
IEEE TRANSACTIONS SYSTEMS, MAN, AND CYBERNETICS – PART C: APPLICATION AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003 350

Building Reusable Mobile Agents for Network
Management
Ichiro Satoh Member, IEEE,

Abstract— Mobile agents can migrate among nodes to perform
a set of management tasks at each of the visited nodes. Existing
mobile agent-based network management systems often assume
that their mobile agents are designed to work in particular net-
works to raise the efficiency of agent migration among multiple
nodes. Unfortunately, such mobile agents cannot be reused in
different networks. This paper proposes a framework where a
mobile agent for network management is composed of two kinds
of software components, a itinerary part and a behavioral logic
part. Both components are implemented as mobile agents. The
former is a carrier designed for particular networks, and it can
efficiently navigate other mobile agents among nodes in its target
network. The latter defines management tasks performed at each
node independently of any local network. This framework allows
a mobile agent for network management to be reused in various
networks without being modified. A prototype implementation of
this framework and its application were built on a Java-based
mobile agent system.

Index Terms— mobile agent, network management, reusability,
active network

I. INTRODUCTION

Mobile agent technology provides a solution to the flexible
management of telecommunication systems. Mobile agents
can locally observe and control equipments at each node
by migrating among the nodes. Mobile agent-based network
management has several advantages in comparison with tra-
ditional approaches, such as the client/server one. For ex-
ample, they can reduce network traffic and easily support
disconnected operation. Moreover, the dynamic deployment
and configuration of new or existing functionalities into a
network system are extremely important tasks especially as
they potentially allow outdated systems to be updated in
an efficient manner. Adopting the mobile agent technology
eliminates the need for the administrator to constantly monitor
many network management activities, e.g., installation and
upgrading of software and periodic auditing of the network.
There have been several attempts to apply this technology to
network management tasks.

However, there have been serious problems associated with
the development of mobile agent-based applications, in addi-
tion to security problems. Such applications are required to
migrate their agents among all specified nodes efficiently to
perform their own tasks at each of the visited nodes, because
the itinerary of an agent greatly affects its achievement and ef-
ficiency. However, it is often difficult to dynamically generate
an efficient itinerary among multiple nodes, without having
any knowledge of the network. Even if a smart agent can
create an efficient itinerary based on its previous processing
and the current environment, such an agent is not always

be appropriate, because both the cost of discovering such an
itinerary and the size of its program tend to be large.

Therefore, most existing mobile agent-based applications
explicitly and implicitly assume that their mobile agents
are statically designed for their target networks for greater
efficiency of agent migration over the networks. However,
an agent optimized for particular networks cannot be reused
in other networks. This results in an inevitable trade-off
between the performance and reusability of a mobile agent.
Furthermore, this problem becomes more serious when mobile
agents are used for network management. This is because
network management systems must often handle networks that
may have some malfunctions and whose topology may not be
exactly unknown. Consequently, it is almost impossible for
each mobile agent to efficiently migrate among nodes in such
networks. This is one of the reasons why there have not been
many attempts to use mobile agent technology in the domain
of network management, although the technology can be used
in this domain.

This paper addresses several problems, including the prob-
lem of a trade-off between the performance and reusability
of a mobile agent in the development of mobile agent-based
network management systems and proposes a new framework
for building mobile agent-based network management systems
in order to solve these problems. The framework allows us to
build efficient and scalable mobile agents for network manage-
ment without losing their reusability. Like other mobile agent-
based network management systems, the framework uses mo-
bile agents to implement network management functionalities,
but it allows each mobile agent to be designed independently
of any network and dynamically change its itinerary without
modifying its application-specific behaviors. That is, when
a mobile agent arrives at an unknown sub-network, it can
dynamically obtain an itinerary statically designed for the
visited sub-network and thus can efficiently migrate among the
nodes on the sub-network. The current implementation of the
framework is built on a Java-based mobile agent system, called
MobileSpaces [15], which is unique among existing systems
because it hierarchically organizes multiple mobile agents.

This paper is organized as follows: Section 2 discusses the
advantages of mobile agent-based network management and
the actual problems associated with it. Section 3 presents the
basic ideas of the framework described in this paper. Section
4 presents the design and implementation of the framework.
Section 5 describes practical applications of the framework
and discusses its usefulness. Section 6 reviews some related
works, and Section 7 makes some concluding remarks.

