Gowers Norm, Function Limits, and Parameter Estimation

Yuichi Yoshida

National Institute of Informatics, and Preferred Infrastructure, Inc.

January 12, 2016

Affine-invariant Parameter

Definition

A parameter π maps a function $f: \mathbb{F}_2^n \to \{0,1\}$ to a value in [0,1].

Affine-invariant Parameter

Definition

A parameter π maps a function $f: \mathbb{F}_2^n \to \{0,1\}$ to a value in [0,1].

Definition

A parameter π is *affine-invariant* if $\pi(f) = \pi(f \circ A)$ for any bijective affine transformation $A : \mathbb{F}_2^n \to \mathbb{F}_2^n$.

E.g.

- # of ones divided by 2^n .
- Minimum Hamming distance to a linear function $/ 2^n$.
- Spectral norm (= the sum of absolute Fourier coefficients) $/ 2^n$.

Parameter Estimation

Definition

An algorithm is an *estimator* for a parameter π if, given

- $n \in \mathbb{N}$,
- ullet a query access to $f:\mathbb{F}_2^n o \{0,1\}$, and
- an error parameter $\epsilon > 0$,

it approximates $\pi(f)$ to within ϵ with probability at least 2/3.

Parameter Estimation

Definition

An algorithm is an *estimator* for a parameter π if, given

- $n \in \mathbb{N}$,
- ullet a query access to $f:\mathbb{F}_2^n o \{0,1\}$, and
- an error parameter $\epsilon > 0$,

it approximates $\pi(f)$ to within ϵ with probability at least 2/3.

Definition

 π is *constant-query estimable* if there is an estimator with query complexity that depends only on ϵ (and not on n).

Oblivious Estimator

Definition

A (constant-query) oblivious estimator

- Samples a random affine subspace H of dimension $h(\epsilon)$.
- Determines its output based only on the restriction f|H.

Oblivious Estimator

Definition

A (constant-query) oblivious estimator

- Samples a random affine subspace H of dimension $h(\epsilon)$.
- Determines its output based only on the restriction $f|_{H}$.

- Avoid "unnatural" parameters such as $\pi(f) = n \mod 2$.
- For natural parameters, a constant-query estimator implies an oblivious constant-query estimator.

Main Result

Theorem (Informal)

An affine-invariant parameter π is (obliviously) constant-query estimable

1

For any function sequence $(f_i : \mathbb{F}_2^i \to \{0,1\})_{i \in \mathbb{N}}$ that "converges" in a certain metric, the sequence $\pi(f_i)$ converges.

Related work:

• A similar characterization for (dense) graphs [LS06].

Applications: Property testing

Definition

$$f: \mathbb{F}_2^n \to \{0,1\}$$
 is ϵ -far from \mathcal{P} if,

$$d_{\mathcal{P}}(f) := \min_{g \in \mathcal{P}} \#\{x \in \mathbb{F}_2^n \mid f(x) \neq g(x)\}/2^n \ge \epsilon.$$

Applications: Property testing

Definition

 $f: \mathbb{F}_2^n o \{0,1\}$ is $\epsilon ext{-}\mathit{far}$ from \mathcal{P} if,

$$d_{\mathcal{P}}(f) := \min_{g \in \mathcal{P}} \#\{x \in \mathbb{F}_2^n \mid f(x) \neq g(x)\}/2^n \ge \epsilon.$$

A *tester* for a property \mathcal{P} : Given

- $n \in \mathbb{N}$.
- a query access to $f: \mathbb{F}_2^n \to \{0,1\}$, and
- an error parameter $\epsilon > 0$,

Property Testing: Characterization

Corollary (Informal)

An affine-invariant property ${\mathcal P}$ is constant-query testable

For any function sequence $(f_i : \mathbb{F}_2^i \xrightarrow{\forall} \{0,1\})_{i \in \mathbb{N}}$ that "converges" in a certain metric, the sequence $d_{\mathcal{P}}(f_i)$ converges.

Simplified a previous characterization [Yos14], which involves many quantifiers and objects with seven parameters (regularity-instances).

Property Testing: Specific Properties

Corollary (Informal)

Suppose that a property P satisfies:

• Any $f \in \mathcal{P}$ is of the form

$$f(x) = \Gamma(P_1(x), \dots, P_c(x), Q_1(x), \dots, Q_{c'}(x)),$$

where P_i 's are low-degree polynomials, Q_i 's are products of linear functions, c + c' = O(1), $\Gamma : \mathbb{F}_2^{c+c'} \to \{0,1\}$.

• (A minor condition)

Then, P is obliviously constant-query testable.

Includes low-degree polynomials and having small spectral norm.

"For any function sequence $(f_i : \mathbb{F}_2^{n_i} \to \{0,1\})$ that converges in a certain metric, the sequence $\pi(f_i)$ converges."

