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Decision Problems

• Function f : Fn
2 → {0, 1}.

• Function property P .
(such as linearity: f (x) + f (y) ≡ f (x + y) mod 2 for all x , y .)

Q. How long does it take to decide f satisfies P?

A. Trivially, it takes 2n time.

Q. Can we do something in sublinear or even in constant time?
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Property testing

Definition

f : {0, 1}n → {0, 1} is ε-far from P if,

dP(f ) := min
g∈P

#{x ∈ {0, 1}n | f (x) 6= g(x)}
2n

≥ ε.

Accept w.p. 2/3

Reject w.p. 2/3

P

ε-far

A tester for a property P :
Given

• f : {0, 1}n → {0, 1}
as a query access.

• proximity parameter ε > 0.
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Testing f ≡ 1

Input: a function f : {0, 1}n → {0, 1} and ε > 0.
Goal: f (x) = 1 for every x ∈ {0, 1}n?

1: for i = 1 to Θ(1/ε) do
2: Sample x ∈ {0, 1}n uniformly at random.
3: if f (x) = 0 then reject.
4: Accept.

Theorem

• If f ≡ 1, always accepts. (one-sided error)

• If f is ε-far, accepts with probability (1− ε)Θ(1/ε) ≤ 1/3.

• Query complexity is O(1/ε)⇒ constant!
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Backgrounds

Property testing was introduced by [RS96] for program checking.

Since then, various kinds of objects have been studied.
Ex.: Functions, graphs, distributions, geometric objects, images.

Q. Why do we study property testing?
A. Interested in

• ultra-efficient algorithms.

• connections to inapproximability, locally testable codes, and
learning.

• the relation between local view and global property.
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Local testability of affine-Invariant properties

Definition

P is affine-invariant if a function f : Fn
2 → {0, 1} satisfies P , then

f ◦ A satisfies P for any bijective affine transformation A : Fn
2 → Fn

2.

Definition

P is (locally) testable if there is a tester for P with q(ε) queries.

Yuichi Yoshida (NII and PFI) Applications to algebraic property testing May 28, 2016 6 / 33



Local testability of affine-Invariant properties

Definition

P is affine-invariant if a function f : Fn
2 → {0, 1} satisfies P , then

f ◦ A satisfies P for any bijective affine transformation A : Fn
2 → Fn

2.

Definition

P is (locally) testable if there is a tester for P with q(ε) queries.

Yuichi Yoshida (NII and PFI) Applications to algebraic property testing May 28, 2016 6 / 33



Local testability of affine-Invariant properties

Some specific locally testable affine-invariant properties:

• Degree-d polynomials [AKK+05, BKS+10]

• Fourier sparsity [GOS+11]

• Odd-cycle-freeness: There exist no x1, . . . , x2k+1 ∈ Fn
2 such that

f (x1) = · · · = f (x2k+1) = 1 and x1 + · · ·+ x2k+1 ≡ 0 [BGRS12].
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The goal

Q. Can we characterize locally testable affine-invariant
properties? [KS08]

A. Yes.

In this talk, we review how we have attacked this question.

• One-sided error testable ≈ Affine-subspace hereditary

• Testable ⇔ Estimable

• Two-sided error testable ⇔ Regular-reducible

Higher order Fourier analysis has played a crucial role!
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Fourier analysis

A function f : Fn
2 → R can be uniquely decomposed as

f (x) =
∑
S⊆[n]

f̂ (S)χS(x),

where χS(x) = (−1)
∑

i∈S xi .

f̂ (S) measures the correlation of f with χS . (Fourier coefficients)

Fourier analysis is

• powerful enough to study specific properties.

• not powerful enough to obtain general results.
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Higher order Fourier analysis

We look at correlations with polynomials instead of linear functions.

Main technical tools:

• Decomposition theorem
A function can be decomposed into a structured part +
pseudorandom part (with respect to low-degree polynomials)

• Equidistribution theorem
“generic” polynomials look independently distributed.