IEEE TRANSACTIONS SYSTEMS, MAN, AND CYBERNETICS – PART C: APPLICATION AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003 351

II. BACKGROUND

To manage a network system, we sometimes need to locally
observe and control components on multiple nodes in the
system. Existing network management systems essentially use
the client/server mechanism for their functionalities. Such
systems often suffer from poor scalability due to an increase
in the amount of communication and the number of failures
in nodes and channels. In contrast, mobile agent technology
can be used for a variety of network management functions.
Discussion on the advantages of mobile agents in network
management can be found in [2], [10]. However, in addition
to the trade-off problem mentioned in the previous section,
there have been several other problems with obtaining these
advantages.

a) Reduction in network traffic and information re-
trieval:: Network nodes, including gateways, databases, and
sensors, often record a large amount of data. In the traditional
approach all the data recorded in remote nodes must be
frequently transmitted to a central management systems. In
contrast, since the transmission of a mobile agent to data
sources creates less traffic than the transmission of the data,
mobile agent technology substantially reduces the network
bandwidth for the collection and filtering of data from remote
networks. However, to take this advantage of this feature, each
mobile agent must be small, so it is usually designed for par-
ticular networks and tasks. This is because even if a general-
purpose and adaptive mobile agent could be constructed, it
may not work well, because the execution cost of such a
sophisticated agent could be very high.

b) On-demand distribution of software:: In the
client/server approach, static multiple servers require
duplication of functionality at every node, which often has
only limited resources, such as CPU power and memory. In
contrast, a mobile agent resides only on one node at a time
while other nodes do not run an agent if they do not need
to. Such an agent carries a management function to the node.
Therefore, it is not always necessary for every node to have
software for network management. However, if an agent does
not know all the nodes to which it must distribute software,
it is difficult for the agent to detect and reach all the nodes
on the fly.

c) Automation and fault tolerance:: Each mobile agent is
a self-contained and autonomous entity, so it can be controlled
in a decentralized manner and perform its management tasks
independently of its source node. Consequently, the technol-
ogy can relieve the administrator from the need to continuously
monitor some network management activities. Furthermore,
mobile agents can survive if moved closer to resources, or
away from partially failed nodes. However, this often requires
the central manager to have knowledge about the network,
because it is difficult for each agent to visit all the required
nodes and move away from malfunctioning nodes to another
node.

d) Direct manipulation:: A mobile agent is locally ex-
ecuted on the node it is visiting, and it can easily discover
the types and functions of devices on this node to directly
control the devices. This is helpful in network management, in
particular in detecting and removing device failures. However,

we cannot take full advantage of this feature because of a
security mechanism. Although there has been a lot of efforts
to solve the security problems of mobile agent technology,
most existing security mechanisms cannot be used for mobile
agents in network management, because they are designed to
restrict low-level procedure calls while such agents often need
to directly access low-level resources.

III. APPROACH

The goal of this paper is to provide a framework for
building and operating mobile agents capable of autonomously
traveling among nodes on multiple sub-networks to perform
their management tasks at each node they visit.

To solve the above mentioned problems, the framework in-
troduces two types of mobile agents: task agents and navigator
agents, as shown in Figure 1. The idea was inspired by a
tour bus going around the sights of a town. A task agent
corresponds to a tourist, who takes a tour-bus to visit sights in
an unfamiliar town. A navigator agent corresponds to a tour-
bus guide, who guides several tourists among the places of the
town.

• The Navigator agent does not have any application-
specific tasks. Instead, it carries task agents and is de-
signed for a particular sub-network. It must be familiar
with the topology of its target sub-network. Thus, it can
efficiently guide one or more task agents to their multiple
destinations in the sub-network.

• The Task agent is an application-specific agent that
performs its management task at each of the nodes it
visits. It can travel from sub-network to sub-network, but
may be unfamiliar with the sub-networks it visits.

step 1

Sub-network

Navigator Agent

Itinerary: A>B>C

Task Agent Agent Pool
Node C Node B

Node A

step 2 carry

carry

Agent Pool

Sub-network

Node C
Node B

Node A

Navigator

Agent

Task Agent

Fig. 1. Navigator agents and task agents

When a task agent arrives at an unknown sub-network, it
enters an idle navigator agent that knows the current network
well. Then, the selected navigator agent carries the visiting
task agent to the nodes that the task agent wants to visit. Each
navigator agent is defined and managed by its network and can
explicitly limit the nodes to which it can carry task agents.

IEEE TRANSACTIONS SYSTEMS, MAN, AND CYBERNETICS – PART C: APPLICATION AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003 352

This framework also provides a mechanism for allowing a
task agent to select a navigator agent suitable for the current
network. The mechanism, called Agent Pool, stores idle agents
in a manner similar to that in a bus-terminal or a taxi stand,
as shown in Figure 2. Each sub-network has multiple agent
places for storing navigator agents specific to the sub-network
and each navigator agent is designed to return to its place soon
after achieving its navigation task to wait for the next task.
Each task agent is responsible for traveling among the agent
pools of its destination sub-networks, where each navigator
agent is responsible for navigating its inner agents among the
nodes in its sub-network. Therefore, to travel among some of
the nodes on a sub-network, a task agent migrates to the agent
pool at the sub-network and asks a navigator agent stored in
the pool to carry it among the nodes.

