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Property testing

Definition

f : {0, 1}n → {0, 1} is ε-far from P if,

dP(f ) := min
g∈P

Pr
x

[f (x) 6= g(x)] ≥ ε.

Accept w.p. 2/3

Reject w.p. 2/3

P

ε-far

A tester for a property P :
Given

• f : {0, 1}n → {0, 1}
as a query access.

• proximity parameter ε > 0.
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Linearity testing

Input: a function f : Fn
2 → F2 and ε > 0.

Goal: f (x) + f (y) = f (x + y) for every x , y ∈ Fn
2?

1: for i = 1 to O(1/ε) do
2: Sample x , y ∈ Fn

2 uniformly at random.
3: if f (x) + f (y) 6= f (x + y) then reject.
4: Accept.

Theorem ([BLR93])

• If f is linear, always accepts. (one-sided error)

• If f is ε-far, rejects with probability at least 2/3.

• Query complexity is O(1/ε)⇒ constant!
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Backgrounds

The notion of property testing was introduced by [RS96].

Since then, various kinds of objects have been studied.
Ex.: Functions, graphs, distributions, geometric objects, images.

Q. Why do we study property testing?
A. Interested in

• ultra-efficient algorithms.

• relations to PCPs, locally testable codes, and learning.

• the relation between local view and global property.
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Local testability of affine-Invariant properties

Definition

P is affine-invariant if a function f : Fn
2 → {0, 1} satisfies P , then

f ◦ A satisfies P for any bijective affine transformation A : Fn
2 → Fn

2.

Definition

P is (locally) testable if there is a tester for P with q(ε) queries.

Ex.:

• degree-d polynomials [AKK+05, BKS+10]

• Fourier sparsity [GOS+11]

• Odd-cycle-freeness: the Cayley graph has no odd cycle [BGRS12]
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The goal

Q. Can we characterize testable affine-invariant properties?
[KS08]

A. Yes, in a satisfying sense.

In this talk, we review how we have resolved this question.

• One-sided error testable ≈ Affine-subspace hereditary

• Testable ⇔ Estimable

• Two-sided error testable ⇔ Regular-reducible

• and more...

Higher order Fourier analysis has played a crucial role!
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Oblivious tester

Definition

1

0

1

0

0

0

1

1
H

f |H

fAn oblivious tester works as follows:

• Take a restriction f |H .
• H: random affine

subspace of dimension h(ε).

• Output based only on f |H .

Motivation: avoid “unnatural” properties such as f ∈ P ⇔ n is even.
For natural properties, ∃ a tester ⇒ ∃ an oblivious tester.
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Why is higher order Fourier analysis useful?

µf ,h: the distribution of f |H .

Observation

A tester cannot distinguish f from g if µf ,h ≈ µg ,h.

Consider the decomposition f = f1 + f2 + f3 for d = d(ε, h):

• f1 = Γ(P1, . . . ,PC ) for high-rank degree-d polynomials
P1, . . . ,PC .

• f2: small L2 norm.

• f3: small Ud+1 norm.

The pseudorandom parts f2 and f3 do not affect µf ,h much.
⇒ we can focus on the structured part f1.
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One-sided error testable ≈
Affine-subspace hereditary
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Affine-subspace hereditary

Definition

A property P is affine-subspace hereditary if
f ∈ P ⇒ f |H ∈ P for any affine subspace H .

Ex.:

• degree-d polynomials, Fourier sparsity, odd-cycle-freeness

• f = gh for some polynomials g , h of degree ≤ d − 1.

• f = g 2 for some polynomial g of degree ≤ d − 1.
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Characterization of one-sided error testability

Conjecture ([BGS10])

P is testable with one-sided error by an oblivious tester
⇔ P is (essentially) affine-subspace hereditary

⇒ is true [BGS10].

1

0

1

0

0

0

1

1

f |H 62 P1. Suppose f 2 P and

3. f is also rejected w.p.> 0, contradiction.

2. 9f |K , rejected

by the tester

Proof sketch:
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Alternative formulation via linear forms

Think of affine-triangle-freeness:
No x , y1, y2 ∈ Fn

2 s.t. f (x + y1) = f (x + y2) = f (x + y1 + y2) = 1.

⇔ No x , y1, y2 ∈ Fn
2 s.t.

f (L1(x , y1, y2)) = σ1 for L1(x , y1, y2) = x + y1 and σ1 = 1,

f (L2(x , y1, y2)) = σ2 for L2(x , y1, y2) = x + y2 and σ2 = 1,

f (L3(x , y1, y2)) = σ3 for L3(x , y1, y2) = x + y1 + y2 and σ3 = 1.

We call this (A = (L1, L2, L3), σ = (σ1, σ2, σ3))-freeness.

• A is called an affine system of linear forms.
⇒ well studied in higher order Fourier analysis.
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Testability of subspace hereditary properties

Observation

The following are equivalent:

• P is affine-subspace hereditary.

• There exists a (possibly infinite) collection {(A1, σ1), . . .}
s.t. f ∈ P ⇔ f is (Ai , σi)-free for each i .

