‘) = (07273)
€ Fy x F3 x F5

Y () Z
G x =y mod 2 N x =z mod 3 O

I

fz) =1(0,2)
€ Fy x]Fg

()
@ x =y mod 2 @ z =z mod 3 @

15/20

Splitting Reduction

Split variables (Chinese remainder theorem):

f(@) =(0,2)

E]FQX]FS

()
@ x =y mod 2 @ z =zmod3 @

f(a’) =0 fa”) =2
e F, € F3
z =y mod 2 r = zmod 3

16/20

Isomorphism reduction

Relations in each connected component are isomorphisms.
Test the consistency of f within each connected component.
If the test passes, contract the connected components.

fl@)=0¢eF; fly) =2¢€Ts
= (mod2) = (mod3)
fl@)=0€el) =2ek

@ ®

Trivial instance!

17/20

Constant-Query Tester for Arithmetic CSPs

The details are complicated:
We need to preprocess 7.
e-farness should be also preserved.
We should query f on the fly.
In isomorphism reduction, relations may be just surjective
homomorphisms.
e We need to perform these reductions |D| times.
The arithmetic condition is used to guarantee that a factoring

reduction followed by a factoring, a splitting, and an isomorphism
reduction always shrinks the domain.

The resulting query complexity: 2°0°) /2,

18/20

Conclusions
Dichotomy for testing assignments to CSPs:
Majority + Maltsev & Constant-query testability.

Also, we achieved a trichotomy for testing ACSPs with one-sided
error (ACSP = a CSP with existentially quantified variables).

19/20

Conclusions

Dichotomy for testing assignments to CSPs:
Majority + Maltsev & Constant-query testability.

Also, we achieved a trichotomy for testing ACSPs with one-sided
error (ACSP = a CSP with existentially quantified variables).

Conjecture

CSPp(IN) is sublinear-query testable if and only if Pol(I") has a
k-near-unanimity operation for some k > 3.

k-ary near unanimity n : D¥ — D:
n(b,a,a,...,a)=n(a,b,a,...,a)=---=n(a,a,...,a,b) = a.
The if direction is true.

19/20