Sub-network A

Navigator

Agent A

Task Agent Agent Pool
Node 1 Node 3

Node 2

Navigator

Agent A'

Sub-network B

Navigator

Agent B

Agent Pool
Node 1 Node 3

Node 2

Navigator

Agent B'

Node 4

Source Node

Sub-network

migration

Fig. 2. Agent Pools

We should explain why our hierarchical agent model is
needed in the development of network management. There
may be other approaches in addition to our approach. One
of the approaches is to build an omniscient agent, which
can travel over all of the sub-networks, but the size and
execution cost of such an agent tends to be large as mentioned
previously. Another approach is to dynamically incorporate
an application-specific agent with a knowledge component for
determining and managing the itinerary of the agent. However,
such an agent is not self-contained and may not be able
to migrate over a network under its own control. Also, the
distribution of knowledge of the sub-network must be limited
to the sub-network for reasons of security.

Our framework introduces such a knowledge component as
a navigator agent, which is a container comprised of more
than one task agent. To visit nodes on a sub-network, task
agents must be carried by a navigator agent that is authorized
by the sub-network and has its own itinerary. Therefore, each
task agent does not have to be modified and can remain
autonomous and self-contained, even while it is contained
in a navigator agent traveling over the sub-network. Since
the knowledge of the topology of the sub-network is kept
inside the navigator agent, the task agent does not access to
and cannot have such knowledge, unlike the two approaches
discussed above. When a network management task consists
of multiple mobile agents, a navigator agent can carry these
agents as a whole. Moreover, all nodes do not have the ca-
pability of authenticating their visiting arbitrary agents. Since
each agent pool can authenticate its visiting task agents on
behalf of its sub-network before the task agents are contained

and carried by a navigator agent, each node can thus accept
only authorized navigator agents.

IV. DESIGN AND IMPLEMENTATION

Before describing the framework presented in this paper, we
describe the MobileSpaces mobile agent system that provides
the infrastructure for this framework. Based on this system,
we then explain how we envisage the construction of task and
navigator agents.

A. MobileSpaces: A Hierarchical Mobile Agent System

This framework consists of navigator agents, task agents,
and agent pools. These agents are implemented as mobile
agents in MobileSpaces.

Hierarchical Mobile Agents in MobileSpaces: Mobile
agents in MobileSpaces are programmable entities like other
mobile agents. They are capable of conserving their state while
on the move and their itineraries can include multiple network
nodes. Furthermore, MobileSpaces provides each mobile agent
with two novel concepts: agent hierarchy and inter-agent
migration. The former means that another mobile agent can
be contained within one mobile agent. The latter means that
each mobile agent can migrate to other mobile agents as a
whole, with all its inner agents, as long as the destination
agent accepts it. Therefore, an agent can contain other mobile
agents inside it as shown in Figure 3.

migration

Step 1

Step 2

Agent B

Agent A

Agent C

Agent B

Agent A

Agent C

Agent A or Computer A Agent B or Computer B

Agent A or Computer A Agent B or Computer B

Fig. 3. Agent hierarchy and inter-agent migration

Each agent has direct control of all its inner agents and thus
can instruct them to move to other locations and can destroy
them. In contrast, each agent has no direct control over its
container agents. Instead, each agent can have a set of service
methods, which can be accessed by its containers. Each agent
has a globally unique name and can have more than one active
thread under the control of the runtime system.

MobileSpaces Runtime System: Each runtime system is a
platform for executing and migrating agents. It is built on
a Java virtual machine, and mobile agents are Java objects.
Each runtime system can subordinate all the agents inside it,
and the system maintains the life-cycle state of the agents.
When the life-cycle state of an agent is changed, for example,
at creation, termination, or migration, the core system issues
certain events to invoke certain methods in the agent and the
agents it contains. The runtime system provides a mechanism

IEEE TRANSACTIONS SYSTEMS, MAN, AND CYBERNETICS – PART C: APPLICATION AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003 353

for marshaling and unmarshaling agents. 1 When an agent is
marshaled, the runtime system propagates certain events to the
agent and its inner agents that are still running to instruct them
to stop. It also can automatically stop and serialize them after
a given time period. The runtime system can transfer agents
to the destination computer over TCP/IP connection.