Theorem ([BFH+13])

If each (Ai , σi) has bounded complexity, then the property is testable
with one-sided error.
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Proof idea

Let’s focus on the case f = Γ(P1, . . . ,PC ) and P = affine 4-freeness.

f is ε-far from P
⇒ There are x∗, y ∗1 , y

∗
2 ∈ Fn

2 spanning an affine triangle.

Pr
x ,y1,y2

[f (x + y1) = f (x + y2) = f (x + y1 + y2) = 1]

≥ Pr
x ,y1,y2

[Pi(Lj(x , y1, y2)) = Pi(Lj(x∗, y ∗1 , y
∗
2 )) ∀i ∈ [C ], j ∈ [3]],

which is non-negligibly high from the equidistribution theorem.
⇒ Random sampling works.
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Testability ⇔ Estimability
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Testability ⇐ Estimability

Definition

P is estimable if we can estimate dP(·) to within δ with q(δ) queries
for any δ > 0.

Trivial direction: P is estimable ⇒ P is testable.

Theorem ([HL13])

P is testable ⇒ P is estimable.

Algorithm:

1: H ← a random affine subspace of a constant dimension.
2: return Output dP(f |H).
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Intuition behind the proof

Why can we expect dP(f ) ≈ dP(f |H)?

(Oversimplified argument)

• Since P is testable, dP(f ) is determined by the distribution µf ,h.

• If f = Γ(P1, . . . ,PC ), then µf ,h is determined by Γ, degrees and
depths of P1, . . . ,PC (rather than Pi ’s themselves).

• f = Γ(P1, . . . ,PC ) and fH = Γ(P1|H , . . . ,PC |H) share the same
Γ, degrees and depths.
⇒ µf ,h ≈ µf |H ,h.
⇒ dP(f ) ≈ dP(f |H).
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Two-sided error testability ⇔
Regular-reducibility
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Structured part

Recall that, for f = Γ(P1, . . . ,PC ) + f2 + f3,

µf ,h is determined by Γ, and degrees and depths of Pi ’s.

Let’s use them as a (constant-size) sketch of f .

Yuichi Yoshida (NII and PFI) Applications to algebraic property testing October 18, 2014 19 / 27



Regularity-instance

Definition

A regularity-instance I is a tuple of

• an error parameter γ > 0,

• a structure function Γ :
∏C

i=1 Uhi+1 → [0, 1],

• a complexity parameter C ∈ N,

• a degree-bound parameter d ∈ N,

• a degree parameter d = (d1, . . . , dC ) ∈ NC with di < d ,

• a depth parameter h = (h1, . . . , hC ) ∈ NC with hi <
di

p−1 , and

• a rank parameter r ∈ N.
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Satisfying a regularity-instance

Definition

Let I = (γ, Γ,C , d ,d,h, r) be a regularity-instance.
f satisfies I if it is of the form

f (x) = Γ(P1(x), . . . ,PC (x)) + Υ(x),

where

• Pi is a polynomial of degree di and depth hi ,

• (P1, . . . ,PC ) has rank at least r ,

• ‖Υ‖Ud ≤ γ.
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Testing regularity-instances

Theorem ([Yos14a])

For any high-rank regularity-instance I , there is a tester for the
property of satisfying I .

Algorithm:

1: H ← a random affine subspace of a constant dimension.
2: if f |H is close to satisfying I then accept.
3: else reject.
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Regular-reducibility

A property P is regular-reducible if for any δ > 0, there exists a set
R of constant number of high-rank regularity-instances such that:

f 2 P
 �

� ✏� � g : ✏-far from P
� ✏� �
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Characterization of two-sided error testability

Theorem

An affine-invariant property P is testable
m

P is regular-reducible.

Proof sketch:

• Regular-reducible ⇒ testable
Regularity-instances are testable, and testability implies
estimability [HL13]. Hence, we can estimate the distance to R.

• Testable ⇒ regular-reducible
The behavior of a tester depends only on µf ,h. Since Γ, d, and h
determines the distribution, we can find R using the tester.
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Another characterization

f , g : Fn
2 → {0, 1} are indistinguishable if µf ,h ≈ µg ,h

⇔ υd(f , g) := minA ‖f − g ◦ A‖Ud is small.

Q. Can we generalize υd to functions over different domains?
A. Yes, with the aid of non-standard analysis.

We can define a counterpart of graphons [LS06] and a metric on it.

Theorem ([Yos14b])

A property P is testable
⇔ for any sequence (fi : Fni

2 → {0, 1}) that converges in the
υd -metric for any d ∈ N, the sequence dP(fi) converges.
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Summary

Higher order Fourier analysis is useful for studying property testing as

• we care about the distribution µf ,h for h = O(1),

• which is determined by the structured part given by the
decomposition theorem.

We are almost done, qualitatively .

• one-sided error testability ≈ affine-subspace hereditary (of
bounded complexity)

• two-sided error testability ⇔ regular-reducibility.

Thanks!
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