We have two issues:

Metric?

"For any function sequence $(f_i : \mathbb{F}_2^{n_i} \to \{0,1\})$ that converges in a certain metric, the sequence $\pi(f_i)$ converges."

We have two issues:

Metric? ⇒ Gowers norm

"For any function sequence $(f_i : \mathbb{F}_2^{n_i} \to \{0,1\})$ that converges in a certain metric, the sequence $\pi(f_i)$ converges."

We have two issues:

- Metric? ⇒ Gowers norm
- Convergence of functions on different domains?

"For any function sequence $(f_i : \mathbb{F}_2^{n_i} \to \{0,1\})$ that converges in a certain metric, the sequence $\pi(f_i)$ converges."

We have two issues:

- Metric? ⇒ Gowers norm
- Convergence of functions on different domains? ⇒
 Non-standard analysis

Gowers Norm

Definition

Let $f: \mathbb{F}_2^n \to \mathbb{R}$. The Gowers norm of order d for f is

$$||f||_{U^d} := \left(\mathop{\mathbf{E}}_{x,y_1,...,y_d} \prod_{I \subseteq \{1,...,d\}} f(x + \sum_{i \in I} y_i) \right)^{1/2^d}.$$

• $\|\cdot\|_{U^d}$ measures correlation with "polynomials" of degree < d.

A Metric for Functions on an Identical Domain

 $\mu_{f,h}$: distribution of f restricted to an affine subspace of dimension h.

Fact

 $||f - g \circ A||_{U^d}$ is small (for large d) $\Rightarrow \mu_{f,h} \approx \mu_{g,h}$.

A Metric for Functions on an Identical Domain

 $\mu_{f,h}$: distribution of f restricted to an affine subspace of dimension h.

Fact

$$\|f - g \circ A\|_{U^d}$$
 is small (for large d) $\Rightarrow \mu_{f,h} \approx \mu_{g,h}$.

Define

$$v^d(f,g) := \min_{A:\text{affine bijection}} \|f - g \circ A\|_{U^d}$$

Fact

 $v^d(f,g)$ is small $\Leftrightarrow \mu_{f,h} \approx \mu_{g,h}$.

A Metric for Functions on an Identical Domain

Observation

Constant-query estimability \Leftrightarrow small $v^d(f,g)$ implies $\pi(f) \approx \pi(g)$.

Proof sketch.

 π is constant-query estimable.

- \Leftrightarrow If f and g are indistinguishable by a constant-query estimator (i.e., $\mu_{f,h} \approx \mu_{g,h}$), then $\pi(f) \approx \pi(g)$.
- \Leftrightarrow Small $v^d(f,g)$ implies $\pi(f) \approx \pi(g)$.

Convergence of a Function Sequence

If v^d were a metric defined over functions on different domains, then "small $v^d(f,g)$ implies $\pi(f)\approx\pi(g)$ "

can be rephrased as

"If a function sequence $(f_i : \mathbb{F}_2^i \to \{0,1\})_{i \in \mathbb{N}}$ converges in the v^d -metric, then $\pi(f_i)$ converges."

Convergence of a Function Sequence

If v^d were a metric defined over functions on different domains, then "small $v^d(f,g)$ implies $\pi(f)\approx\pi(g)$ "

can be rephrased as

"If a function sequence $(f_i : \mathbb{F}_2^i \to \{0,1\})_{i \in \mathbb{N}}$ converges in the v^d -metric, then $\pi(f_i)$ converges."

To make this statement meaningful, we extend v^d using **non-standard** analysis.

Non-standard analysis allows us to syntactically define a limit of any sequence (even if there's no metric).

• ω : a "nice" family of subsets of \mathbb{N} . (non-principal ultrafilter)

- ω : a "nice" family of subsets of \mathbb{N} . (non-principal ultrafilter)
- Introduce an equivalence relation \sim on number sequences, where $(a_i)_{i\in\mathbb{N}}\sim (b_i)_{i\in\mathbb{N}}$ iff $\{i\in\mathbb{N}\mid a_i=b_i\}\in\omega$.

- ω : a "nice" family of subsets of \mathbb{N} . (non-principal ultrafilter)
- Introduce an equivalence relation \sim on number sequences, where $(a_i)_{i\in\mathbb{N}}\sim (b_i)_{i\in\mathbb{N}}$ iff $\{i\in\mathbb{N}\mid a_i=b_i\}\in\omega$.
- The *ultralimit* of a sequence $(a_i)_{i\in\mathbb{N}}$, denoted by $\lim_{i\to\omega}a_i$, is the equivalence class it belongs to.