B. Navigator Agent

Each navigator agent is a container of one or more task
agents and is responsible for guiding them to nodes in the
network it covers. That is, it travels with its inner agents in
accordance with its itinerary, which is statically or algorithmi-
cally determined, or dynamically based on the agent’s previous
computations and the current environment. This framework
provides abstract classes in the Java language and navigator
agents can be defined by extending these classes. A typical
navigator agent has a routing mechanism for managing its
own routing table, which consists of all the nodes on its
target network, and can dynamically add and remove elements
from the table. After it has achieved its navigation task, the
navigator agent goes back to the agent pool of the sub-network
that it covers, and advertises the list of reachable nodes to
the pool. It then waits for the arrival of other task agents.
The interaction between a navigator agent and the task agents
inside it is based on event-based communication introduced in
the Abstract Window Toolkit of JDK 1.1. A navigator agent
invokes certain methods of its task agents, whenever it arrives
at one of the destinations. The navigator agent executes its
built-in method, go(AgentURL url), in order to migrate
itself and its task agents to the next destination specified as
url, after they have performed their tasks. Each navigator
agent can explicitly limit the length of the execution period
of its incoming task agents after arriving at each destination.
When the time limit of a task agent inside it expires, it
automatically terminates the task agent.

public class NavigatorAgent extends Agent {
// advertising its possible destinations
void register(HostSet h)
throws IllegalAccessException ... { ... }

// getting the address of the current host
AgentURL getURL() { ... }
// moving to the host specified as url
void go(AgentURL url)
throws NoSuchHostException ... { ... }

// sending an event to all its inner agents
void dispatchEvent(AgentEvent e)
throws NoSuchEventException ... { ... }

....
}

C. Task Agent

Each task agent is a mobile agent that defines its man-
agement tasks at each of the nodes in accordance with its
management criterion. It travels among the agent pools of

1The current implementation of the system uses the Java object serialization
package provided by JDK to marshal and unmarshal agents. The package
does not support capturing the stack frames or a program counter of threads.
Consequently, our system cannot serialize the execution states of any thread
objects.

its target sub-networks. When arriving at an agent pool, a
task agent gives the pool a list of the names or types of
the nodes at which it needs to perform its tasks by invoking
the setNodes() method and then the pool recommends to
the agent a suitable navigator that fits the description on the
list or conditions. To hook events invoked by its container
agent and the runtime system, each task agent can have one or
more listener objects. One of the most basic listener interfaces,
TaskAgentEventListener, is shown as follows:

interface TaskAgentEventListener
extends AgentEventListener {
// after creation at url
void create(AgentURL url);
// before termination
void destroy();
// before serialization
void serialize();
// after deserialization
void deserialize();
// after arrived at one of the destinations
void arrive(AgentURL from);
// before moving to one of the destinations
void leave(AgentURL to);
// before traveling among the destinations
void departure(AgentURL to);
// after traveling among the destinations
void finish();
....

}

When a task agent arrives at an agent pool, it is allocated
to a navigator agent by the pool and then the departure
method defined in the task agent is invoked with the first
destination. Upon arrival at a node, the navigator agent invokes
the arrive method of its task agent to instruct it to do
something during a given time period at the node. After
receiving a certain event from all the task agents or after the
period has elapsed, the navigator agent invokes the leave
method with the address of the next node and then moves
itself and its task agents to the destination according to its
itinerary. After it has traveled among all the required nodes, the
navigator agent invokes its finish method. For reasons of
security, all agents must be authenticated by the agent pool of
the sub-network and then carried by a navigator agent managed
by the agent pool of the sub-network, since a sub-network
may explicitly prohibit any task agent from visiting its nodes.
Therefore, a task agent alone cannot migrate to the nodes,
even if it has been authenticated and knows the addresses of
its target nodes in the sub-network. This appears to imply
that each task agent needs to know the location of the agent
pools of its target sub-networks, but in fact the framework can
provide task agents that have no knowledge about the location
of an agent pools because navigator agents can carry them
among the to agent pools.

D. Agent Pool

When a task agent arrives at a sub-network, if it knows the
topology of the sub-network, it travels over the sub-network
according to its own itinerary. Otherwise it migrates itself to
an agent pool of the sub-network to find a suitable navigator
agent. Each agent pool is a stationary container of several

IEEE TRANSACTIONS SYSTEMS, MAN, AND CYBERNETICS – PART C: APPLICATION AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003 354

navigator agents and is responsible for managing one or more
sub-networks. It maintains inside itself a repository of idle
navigators standing by for a chance to navigate. It can save
such idle navigators with their states on its secondary storage
by using Java’s serialization mechanism. When it receives a
request from a visiting task agent via the setNodes method,
it detects one of the most suitable navigator agents from the
repository. The selection mechanism of the current imple-
mentation compares the reachable nodes of all the navigators
stored in the pool and the list of the nodes that the task
agent must visit. That is, each agent pool selects a navigator
agent whose reachable nodes include the nodes that the task
agent must visit. If more than one navigator agent that satisfies
the conditions, the pool selects the navigator with the fewest
reachable nodes. Since mobile agents in MobileSpaces can
duplicate themselves, the selected navigator agent can create
its own copy on the agent pool before leaving the pool to
handle a new task agent visited while the agent travels among
nodes. This framework provides Java-based abstract classes
that allow us to easily define advanced agents by extending
the classes.