Caveat: In this talk, we do not touch most of technical foundations
such as Gowers norm, rank, and bias.
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Oblivious tester

Definition

1

0

1

0

0

0

1

1
H

f |H

fAn oblivious tester works as follows:

• Take a restriction f |H .
• H: random affine

subspace of dimension h(ε).

• Output based only on f |H .

Motivation: avoid “unnatural” properties such as f ∈ P ⇔ n is even.
For natural properties, ∃ a tester ⇒ ∃ an oblivious tester [BGS10].
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Decomposition theorem

µf ,h: the distribution of f |H .

Observation

A tester cannot distinguish f from g if µf ,h ≈ µg ,h.

Theorem (Decomposition theorem)

Any function can be decomposed as f = f1 + f2 + f3 for d = d(ε, h):

• f1 = Γ(P1, . . . ,PC ) for “generic” degree-d polynomials {Pi}.
• f2: small L2 norm.

• f3: uncorrelated with degree-d polynomials.

The pseudorandom parts f2 and f3 do not affect µf ,h much.
⇒ we can focus on the structured part f1.
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One-sided error testable ≈
Affine-subspace hereditary
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Affine-subspace hereditary

Definition

A property P is affine-subspace hereditary if
f ∈ P ⇒ f |H ∈ P for any affine subspace H .

Ex.:

• degree-d polynomials, Fourier sparsity, odd-cycle-freeness

• f = gh for some polynomials g , h of degree ≤ d − 1.

• f = g 2 for some polynomial g of degree ≤ d − 1.
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Characterization of one-sided error testability

Conjecture ([BGS10])

P is testable with one-sided error by an oblivious tester
⇔ P is (essentially) affine-subspace hereditary

⇒ is true [BGS10].

1

0

1

0

0

0

1

1

f |H 62 P1. Suppose f 2 P and

3. f is also rejected w.p.> 0, contradiction.

2. 9f |K , rejected

by the tester

Proof sketch:
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Alternative formulation via linear forms

Think of affine-triangle-freeness:
No x , y1, y2 ∈ Fn

2 s.t. f (x + y1) = f (x + y2) = f (x + y1 + y2) = 1.

⇔ No x , y1, y2 ∈ Fn
2 s.t.

f (L1(x , y1, y2)) = σ1 for L1(x , y1, y2) = x + y1 and σ1 = 1,

f (L2(x , y1, y2)) = σ2 for L2(x , y1, y2) = x + y2 and σ2 = 1,

f (L3(x , y1, y2)) = σ3 for L3(x , y1, y2) = x + y1 + y2 and σ3 = 1.

We call this (A = (L1, L2, L3), σ = (σ1, σ2, σ3))-freeness.

• A is called an affine system of linear forms.
⇒ well studied in higher order Fourier analysis.
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Testability of subspace hereditary properties

Observation

The following are equivalent:

• P is affine-subspace hereditary.

• There exists a (possibly infinite) collection {(A1, σ1), . . .}
s.t. f ∈ P ⇔ f is (Ai , σi)-free for each i .

Theorem ([BFH+13])

If each (Ai , σi) has bounded complexity, then the property is testable
with one-sided error.
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Proof idea

Let’s focus on the case f = Γ(P1, . . . ,PC ) and P = affine 4-freeness.

f is ε-far from P
⇒ There are x∗, y ∗1 , y

∗
2 ∈ Fn

2 spanning an affine triangle.

Pr
x ,y1,y2

[f (x + y1) = f (x + y2) = f (x + y1 + y2) = 1]

≥ Pr
x ,y1,y2

[Pi(Lj(x , y1, y2)) = Pi(Lj(x
∗, y ∗1 , y

∗
2 )) ∀i ∈ [C ], j ∈ [3]],

which is non-negligibly high from the equidistribution theorem.
⇒ Random sampling works.
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Equidistribution theorem

The space Fn
2 can be divided according to {Pi(Lj(x))}i∈[C ],j∈[3].

Theorem (Equidistribution theorem)

If Pi ’s are “generic” enough, then each cell has almost the same size.

