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What We Solve

Let A ∈ Rn×n be a matrix and d, b ∈ Rn be vectors. Then, we consider
the following n-dimensional quadratic problem:

z∗ = min
v∈Rn

pn,A,d,b(v), (1)

where pn,A,d,b(v) = 〈v, Av〉 + n〈v, diag(d)v〉 + n〈b,v〉. (2)

Caveat: not argmin but min!

Applications

• Least square distance (a.k.a. linearity check): minw ‖y −Xw‖2

• Kernel approximation of the Pearson divergence [Yamada+ NIPS’11]:
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• H ∈ Rn×n,h ∈ Rn: defined by a kernel function
• λ ∈ R: regularization coefficient

How Problem (1) Has Been Solved

• Quadratic programming

• Stochastic gradient

• Nyström’s method

Problem: All of them need Ω(n) time

• How can we solve ultra-dimensional
problem, e.g. n ∼ 1015?

Contributions

Goal: Approximately solve (1) in O(1) time

Method: Solve subsampled problem pk,A|S,d|S,b|S(v) instead of (1), where

• k = O(1): sampling size

• S ⊂ {1, . . . , n}: sampled indices (|S| = k)

• A|S ∈ Rk×k,d|S, b|S ∈ Rk: subsamples of A,d, b, resp.
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Main Theorem

Assume ∀i,j|Aij|, |bi|, |di| = O(1). With parameters ε, δ ∈ (0, 1), an

approximate minimum z = n2

k2 minv∈Rk pk,A|S,d|S,b|S(v) in which k = k(δ, ε)
satisfies, with probability at least 1− δ,

|z − z∗| = O(εn2) (4)

Experiments

Synthetic Data

• Aij, bi ∼ unif(−1, 1)

• di ∼ unif(0, 1)

• Minimize pk,A|S,d|S,b|S(v) by
QP
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Pearson Divergence
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Proof Idea

Rewrite pn,A,d,b(v) as

pA,D,B(v) = 〈v, Av〉 + 〈v2, D1〉 + 〈v, B1〉,
where (v2)i = v2

i , D = d1>, and B = b1>.

Goal: Show minv pA,D,B(v) ≈ n2

k2 minv pA|S,D|S,B|S(v).

• Want to say A ≈ A|S, D ≈ D|S, and B ≈ B|S.

• How can we measure the distance between matrices of different sizes?

• Embed matrices to the same space: exploit the graph limit theory.

Dikernel

Dikernel: a measurable function W : [0, 1]2→ R.

Any matrix A ∈ Rn×n has a corresponding dikernel Â : [0, 1]2→ R.
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Reduction to Dikernels

For a function f : [0, 1]→ R, consider a dikernel analogue of pA,D,B(f ):

p̂A,D,B(f ) = 〈f, Âf〉 + 〈f 2, D̂1〉 + 〈f, B̂1〉,
where 〈f,Wg〉 =

∫
[0,1]

∫
[0,1]W (x, y)f (x)g(y)dxdy and f 2(x) = f (x)2.

New goal: Show minf p̂A,D,B(f ) ≈ minf p̂A|S,D|S,B|S(f ).

Key Lemma

Lemma: |p̂A,D,B(f )− p̂A|S,D|S,B|S(f )| is small for any bounded
f : [0, 1]→ R.

Proof of the new goal: Let f ∗ = argminf p̂A,D,B(f ) and
f ′ = argminf p̂A|S,D|S,B|S(f ). Then,

p̂A,D,B(f ∗) ≤ p̂A,D,B(f ′) ≈ p̂A|S,D|S,B|S(f
′),

p̂A|S,D|S,B|S(f
′) ≤ p̂A|S,D|S,B|S(f

∗) ≈ p̂A,D,B(f ∗).

Szemerédi’s (Weak) Regularity Lemma

Any matrix A ∈ Rn×n with |Aij| = O(1) has a partition P = (P1, . . . , Pk)
of {1, 2, . . . , n} for constant k with the following property:

Let AP be the matrix obtained by averaging each part Pi × Pj of A:
A

P1 P2

P1

P2

AP

Then, ‖Â− ÂP‖� is small.
Cut norm: ‖W‖� = supS,T⊆[0,1] |

∫
S

∫
T W (x, y)dxdy|.

Proof of the Key Lemma

Claim: If the cut norm ‖W‖� is small, then |〈f,Wg〉| is also small.

By the claim,

|p̂A,D,B(f )− p̂A|S,D|S,B|S(f )|
≤ |〈f, (Â− Â|S)f〉| + |〈f 2, (D̂ − D̂|S)1〉| + |〈f, (B̂ − B̂|S)1〉|

is small when ‖Â− Â|S‖�, ‖D̂ − D̂|S‖�, and ‖B̂ − B̂|S‖� are small.

Let P be the partition given by Szemerédi’s regularity lemma. Then,

‖Â− Â|S‖� ≤ ‖Â− ÂP‖� + ‖Â|S − ÂP‖�,
which is small because A|S has enough information to approximate AP.
(The arguments for D and B are almost identical.)