E. Current Status

The system is implemented as a collection of mobile agents
on MobileSpaces and it can be run on any computer with
a JDK 1.2-compatible Java runtime system that can migrate
agents over a network using a TCP-based agent migration pro-
tocol. The current implementation of this framework was not
built for performance, but a basic agent migration experiment
was done using eight computers (Pentium III-800 MHz with
Windows2000 and JDK 1.4.1) and an agent pool (Pentium4-
1.6GHz with Windows2000 and JDK 1.4.1) connected with a
100-Mbps Ethernet.

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8

host(s)

ro
u

n
d

-t
ri
p

 t
im

e
 (

m
s
e

c
)

single agent

navigator agent

Fig. 4. Performance of agent migration

Figure 4 shows the basic performance of agent migration
over a network when a single agent or a navigator agent con-
taining a task agent leaves from an agent pool and visits more
than one nodes and then comes back to the pool again. Each
round-trip time is an average time lag between the departure
time and the arrival time at an agent pool when an agent tours
among the specified number of nodes. The former agent is a
simple implementation of the TaskAgentEventListener

interface presented in Section IV and can control its own
itinerary. The agent corresponds to a null RPC and the data
size is about 2.4 Kbytes (zip-compressed). The latter agent
is a simple navigator agent, which has a static itinerary list
of more than one node carries its inner agents to the nodes
sequentially by incorporating them inside itself. The result
shows that the overhead of the hierarchical structure of this
framework is less than two percent, so the latency costs in
the above table are basically dependent on the MobileSpaces
runtime system. In this experiment, the runtime systems on
the nodes exchange agents with each other through a simple
TCP-based agent migration protocol. The marshaled agent
consists of its serialized state, its code, and its attributes such
as a name and capability, and it is packed and compressed
into a bit stream. Therefore, each time in Figure 4 is the
sum of delays in the marshaling of the agent, zip-based
compression, the opening of a TCP connection, transmission,
security verification, decompression, and the unmarshaling of
the agent.

V. APPLICATION TO NETWORK MANAGEMENT

To explain the utility of the framework, we illustrate an
application of the framework. The application is a network
management system for a Grid-based computational environ-
ment consisting of three sub-networks and each of the sub-
networks has from four to eight processor elements distributed
geographically.2 The purpose of the management system is to
monitor certain network and computational resources at nodes.
The system deploys agent pools at one node of each sub-
network and offers several task agents and navigator agents.
For example, a task agent that monitors network traffic loads
is designed to perform its task at each node that it visits as
shown in Figure 5. Although the system itself is independent
of any network management protocols, we constructed a task
agent that can access SNMP data from a small stationary agent
situated at its visiting node. The stationary agent allows that
visiting task agent to access the MIB of its node via interagent
communication. Since the task agent can contain codes to
perform both information retrieval and filtering, it can carry
only relevant information. Also, the system has three other task
agents for monitoring computational resources at the processor
nodes. They are designed to collect information on the use
of CPU, memory, and disks by incorporating performance
monitoring systems at the nodes. The system also provides
several navigator agents having different itineraries. The agents
are statically optimized for the topology of their target sub-
networks so that they can efficiently travel among the nodes
in the sub-networks.

As mentioned previously, the goal of the framework is to
construct reusable mobile agents for network management.
Actually, our early experience with this system proves that
the framework presented in this paper enables each task agent
to be built independently of any sub-network. The task agents
presented in this section contain no specific knowledge about

2The Grid environment is small in scale because it is implemented as a
testbed for developing middleware and applications for Grid computing rather
than a computational infrastructure.

IEEE TRANSACTIONS SYSTEMS, MAN, AND CYBERNETICS – PART C: APPLICATION AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003 355

carry

Node C

Node B

Node A

Monitor

Task Agent

Agent Pool

migration to a navigator agent

Navigator Agent

Monitor Task Agent

carry

carry
carry

Node D

Sub-network

Fig. 5. Mobile agent-based management system

sub-networks and are designed to perform their management
tasks when their navigator agents invoke certain methods.
Therefore, they do not have to change their own programs
when they are reused in different sub-networks. Moreover,
the experience tells that the programs of the task agents are
relatively simple because they leave their itinerary control to
their navigator agents. Actually, the total size of a navigator
agent containing one of the task agents is about 5 KB (zip-
compressed) and it is only 20 percent greater than the size of
a self-contained task agent that can control its own itinerary.
This is a small increase in size if we take into account the
amount of data such agents can collect from the nodes.

