Nonlinear Laplacian for Digraphs and its Applications to Network Analysis

Yuichi Yoshida
(National Institute of Informatics)

Question: Can we develop spectral graph theory for digraphs?

- Spectral graph theory analyzes graph properties via eigenpairs of associated matrices (in particular, Laplacian).
- Well established for undirected graphs.
- Extensions for digraphs are largely unexplored although many real-world networks are directed.

Definition

The Laplacian for an undirected graph G

- Adjacency matrix A_G
- Degree Matrix D_G
- Laplacian $L_G := D_G - A_G$
- Normalized Laplacian: $\mathcal{L}_G := D_G^{-1/2}L_G D_G^{-1/2}$

![Graph example](image)

The Laplacian for a digraph G (proposed)

- Laplacian $L_G : \mathbb{R}^V \rightarrow \mathbb{R}^V$ transforms $x \in \mathbb{R}^V$ as follows:
 - Construct an undirected graph H as follows:
 - For each arc $u \rightarrow v$:
 - If $x(u) \geq x(v)$, add an undirected edge $[u, v]$.
 - Otherwise, add self-loops to u and v.
 - Output L_Hx.

- Normalized Laplacian: $\mathcal{L}_G : x \mapsto D_G^{-1/2}L_G D_G^{-1/2}x$

Interpretation via electrical circuits

- Regard G as an electrical circuit.
 - Graph: edge = resistance of 1Ω
 - Digraph: arc = diode of 1Ω (current flows only one way)

For each $u \in V$, flow a current of $b(u)$ amperes to u.

The voltages $x \in \mathbb{R}^V$ of vertices is given by $L_G(x) = b$.

Properties

- (λ, v) is an eigenpair of L_G if $L_G(v) = \lambda v$
- Trivial eigenpair (λ_1, v_1) with $\lambda_1 = 0$.

For any subspace U of positive dimension, $\Pi_U L_G$ has an eigenpair, $(\Pi_U = $ Projection matrix to U)

- Another eigenvalue of L_G exists by choosing $U = v_1^\perp$.
 - Let λ_2 be the second smallest eigenvalue.

Algorithm

- Computing λ_2 is (likely to be) NP-hard.
- Suppose we start the diffusion process

 $$dx = -\Pi_U L_G(x) dt$$

 from a vector in the subspace $U = v_1^\perp$.

 - x converges to an eigenvector orthogonal to v_1.
 - Rayleigh quotient never increases during the process.

Visualization

- Friendship network at a high school in Illinois
 - $(u \rightarrow v \mid u$ regards v as a friend)$
 - Reorder vertices according to the eigenvector computed by the diffusion process

![Chung's Laplacian](image)

Proposed Laplacian

- λ_2 is the minimum of

 $$\sum_{u \rightarrow v} (x(u) - x(v))^2 \frac{\pi_u}{d_u^+}$$

 subject to $x \neq 0, x \perp v_1$.

Community Detection

- (Directed) conductance $\phi^+(S)$ of S:

 $$\frac{\min(\text{vol}(S), \text{vol}(V-S))}{\text{vol}(S) \cdot \text{total degree of } u \in S}$$

- $\text{cut}^+(S)$: # of arcs from S to $V-S$

- Cheeger's inequality for digraphs:

 $$\lambda_2 \leq \min_S \phi^+(S) \leq 2\sqrt{\lambda_2}$$

- Conductance of the set of the first k vertices after reordering.

Email: yyoshida@nii.ac.jp