
Testing Assignments to
Constraint Satisfaction Problems

Yuichi Yoshida
(NII & PFI)

Joint work with
Hubie Chen (Univ. Paı́s Vasco & IKERBASQUE)

Matt Valeriote (McMaster Univ.)

1 / 20

Constraint Satisfaction Problems (CSPs)

Given an instance I = (V ,C):
• V : variable set over a finite domain D.
• C: set of constant-arity constraints.

Find an assignment f : V → D that satisfies all the constraints.

Examples:
• k -SAT
• k -LIN: system of linear equations on ≤ k variables over Zq

• q-Coloring
• Unique Games (x = π(y) for a bijection π : D → D).

2 / 20

Constraint Satisfaction Problems (CSPs)

We are interested in how the difficulty of the problem changes by
varying constraints.

Definition (CSP)
A CSP (denoted CSPD(Γ)) is specified by
• finite domain D = {1, . . . , q}
• constraint language Γ: a collection of relations over D.

• relation: a set of r-tuples (r : arity of R)

Example (q-Coloring)
• D = {1, . . . , q}.
• Γ has only one relation R =

{
(a, b) ∈ {1, . . . , q}2 | a , b

}
.

3 / 20

Constraint Satisfaction Problems (CSPs)

Definition (CSP instance of CSPD(Γ))
An instance (denoted I = (V ,C)) of CSPD(Γ) is specified by
• a variable set V
• a set C of constraints (R ,S), where R ∈ Γ; S is a set of ar(R)

variables.

A large number of works on finding satisfying assignments
f : V → D, i.e., f |S ∈ R for every constraint (R ,S) ∈ C.

4 / 20

Constraint Satisfaction Problems (CSPs)

Definition (CSP instance of CSPD(Γ))
An instance (denoted I = (V ,C)) of CSPD(Γ) is specified by
• a variable set V
• a set C of constraints (R ,S), where R ∈ Γ; S is a set of ar(R)

variables.

A large number of works on finding satisfying assignments
f : V → D, i.e., f |S ∈ R for every constraint (R ,S) ∈ C.

4 / 20

Testing Assignments to CSPs
Can we decide if an assignment
• satisfies a CSP instance or
• not?

⇒ Yes, in linear time (in |V |+ |C|).

Can we more quickly test if an assignment
• satisfies a CSP instance or
• is far from satisfying assignments?

⇒ Depends on Γ, but sometimes we can do even in constant time
(independent of |V | and |C|).

This work:
A characterization of constant-time testable Γ.

5 / 20

Testing Assignments to CSPs
Can we decide if an assignment
• satisfies a CSP instance or
• not?

⇒ Yes, in linear time (in |V |+ |C|).

Can we more quickly test if an assignment
• satisfies a CSP instance or
• is far from satisfying assignments?

⇒ Depends on Γ, but sometimes we can do even in constant time
(independent of |V | and |C|).

This work:
A characterization of constant-time testable Γ.

5 / 20

Testing Assignments to CSPs

Definition (Testing CSPD(Γ))
Input:
• ε ∈ (0, 1)

• a (satisfiable) instance I = (V ,C) of CSPD(Γ)

• weight function w : V → R with
∑

v∈V w(v) = 1.
• a query access to an assignment f : V → D.

Output:
• Yes w.p. ≥ 2/3 if f satisfies I.
• No w.p. ≥ 2/3 if f is ε-far from satisfying I, i.e.,

dist(f , g) :=
∑
{w(v) | v ∈ V , f(v) , g(v)} > ε

for any satisfying assignment g of I.

6 / 20

Known Results

How does Γ affect the worst-case query complexity?

CSP Query complexity
2-Coloring O(1)

2-SAT Ω(log n
log log n), O(

√
n) [FLN+02]

3-Coloring, 3-SAT, 3-LIN Ω(n) [BSHR05]
Horn 3-SAT Ω(n) [BY13]

• The algebra associated with a CSP determines its query
complexity [Yos14].

• Trichotomy for Boolean CSPs [BY13]:
• Constant-query testable.
• Not constant-query testable, but sublinear-query testable.
• Not sublinear-query testable.

7 / 20

Main Result

Theorem (Dichotomy for general CSPs)
There exists an algebraic condition A such that
• If Γ satisfies A, then CSPD(Γ) is constant-query testable.
• Otherwise, CSPD(Γ) is not constant-query testable.

What’s algebra?

8 / 20

Main Result

Theorem (Dichotomy for general CSPs)
There exists an algebraic condition A such that
• If Γ satisfies A, then CSPD(Γ) is constant-query testable.
• Otherwise, CSPD(Γ) is not constant-query testable.

What’s algebra?

8 / 20

Polymorphism

Definition (Polymorphism)
A function f : Dk → D is called a polymorphism of Γ if for any R ∈ Γ
of arity r ,

(a1
1 , . . . , a

1
r) ∈ R

...

(ak
1 , . . . , a

k
r) ∈ R

↓ f
(b1, . . . , br) ∈ R

Pol(Γ): the set of polymorphisms of Γ.
(D,Pol(Γ)) is the algebra associated with Γ.

9 / 20

Polymorphism

Definition (Polymorphism)
A function f : Dk → D is called a polymorphism of Γ if for any R ∈ Γ
of arity r ,

(a1
1 , . . . , a

1
r) ∈ R

...

(ak
1 , . . . , a

k
r) ∈ R

↓ f
(b1, . . . , br) ∈ R

Pol(Γ): the set of polymorphisms of Γ.
(D,Pol(Γ)) is the algebra associated with Γ.

9 / 20

Polymorphism

Example
• min is a polymorphism of Horn k -SAT for any k .

Consider R = {(u, v ,w) | u ∧ v ⇒ w}.