Unfortunately, there have not been any unified algorithms
for navigating agents in arbitrary networks because the com-
plexity of such algorithms is large. Instead, the current im-
plementation of the framework provides three basic types of
navigator agents, whose itineraries are based on migration
patterns described in [11], [14] and optimized to the target sub-
networks, and their minor derivations. (1) Navigator agents of
the first type are designed for traveling sequentially around the
destination nodes to perform tasks at each node. (2) Navigator
agents of the second type travel among nodes in a star-shaped
route. That is, they go back and forth between destination
nodes and a given base node and performs their tasks in
the destination nodes. (3) Navigator agents of the third type
generate as many copies of themselves as the number of nodes
that they must monitor before migrating to the nodes. After
that, each copy moves to the node and accesses the resources,
and then goes back to the source node. Each copy reports
to the leader agent among the copies and then disappears.
These types define as Java subclasses of the Navigator-
Agent class and enable us to easily define other navigator
agents whose routes are more complex by extending the three
types’ Java classes. For example, the system currently offers
navigator agents that travel among specified nodes at intervals
required by their task agents. We should discuss the size of
a navigator agent. If each navigator agent of the three types
migrates along an itinerary defined as a static list of hosts, the
size of the agent is smaller than 4KB (zip-compressed), where
the size of the minimal agent in MobileSpace is about 2.4KB
(zip-compressed) and the size of a navigator agent supporting
all the three patterns is larger than 6KB (zip-compressed).

We have obtained a preliminary measurement of the cost
of migrating a navigator agent over a sub-network of the Grid
system. Note that the system is just a prototype implementa-
tion, hence it is not optimized for efficient agent migration.

Actually, the total cost of network management depends on
application-specific tasks performed at nodes rather than agent
migration. After receiving a task agent at the agent pool of the
sub-network, the navigator agent travels straightly around four
nodes and then returns to the agent pool of the sub-network,
where the nodes and the pool are Pentium III-600 MHz
computers connected using a 100-Mbps Ethernet. The itinerary
of the navigator agent is statically defined and corresponds to
five hops. The round-trip time of the agent is about 480 msec
and the cost of detecting a navigator agent in an agent pool
is less than 10 msec. After a navigator agent leaves from the
agent pool, it can travel among nodes under its own control. As
a result, the network management system is operated in a fully
decentralized manner. Also, the result of the basic experiment
presented in the previous section tells that the performance of
our framework is scalable in the number of nodes. Hence, we
can naturally expect the system to still to be scalable even
when applying it to a larger Grid environment. Moreover,
our experience tells us that our navigator agents are useful
in the resource management of Grid-based computational
environments. This is because they can provide a mechanism
for the deployment of computational tasks at remote nodes in
a decentralized manner. To perform a variety of applications
efficiently, a Grid-based environment must support multiple
policies for task deployment. This framework allows such
policies to be naturally defined as navigator agents.

A. Discussion

The remainder of this section describes how the framework
presented in this paper solves the problems discussed in
Sections I and II.

• Reusability and Performance: This framework enables
each navigator agent to be optimized for particular net-
works independently of any application-specific logic.
Therefore, the agent can efficiently guide various task
agents among nodes in the networks. On the other hand,
each task agent has its application-specific tasks, which
are designed to be performed at each of the visited
nodes regardless of the sub-network. It needs to know
the location of the agent pools of its target sub-networks
but does not have to know the topology of the networks.
By dynamically changing to a navigator agent suitable for
its current network, a task agent can efficiently migrate
among nodes in various networks to perform its task,
without modifying its own program.

IEEE TRANSACTIONS SYSTEMS, MAN, AND CYBERNETICS – PART C: APPLICATION AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003 356

• Simplification of Agents: The framework enables both
navigator and task agents to be small and simple, because
navigator agents can be designed for particular networks
and thus do not have to offer any adaptive mechanisms
for handling various networks, which would make the
programs of the agents large and complex. On the other
hand, task agents leave their itineraries to corresponding
navigator agents only when they know the location of the
agent pools of their destinations.

• Network-dependent Migration: Since each navigator
agent is optimized for a particular network, it can stati-
cally have knowledge about the networks. After achieving
its current task, it returns to the given agent pool and
stands by for the next navigation without any initial-
ization. Consequently, when it detects changes in the
network environment, such as malfunction in nodes,
network disconnection, or network topology changes, it
keeps the changes in its state and reflect them in its next
navigation in a heuristic manner.

• Limitation of Reachable Nodes: Each navigator agent
can limit the migration range of task agents. This is
because each navigator agent can explicitly define its own
reachable nodes and each node accepts only authorized
navigator agents. Consequently, when a task agent is
carried by a navigator agent whose reachable nodes are
limited, it can travel only among the reachable nodes
of the navigator agent. Moreover, each agent pool can
authenticate its visiting task agents on behalf of its sub-
network. This is helpful in network management systems
whose nodes may have limited CPU power and memory.