Almost the same size

Fn
2 =
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Testability ⇔ Estimability
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Testability ⇐ Estimability

Definition

P is estimable if we can estimate dP(·) to within δ with q(δ) queries
for any δ > 0.

Trivial direction: P is estimable ⇒ P is testable.

Theorem ([HL13])

P is testable ⇒ P is estimable.

Algorithm:

1: H ← a random affine subspace of a constant dimension.
2: return Output dP(f |H).
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Intuition behind the proof

Why can we hope dP(f ) ≈ dP(f |H)?

(Oversimplified argument)

• Since P is testable, dP(f ) is determined by the distribution µf ,h.

• If f = Γ(P1, . . . ,PC ), then µf ,h is determined by Γ and degrees
of P1, . . . ,PC (rather than Pi ’s themselves).

• f = Γ(P1, . . . ,PC ) and fH = Γ(P1|H , . . . ,PC |H) share the same
Γ and degrees.
⇒ µf ,h ≈ µf |H ,h.
⇒ dP(f ) ≈ dP(f |H).
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Two-sided error testability ⇔
Regular-reducibility
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Structured part

Recall that, for f = Γ(P1, . . . ,PC ) + f2 + f3,

µf ,h is determined by Γ and degrees of Pi ’s.

Let’s use them as a (constant-size) sketch of f .
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Regularity-instance (simplified)

Definition

A regularity-instance I is a tuple of

• a complexity parameter C ∈ N,

• a structure function Γ : FC
2 → [0, 1],

• a degree-bound parameter d ∈ N,

• a degree parameter d = (d1, . . . , dC ) ∈ NC with di < d ,
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Satisfying a regularity-instance

Definition

Let I = (C , Γ, d ,d) be a regularity-instance.
f satisfies I if it is of the form

f (x) = Γ(P1(x), . . . ,PC (x)) + Υ(x),

where

• Pi is a polynomial of degree di ,

• P1, . . . ,PC are “generic” enough.

• Υ is uncorrelated with degree-(d − 1) polynomials.
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Testing regularity-instances

Theorem ([Yos14a])

For any regularity-instance I , there is a tester for the property of
satisfying I .

Algorithm:

1: H ← a random affine subspace of a constant dimension.
2: if f |H is close to satisfying I then accept.
3: else reject.
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Regular-reducibility

A property P is regular-reducible if for any δ > 0, there exists a set
R of constant number of regularity-instances such that:

f 2 P
 �

� ✏� � g : ✏-far from P
� ✏� �
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Characterization of two-sided error testability

Theorem

An affine-invariant property P is testable
m

P is regular-reducible.

Proof sketch:

• Regular-reducible ⇒ testable
Regularity-instances are testable, and testability implies
estimability [HL13]. Hence, we can estimate the distance to R.

• Testable ⇒ regular-reducible
The behavior of a tester depends only on µf ,h. Since Γ and d
determines the distribution, we can find R using the tester.
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Notes

• We need to deal with “non-classical” polynomials instead of
polynomials.

• Another characterization of testability was shown by introducing
“functions limits” [Yos14b].

• Applications of the characterizations:
• Low-degree polynomials.
• Having a low spectral norm

∑
S |f̂ (S)|.
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Summary

Higher order Fourier analysis is useful for studying property testing as

• we care about the distribution µf ,h for h = O(1),

• which is determined by the structured part given by the
decomposition theorem.

We are almost done, qualitatively .

• one-sided error testability ≈ affine-subspace hereditary (of
bounded complexity)

• two-sided error testability ⇔ regular-reducibility.
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Future direction

Property Testing

• Other groups:
• Abelian ⇒ higher order Fourier analysis exists [Sze12].
• Non-Abelian ⇒ representation theory? [OY16]

• Why is affine invariance easier to deal with than permutation
invariance?

Other applications of higher order Fourier analysis.

• Coding theory [BG16, BL15a].

• Learning theory [BHT15].

• Complexity theory [BL15b].

• Algorithms for polynomials [Bha14].
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