- ω : a "nice" family of subsets of \mathbb{N} . (non-principal ultrafilter)
- Introduce an equivalence relation \sim on number sequences, where $(a_i)_{i\in\mathbb{N}}\sim (b_i)_{i\in\mathbb{N}}$ iff $\{i\in\mathbb{N}\mid a_i=b_i\}\in\omega$.
- The *ultralimit* of a sequence $(a_i)_{i\in\mathbb{N}}$, denoted by $\lim_{i\to\omega}a_i$, is the equivalence class it belongs to.
- Most operations can be naturally lifted to ultralimits.
 - E.g. $\lim_{i \to \omega} a_i + \lim_{i \to \omega} b_i = \lim_{i \to \omega} (a_i + b_i)$.

- ω : a "nice" family of subsets of \mathbb{N} . (non-principal ultrafilter)
- Introduce an equivalence relation \sim on number sequences, where $(a_i)_{i\in\mathbb{N}}\sim (b_i)_{i\in\mathbb{N}}$ iff $\{i\in\mathbb{N}\mid a_i=b_i\}\in\omega$.
- The *ultralimit* of a sequence $(a_i)_{i\in\mathbb{N}}$, denoted by $\lim_{i\to\omega}a_i$, is the equivalence class it belongs to.
- Most operations can be naturally lifted to ultralimits.
 - E.g. $\lim_{i \to \omega} a_i + \lim_{i \to \omega} b_i = \lim_{i \to \omega} (a_i + b_i)$.
- A first order sentence ϕ is true in the ultralimit world $\Leftrightarrow \phi$ is true for ω -many i's. (Łoś' theorem)
 - E.g. $\lim_{i\to\omega} a_i + \lim_{i\to\omega} b_i = \lim_{i\to\omega} c_i \Leftrightarrow \{i \mid a_i+b_i=c_i\} \in \omega$.

v^d -Metric over Function Limits

The *function limit* **f** of a function sequence $(f_i : \mathbb{F}_2^i \to \{0, 1\})$ is defined as

$$\mathbf{f}(\lim_{i\to\omega}x_i)=\lim_{i\to\omega}f_i(x_i).$$

(Formally, we take the standard part)

v^d -Metric over Function Limits

The *function limit* **f** of a function sequence $(f_i : \mathbb{F}_2^i \to \{0, 1\})$ is defined as

$$\mathbf{f}(\lim_{i\to\omega}x_i)=\lim_{i\to\omega}f_i(x_i).$$

(Formally, we take the standard part)

Definition

For two function limits f, g, we define

$$v^d(\mathbf{f}, \mathbf{g}) := \inf_{\mathbf{A}} \|\mathbf{f} - \mathbf{g} \circ \mathbf{A}\|_{U^d},$$

where **A** is over ultralimits of sequences of affine bijections.

Non-standard Analysis

Definition

For a function $f: \mathbb{F}_2^n \to \{0,1\}$, let

*f = the function limit of the sequence $(f \circ A_i)_{i \in \mathbb{N}}$,

where $A_i: \mathbb{F}_2^i \to \mathbb{F}_2^n$ is an arbitrary full-rank affine transformation.

Non-standard Analysis

Definition

For a function $f: \mathbb{F}_2^n \to \{0,1\}$, let

*f = the function limit of the sequence $(f \circ A_i)_{i \in \mathbb{N}}$,

where $A_i: \mathbb{F}_2^i \to \mathbb{F}_2^n$ is an arbitrary full-rank affine transformation.

Definition

 (f_i) is v^d -convergent if the sequence $({}^*f_i)$ converges in the v^d -metric.

The choice of A_i 's is not important when discussing v^d -convergence.

Main Result

Using the same idea as the identical domain case, we obtain:

Theorem

An affine-invariant parameter π is (obliviously) constant-query estimable

 \updownarrow

If a function sequence $(f_i : \mathbb{F}_2^i \to \{0,1\})_{i \in \mathbb{N}}$ is v^d -convergent for any $d \in \mathbb{N}$, then the sequence $\pi(f_i)$ converges.

Proof ingredients:

- Tools from higher order Fourier analysis: non-classical polynomials, decomposition theorem.
- Another notion of convergence.

Summary and Open Problems

- Defined v^d-metric over function limits and obtained a concise characterization of constant-query estimable affine-invariant parameters.
- \mathbb{F}_2 can be generalized to \mathbb{F}_p for any prime p, and for any prime power using recent techniques [BL15, BB15].

Summary and Open Problems

- Defined v^d-metric over function limits and obtained a concise characterization of constant-query estimable affine-invariant parameters.
- \mathbb{F}_2 can be generalized to \mathbb{F}_p for any prime p, and for any prime power using recent techniques [BL15, BB15].
- Can we use our characterization to show other specific parameters are constant-query estimable?
- Can we characterize properties that are constant-query testable with one-sided error using function limits?