VI. RELATED WORK

Many mobile agent systems have been developed over the
last few years, for example, Aglets [11] and Telescript [20].
There have been several attempts to develop mobile agent-
based network management, for example see [3], [2], [8], [13],
[14]. Typically, a mobile agent for network management must
visit multiple hosts to perform its task, so the itinerary of such
an agent can affect its success and efficiency. However, most
of these studies often assume that the agents are designed
for particular networks, because it is difficult for the agents
to dynamically make their itineraries to visit all the specified
nodes in their target networks, which may be incomplete or
lack any global perspective. Several studies attempted to build
smart mobile agents that can dynamically learn the topology
of networks, (see, for example [12]). However, most of these
studies explicitly and implicitly assume to be performed on
only simulated networks. Even if the studies could be per-
formed in a real system, the costs of generating efficient routes
tend to be large and thus they are not always suitable in mobile
agent-based network management systems.

Some solutions to this problem have been found outside
the domain of network management. For example, ADK [9]
separates the travel itinerary of an agent from its behavior by
building a mobile agent from a set of component categories:
navigational components responsible for the travel itinerary
and performer components responsible for executing one or

more management tasks at each node. Aglets [11] introduces
the notion of an itinerary pattern, which is similar to design
patterns in software engineering, to shift the responsibility for
navigation from an application-specific agent to a framework
library described in [1]. Both approaches allow us to design
an application-specific itinerary for an agent independent of
the agent’s logical behavior, but the itinerary parts must be
statically and manually embedded in the agent. Consequently,
this agent, unlike ours, cannot dynamically change its itinerary
and cannot travel beyond its familiar networks.

Like this framework, the ambient calculus [4] allows mobile
agents (called ambients in the calculus) to contain other agents
and to move as a whole with all its subcomponents. A
mobile ambient, which may carry other ambient, must migrate
along a hierarchy of stationary ambients corresponding to
the logical structure of sub-networks, whereas itineraries of
real mobile agents may be complicated. For example, mobile
agents for network management are often required to directly
transmitted to other sub-networks independently of the logical
structure of sub-network, because target networks have some
malfunctions and disconnections. To enable an ambient to
migrate to sub-networks independently of the logical structure
of sub-networks, we must change its whole semantics. The
Seal calculus [19] is similar to the mobile ambients and
ours in its expressiveness of hierarchical structure of mobile
agents, but its main purpose is to reason about the security
mechanism of mobile agents. The Polis language [6] is a
theoretical framework for specifying and analyzing mobile
entities, including mobile codes and mobile agents, which
can contain other entities inside them. However, it is not
executable and needs a kind of shared memory over remote
nodes, whereas our framework can operate reusable mobile
agents for network management in a decentralized manner.

We described an approach to building configurable protocols
for agent migration in other papers [16], [18]. While that
approach customizes network processing for agent migration
embedded in a mobile agent runtime system, the approach
presented in this paper can change network-dependent routings
embedded in a mobile agent according to the topology of
the current network. Our previous paper [17] presented a
preliminary of this framework, but it did not present relation-
ships between task agents and navigator agents, including the
both agents’ programming models unlike this paper. Also, this
paper evaluates the utility of the framework with a practical
application of the framework.

VII. CONCLUSION AND FUTURE WORK

This paper presented a new approach to building mobile
agents for network management. The key idea is to build a
mobile agent from two subcomponents: a navigator agent and
a task agent. The former is designed for its target networks
and thus can efficiently carry multiple task agents among hosts
in the networks. The latter defines a set of management tasks
to be performed at each of the host to be visited. This frame-
work also provides a mechanism for storing idle navigator
agents. When a task arrives at an unknown network, it finds
a navigator agent for the network and enters the navigator

IEEE TRANSACTIONS SYSTEMS, MAN, AND CYBERNETICS – PART C: APPLICATION AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003 357

agent to migrate to nodes in the network. As a result, each
task agent can be reused in different networks. A prototype
implementation of the framework built on a Java-based mobile
agent system, called MobileSpaces, allowed us to experiment
with mobile agent-based network management based on this
framework. We believe that using this framework, we can
easily build mobile agents for network management without
any limitation on the reusability of application-specific agents
or the agent migration efficiency.

Finally, we would like to mention some future research
directions. The framework presented in this paper is designed
to a general-purpose framework. To prove the utility of the
framework, we need to apply the framework to various net-
work management systems. The current implementation relies
on a JDK 1.1 security manager and provides an authentication
mechanism for navigator agents; however many other security
problems are left open for our future work. The performance
of the current implementation is not yet satisfactory, so further
measurements and optimization are needed.

ACKNOWLEDGMENT

We are grateful to the anonymous reviewers.