(1, 0, 0) ∈ R
(0, 1, 0) ∈ R

↓ min
(0, 0, 0) ∈ R

• (ternary) majority is a polymorphism of 2-SAT.
• x + y + z (mod 2) is a polymorphism of 3-LIN.
• The only polymorphism of 3-SAT is f(x) = xi (projection).

10 / 20

Polymorphisms Determine Query Complexity

To study query complexity of CSP(Γ), we only have to look at
polymorphisms!

Theorem ([Yos14])
Let Γ and Γ′ be constraint languages with Pol(Γ) = Pol(Γ′). If
CSP(Γ) is constant-query testable, then CSP(Γ′) is constant-query
testable.

11 / 20

Main Result

Theorem (Dichotomy for general CSPs)
The following holds:

(i) If Pol(Γ) has a majority and a Maltsev operation (arithmetic),
then CSP(Γ) is constant-query testable.

(ii) Otherwise, CSP(Γ) is not constant-query testable.

majority m : D3 → D: m(b , a, a) = m(a, b , a) = m(a, a, b) = a.
Maltsev p : D3 → D: p(b , a, a) = p(a, a, b) = b.

We only look at (i) as (ii) is obtained by a simple modification
of [FLN+02].

12 / 20

Main Result

Theorem (Dichotomy for general CSPs)
The following holds:

(i) If Pol(Γ) has a majority and a Maltsev operation (arithmetic),
then CSP(Γ) is constant-query testable.

(ii) Otherwise, CSP(Γ) is not constant-query testable.

majority m : D3 → D: m(b , a, a) = m(a, b , a) = m(a, a, b) = a.
Maltsev p : D3 → D: p(b , a, a) = p(a, a, b) = b.

We only look at (i) as (ii) is obtained by a simple modification
of [FLN+02].

12 / 20

Arithmetic CSPs

Example
• 2-Coloring
• Unique Games
• Modular arithmetic:

D = {0, 1, . . . , 29}.
Relations:
• x ≡ y (mod p) for p ∈ {2, 3, 5}.
• x ≡ a (mod p) for p ∈ {2, 3, 5} and a ∈ {0, 1, . . . , p − 1}.

• An example derived from finite Heyting algebra...

13 / 20

Constant-Query Tester for Arithmetic CSPs

The idea is transforming the given input (I, f) to a trivial one by a
sequence of reductions.
• Factoring reduction
• Splitting reduction
• Isomorphism reduction

We look at these reductions for modular arithmetic.
It is convenient to identify the domain {0, 1, . . . , 29} with F2 × F3 × F5.

14 / 20

Constant-Query Tester for Arithmetic CSPs

The idea is transforming the given input (I, f) to a trivial one by a
sequence of reductions.
• Factoring reduction
• Splitting reduction
• Isomorphism reduction

We look at these reductions for modular arithmetic.
It is convenient to identify the domain {0, 1, . . . , 29} with F2 × F3 × F5.

14 / 20

Factoring Reduction

Shrink the domain of each variable by factoring by an irrelevant
congruence:

zy x
x ⌘ y mod 2 x ⌘ z mod 3

zy x
x ⌘ y mod 2 x ⌘ z mod 3

f(x) = (0, 2)

2 F2 ⇥ F3

f(x) = (0, 2, 3)

2 F2 ⇥ F3 ⇥ F5

15 / 20

Splitting Reduction

Split variables (Chinese remainder theorem):

zy x
x ⌘ y mod 2 x ⌘ z mod 3

f(x) = (0, 2)

2 F2 ⇥ F3

zy
x ⌘ y mod 2 x ⌘ z mod 3

x0 x00

f(x0) = 0

2 F2

f(x00) = 2

2 F3

16 / 20

Isomorphism reduction
Relations in each connected component are isomorphisms.
Test the consistency of f within each connected component.
If the test passes, contract the connected components.

x

⌘ (mod2)

f(x) = 0 2 F2

⌘ (mod3)

y
f(y) = 2 2 F3

y
f(y) = 2 2 F3

x
f(x) = 0 2 F2

Trivial instance!
17 / 20

Constant-Query Tester for Arithmetic CSPs

The details are complicated:
• We need to preprocess I.
• ε-farness should be also preserved.
• We should query f on the fly.
• In isomorphism reduction, relations may be just surjective

homomorphisms.
• We need to perform these reductions |D | times.

The arithmetic condition is used to guarantee that a factoring
reduction followed by a factoring, a splitting, and an isomorphism
reduction always shrinks the domain.

The resulting query complexity: 2O(|D |)/ε2.

18 / 20

Conclusions

Dichotomy for testing assignments to CSPs:

Majority + Maltsev⇔ Constant-query testability.

Also, we achieved a trichotomy for testing ∃CSPs with one-sided
error (∃CSP = a CSP with existentially quantified variables).

Conjecture
CSPD(Γ) is sublinear-query testable if and only if Pol(Γ) has a
k -near-unanimity operation for some k ≥ 3.

k -ary near unanimity n : Dk → D:

n(b , a, a, . . . , a) = n(a, b , a, . . . , a) = · · · = n(a, a, . . . , a, b) = a.

The if direction is true.

19 / 20

Conclusions

Dichotomy for testing assignments to CSPs:

Majority + Maltsev⇔ Constant-query testability.

Also, we achieved a trichotomy for testing ∃CSPs with one-sided
error (∃CSP = a CSP with existentially quantified variables).

Conjecture
CSPD(Γ) is sublinear-query testable if and only if Pol(Γ) has a
k -near-unanimity operation for some k ≥ 3.

k -ary near unanimity n : Dk → D:

n(b , a, a, . . . , a) = n(a, b , a, . . . , a) = · · · = n(a, a, . . . , a, b) = a.

The if direction is true.

19 / 20

