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Affine-invariant Parameter

Definition

A parameter ™ maps a function f : F5 — {0, 1} to a value in [0, 1].
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Affine-invariant Parameter

Definition

A parameter ™ maps a function f : F5 — {0, 1} to a value in [0, 1].

Definition

A parameter 7 is affine-invariant if w(f) = 7(f o A) for any bijective
affine transformation A : F] — .

E.g.
e 7 of ones divided by 2".
e Minimum Hamming distance to a linear function / 2".

e Spectral norm (= the sum of absolute Fourier coefficients) / 2”.
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Parameter Estimation

An algorithm is an estimator for a parameter 7 if, given
e nc N,

e a query access to f : F§ — {0,1}, and

e an error parameter € > 0,

it approximates 7(f) to within ¢ with probability at least 2/3.
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Parameter Estimation

An algorithm is an estimator for a parameter 7 if, given
e nc N,
e a query access to f : F§ — {0,1}, and

e an error parameter € > 0,
it approximates 7(f) to within ¢ with probability at least 2/3.

Definition
7 is constant-query estimable if there is an estimator with query
complexity that depends only on ¢ (and not on n).
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Oblivious Estimator

A (constant-query) oblivious estimator

e Samples a random affine
subspace H of dimension h(e).

e Determines its output
based only on the restriction f|.
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Oblivious Estimator

(9) (D

A (constant-query) oblivious estimator

e Samples a random affine
subspace H of dimension h(e).

e Determines its output
based only on the restriction f|.

e Avoid “unnatural” parameters such as 7(f) = n mod 2.

e For natural parameters, a constant-query estimator implies an
oblivious constant-query estimator.
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Main Result

Theorem (Informal)

An affine-invariant parameter 7w is (obliviously) constant-query
estimable

For any function sequence (f; : T — {0,1});cn that “converges” in a

certain metric, the sequence w(f;) converges.

v

Related work:
e A similar characterization for (dense) graphs [LS06].
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Applications: Property testing

Definition
f:F5 — {0,1} is e-far from P if,

dp(f) :=mins#ix € F; | f(x) # g(x)}/2" = «.
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Applications: Property testing

Definition
f:F5 — {0,1} is e-far from P if,

dp(f) :=mins#ix € F; | f(x) # g(x)}/2" = «.

A tester for a property P: All functions

Given \:> Accept w.p. 2/3
e neN,

e a query access
to f : F3 — {0,1}, and

e an error parameter ¢ > 0, E> Reject w.p. 2/3
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Property Testing: Characterization

Corollary (Informal)

An affine-invariant property P is constant-query testable

For any function sequence (f; : Ty — {0,1});ey that “converges” in a
certain metric, the sequence dp(f;) converges.

Simplified a previous characterization [Yos14], which involves many
quantifiers and objects with seven parameters (regularity-instances).

Yuichi Yoshida (NIl and PFI) Gowers Norm, Function Limits, and Paramete January 12, 2016 7 /20



Property Testing: Specific Properties

Corollary (Informal)

Suppose that a property P satisfies:
e Any f € P is of the form

f(x) =T(Pi(x),..., P(x), Qi(x), ..., Qu(x)),

where P;'s are low-degree polynomials, Q;’s are products of
linear functions, ¢ + ¢’ = O(1), I : FS*< — {0, 1}.

e (A minor condition)

Then, P is obliviously constant-query testable.

Includes low-degree polynomials and having small spectral norm.
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“Convergence” in a Certain Metric

“For any function sequence (f; : F5' — {0,1}) that
converges in a certain metric, the sequence m(f;)
converges.”

We have two issues:

e Metric?
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“Convergence” in a Certain Metric

“For any function sequence (f; : F5' — {0,1}) that
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“Convergence” in a Certain Metric

“For any function sequence (f; : F5' — {0,1}) that
converges in a certain metric, the sequence m(f;)
converges.”

We have two issues:

e Metric? = Gowers norm

e Convergence of functions on different domains? =
Non-standard analysis
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Gowers Norm

Let f : F§ — R. The Gowers norm of order d for f is
1/24
Ifllwe:={ € ][ fx+>_w)
YL Yd ey L d) icl
e || - ||y« measures correlation with “polynomials” of degree < d.
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A Metric for Functions on an Identical Domain

fif e distribution of f restricted to an affine subspace of dimension h.

\|f —g o Al|lye is small (for large d) = ir.n = pig.p- 1
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A Metric for Functions on an Identical Domain

fif e distribution of f restricted to an affine subspace of dimension h.

\|f —g o Al|lye is small (for large d) = ir.n = pig.p- 1

Define

Ud(f,g) = min |f —g o Allyd

A:affine bijection

vI(f, g) is small & pfp =~ pig .
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A Metric for Functions on an Identical Domain

Observation

Constant-query estimability < small v9(f, g) implies 7(f) ~ 7(g).

Proof sketch.

7 is constant-query estimable.

< If f and g are indistinguishable by a constant-query estimator
(i.e., prp & figp), then 7(f) ~ 7(g).