REFERENCES

[1] Y. Aridor, and D.B. Lange, “Agent Design Patterns: Elements of Agent
Application Design,” in Proc. 2nd ACM Int. Conf. Autonomous Agents,
1998, pp. 108-115.

[2] A. Bieszczad, B. Pagurek, and T. White, “Mobile Agents for Network
Management,” IEEE Commun. Surveys, vol. 1, no. 1, 1998.

[3] C. Bohoris, G. Pavlou, and H. Cruickshank, “Using Mobile Agents
for Network Performance Management,” in Proc. IEEE/IFIP Network
Operations and Management Symp., April, 2000, pp. 637-652.

[4] L. Cardelli and A. D. Gordon, “Mobile Ambients,” in Proc. Foundations
of Software Science and Computational Structures, LNCS, vol. 1378,
Springer 1998, pp. 140-155.

[5] J. Case, M. Fedor, M. Schoffstall, and J. Davin:, “A Simple Network
Management Protocol (SNMP),” RFC 1157, 1990.

[6] P. Ciancarini, F. Franzè and C. Mascolo, “Using a Coordination Language
to Specify and Analyze Systems Containing Mobile Components,” ACM
Trans. Software Engineering and Methodology, vol. 9, no. 2, pp. 167-198,
2000.

[7] I. Foster and C. Kesselman (eds.), “The Grid: Blueprint for a New
Computing Infrastructure,” Morgan Kaufmann, 1999.

[8] D. Gavalas, D. Greenwood, M. Ghanbari, and M. O’Mahony, “An
Infrastructure for Distributed and Dynamic Network Management based
on Mobile Agent Technology,” in Proc. Conf. Communications, 1999, pp.
1362-1366.

[9] T. Gschwind, M. Feridun, and S. Pleisch, “ADK: Building Mobile Agents
for Network and System Management from Reusable Components,” in
Proc. Symp. Agent Systems and Applications / Symp. Mobile Agents,
1999, pp.13-21.

[10] A. Karmouch, “Mobile Software Agents for Telecommunications,” IEEE
Commun.n Mag., vol. 36, no. 7, 1998.

[11] B. D. Lange and M. Oshima, “Programming and Deploying Java Mobile
Agents with Aglets,” Addison-Wesley, 1998.

[12] N. Minar, K. H. Kramer, P. Maes, “Cooperating Mobile Agents for Dy-
namic Network Routing,” in Software Agents for Future Communication
Systems, Springer, 1999, pp.287-304.

[13] A. Puliafito and O. Tomarchio, “Advanced Network Management Func-
tionalities through the use of Mobile Software Agents,” in Proc. Workshop
on Intelligent Agents for Telecommunication Applications, LNCS, vol.
1699, Springer, Aug. 1999, pp.33-45,

[14] A. Sahai and C. Morin, “Mobile Agents for Managing Networks: The
MAGENTA Perspective,” in Software Agents for Future Communication
Systems, Springer, 1999, pp. 358-380.

[15] I. Satoh, “MobileSpaces: A Framework for Building Adaptive Dis-
tributed Applications Using a Hierarchical Mobile Agent System,” in
Proc. Int. Conf. Distributed Computing Systems IEEE Computer Society,
April, 2000, pp. 161-168.

[16] I. Satoh, “Network Processing of Mobile Agents, by Mobile Agents, for
Mobile Agents,” in Proc. Workshop on Mobile Agents for Telecommu-
nication Applications, LNCS, vol. 2146, Springer, 2001, pp. 81-92.

[17] I. Satoh, “A Framework for Building Reusable Mobile Agents for
Network Management,” in Proc. IEEE/IFIP Network Operations and
Managements Symp., IEEE Communication Society, April, 2002, pp. 51-
64.

[18] I. Satoh, “Configurable Network Processing for Mobile Agents on the
Internet,” Cluster Computing, vol. 6, no.4 Kluwer, Oct. 2003.

[19] J. Vitek, “Seal: A Framework for Secure Mobile Computations,” in
Proc. Workshop on Internet Programming Languages, LNCS, vol. 1686,
Springer 1998, pp. 47-77.

[20] J. E. White, “Telescript Technology: Mobile Agents,” General Magic,
1995.

Ichiro Satoh Ichiro Satoh received his B.E., M.E, and Ph.D. degrees in
Computer Science from Keio University, Japan in 1996. From 1996 to 1997,
he was a research associate in the Department of Information Sciences,
Ochanomizu University, Japan and from 1998 to 2000 was an associate
professor in the same department. Since 2001, he has been an associate
professor in National Institute of Informatics, Japan. His current research
interests include distributed and mobile computing. He received IPSJ paper
award, IPSJ Yamashita SIG research award, and JSSST Takahashi research
award. He is a member of six learned societies, including ACM and IEEE.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