& Small v9(f, g) implies (f) ~ 7(g). O

Yuichi Yoshida (NIl and PFI) Gowers Norm, Function Limits, and Paramete January 12, 2016 12 /20



Convergence of a Function Sequence

If v9 were a metric defined over functions on different domains, then

“small v(f, g) implies n(f) ~ m(g)"

can be rephrased as

“If a function sequence (f; : T — {0,1});en converges in
the v¥-metric, then (f;) converges.”
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Convergence of a Function Sequence

If v9 were a metric defined over functions on different domains, then

“small v(f, g) implies n(f) ~ m(g)"

can be rephrased as

“If a function sequence (f; : T — {0,1});en converges in
the v¥-metric, then (f;) converges.”

To make this statement meaningful, we extend v9 using non-standard
analysis.
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Brief Introduction to Non-standard Analysis

Non-standard analysis allows us to syntactically define a limit of any
sequence (even if there's no metric).
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Brief Introduction to Non-standard Analysis

e w: a "nice” family of subsets of N. (non-principal ultrafilter)
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Brief Introduction to Non-standard Analysis

e w: a "nice” family of subsets of N. (non-principal ultrafilter)

e Introduce an equivalence relation ~ on number sequences,
where (a,-),-eN ~ (bi)ieN iff {l eN ’ dj — b,} € w.
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Brief Introduction to Non-standard Analysis

e w: a "nice” family of subsets of N. (non-principal ultrafilter)

e Introduce an equivalence relation ~ on number sequences,
where (a;)ien ~ (bi)ien iff {i € N | a; = b;} € w.

e The ultralimit of a sequence (a;);cn, denoted by lim a;, is the
equivalence class it belongs to. R
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Brief Introduction to Non-standard Analysis

e w: a "nice” family of subsets of N. (non-principal ultrafilter)

Introduce an equivalence relation ~ on number sequences,
where (a,-),-eN ~ (bi)iEN iff {l eN ’ dj — b,} € w.

The ultralimit of a sequence (a;);en, denoted by lim a;, is the
1—Ww

equivalence class it belongs to.

Most operations can be naturally lifted to ultralimits.
e Eg. lima;+ lim b; = lim(a; + b;).
1—w 1—w

I—w
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Brief Introduction to Non-standard Analysis

e w: a "nice” family of subsets of N. (non-principal ultrafilter)

e Introduce an equivalence relation ~ on number sequences,
where (a,-),-eN ~ (bi)ieN iff {l eN ’ di = b} € w.

e The ultralimit of a sequence (a;);cn, denoted by lim a;, is the
I—w

equivalence class it belongs to.
e Most operations can be naturally lifted to ultralimits.
e Eg. lima;+ I|m o= I|m(a, + b;).

i—w
o A first order sentence ¢ is true in the ultralimit world < ¢ is
true for w-many i's. (Los’ theorem)

e Eg. I|ma,+||mb —I|mc,<:){l|a, bi=c}ew.

i—w
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v9-Metric over Function Limits

The function limit f of a function sequence (f; : Ty — {0,1}) is
defined as
f(lim x;) = lim f;(x;).

i—w i—w

(Formally, we take the standard part)
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v9-Metric over Function Limits

The function limit f of a function sequence (f; : Ty — {0,1}) is

defined as
f(lim x;) = lim f;(x;).

i—w i—w

(Formally, we take the standard part)

Definition

For two function limits f, g, we define

v(F.g) = inf If — g o Allus,

where A is over ultralimits of sequences of affine bijections.
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Non-standard Analysis

Definition
For a function f : F5 — {0,1}, let

“f = the function limit of the sequence (f o A;)jen,

where A; : F5, — T3 is an arbitrary full-rank affine transformation.
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Non-standard Analysis

Definition
For a function f : F5 — {0,1}, let

“f = the function limit of the sequence (f o A;)jen,

where A; : F5, — T3 is an arbitrary full-rank affine transformation.

(;) is v9-convergent if the sequence (*f;) converges in the v9-metric.

The choice of A;'s is not important when discussing v9-convergence.
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Main Result

Using the same idea as the identical domain case, we obtain:

Theorem

An affine-invariant parameter w is (obliviously) constant-query
estimable

If a function sequence (f; : T — {0,1});en is v¥-convergent for any
d € N, then the sequence 7(f;) converges.

Proof ingredients:

e Tools from higher order Fourier analysis: non-classical
polynomials, decomposition theorem.

e Another notion of convergence.
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Summary and Open Problems

e Defined v9-metric over function limits and obtained a concise
characterization of constant-query estimable affine-invariant
parameters.

e [, can be generalized to [F, for any prime p, and for any prime
power using recent techniques [BL15, BB15].
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Summary and Open Problems

e Defined v9-metric over function limits and obtained a concise
characterization of constant-query estimable affine-invariant
parameters.

e [, can be generalized to [F, for any prime p, and for any prime
power using recent techniques [BL15, BB15].

e Can we use our characterization to show other specific
parameters are constant-query estimable?

e Can we characterize properties that are constant-query testable
with one-sided error using function limits?
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