
WIRELESS COMMUNICATIONS AND MOBILE COMPUTING
Wirel. Commun. Mob. Comput. 2003; 3:411–423 (DOI: 10.1002/wcm.126)

SpatialAgents: integrating user mobility and program
mobility in ubiquitous computing environments

Ichiro Satoh*,†

National Institute of Informatics
2-1-2 Hitotsubashi
Chiyoda-ku
Tokyo 101-8430
Japan

Summary

This paper presents a framework for the building of
context-aware applications in ubiquitous and mobile
computing settings. The framework provides people,
places, and things with computational functionalities
to support and annotate them. It is unique among
existing systems because the functionalities are
implemented by mobile agents. Using
location-tracking systems, this framework can
navigate mobile agents to stationary or mobile
computers near the locations of the entities and
places to which the agents are attached, even when
the locations change. The framework provides a
way for mobile agents to follow their users as they
move about and to adhere to places as virtual
Post-its. A prototype implementation of the
framework has been built on a Java-based mobile
agent system and tested with several practical
applications, including follow-me applications and a
user navigational assistance system. Copyright
2003 John Wiley & Sons, Ltd.

KEY WORDS
mobile agent
ubiquitous computing
location awareness
location sensor
user navigation
mobile computing
RFID tag
middleware

ŁCorrespondence to: Ichiro Satoh, National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan.
†E-mail: ichiro@nii.ac.jp

Copyright 2003 John Wiley & Sons, Ltd.

412 I. SATOH

1. Introduction

Ubiquitous computing and mobile computing are
key areas in future computing. However, the two
approaches have their own advantages and disadvan-
tages. The concept of ubiquitous computing implies
computation in elements that are contained in the
environment rather than those carried on the person.
Various computing and sensing devices are in fact
already present in almost every room of a modern
building or house and in many of the public facili-
ties of cities. They may now be disappearing inside
all sorts of appliances and thus invading every aspect
of life. This demonstrates the suitability of ubiqui-
tous computing to provide environmental information
and services. However, this approach is not suitable
for providing multiplepurpose and personalized ser-
vices, because the devices embedded in various items
within the environment tend to have limited stor-
age and processing capacity. They are thus incapable
of internally maintaining a variety of software and
profile databases on the users. This approach may
also raise serious privacy issues, because a ubiquitous
computing environment would be able to monitor the
preferences and locations of individuals.

On the other hand, the concept of mobile
computing means that computing devices, for
example, notebook-PCs, Personal Digital Assistants
(PDAs), and wearable computers, are carried by the
users rather than contained within the environment.
Recently, portable computing devices have become
very small and powerful, giving their users access
to a variety of applications in their personalized
forms, regardless of the locations of users. Each
of these devices has been designed with the intent
of staying with a particular user so that his/her
profile can be maintained within it and can easily be
evolved over time, without having to be transferred
to from place to place in an external environment.
Therefore, the mobile computing approach provides
both personalization and privacy. However, its users
are forced to carry devices, such as PCs, PDAs,
and smart phones, which may not be light and may
only have small screens and clamped keyboards.
Moreover, this approach is not suitable for context-
dependent services because it is difficult for a portable
device to sense its environment.

The two approaches can be posed as polar oppo-
sites. We have attempted to mitigate the disadvan-
tages of one approach by using the advantages of the
other. Therefore, this paper presents a location-aware
framework, called SpatialAgent, in which mobile

agent technology is applied to provide a bridge
between the two approaches. This framework enables
mobile agents to be spatially bound to people, places,
and things, which the agents support and annotate.
Location-tracking systems are used within the frame-
work to migrate such agents to the stationary and
mobile computing devices that are near the loca-
tions of the entities and places to which the agents
are attached, even when the locations of the entities
change.

Several ways of reducing the disadvantages in both
approaches have been explored. AT&T’s Sentient
Computing [1], for example, proposed a so-called
follow-me application to support the provision of per-
sonalized services in ubiquitous computing settings.
HP’s Cooltown [2] mobile computing devices such
as PDAs and smart phones are attached to position-
ing sensors in order to give location awareness to
web-based applications running on the devices. In
contrast to these approaches, the framework presented
in this paper does not distinguish between mobile and
ubiquitous computing. Since mobile agents can travel
between computers, the framework can naturally map
the movements of physical entities such as people and
objects to the movements of mobile agents in mobile
and ubiquitous computing systems.

In the remainder of this paper, we describe our
design goals (Section 2), the design of our frame-
work, called SpatialAgent, and a prototype imple-
mentation of the framework (Section 3). We also dis-
cuss our experience with several applications, which
we developed using the framework (Section 4), and
briefly review related work (Section 5). We briefly
present some future issues (Section 6) and close with
a summary (Section 7).

2. Approach

The framework presented in this paper aims to
enhance the capabilities of users, particularly mobile
users, to utilize things that include computing devices
and nonelectronic objects, and places such as rooms,
buildings, and cities that have the computational func-
tionalities to support and annotate them.

2.1. Locating Systems

Our goal is to offer a location-aware system in which
spatial regions can be determined within a few square
feet, which distinguishes one or more portions of a
room or building. The framework itself is designed

Copyright 2003 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2003; 3:411–423

USER AND PROGRAM MOBILITY IN UBIQUITOUS COMPUTING ENVIRONMENTS 413

to be independent of any particular infrastructure for
location and is accompanied by more than one locat-
ing system. It determines the positions of objects by
identifying the spatial regions that contain them. In
general, such locating systems consist of radio fre-
quency (RF) or infrared sensors, which detect the
presence of small RF or infrared transmitters, often
called tags, each of which periodically transmits a
unique identifier. The framework assumes that phys-
ical entities and places are equipped with their own
unique tags so that they are entities that are automat-
ically locatable.

The framework consists of two parts: (i) mobile
agents and (ii) location information servers, called
LISs. The former offers application-specific services,
which are attached to physical entities and places, as
collections of mobile agents. The latter provides a
layer of indirection between the underlying location-
sensing systems and mobile agents. Each LIS man-
ages more than one sensor and provides the agents
with up-to-date information on the state of the real
world, such as the locations of people, places, and
things, and the destinations that the agents should
migrate themselves to.

2.2. Application-specific Services

Since each mobile agent is a programmable entity,
the framework enables application-specific services,
including user interface and application logic, to
be implemented within mobile agents. Mobile agent
technology also has the following advantages in ubi-
quitous and mobile computing settings:

ž Each mobile agent can dynamically be deployed
at and locally executed within computers near
the position of the user. As a result, the agent
can directly interact with the user, where Remote
Procedure Call (RPC)-based approaches, on which
other existing approaches are often based, must
have network latency between computers and
remote servers. It can also directly access various
equipment, which belong to that device as long as
the security mechanisms of the device permit this.

ž After arriving at its destination, a mobile agent
can continue working without losing the results
of working, for example, the content of instance
variables in the agent’s program, at the source
computers. Thus, the technology enables us to
easily build follow-me applications as proposed
in [1].

ž Mobile and ubiquitous computers often have only
limited resources, such as restricted levels of CPU

power and memory. Mobile agents can help con-
serve these limited resources, since each agent only
needs to be present at the computer while the com-
puter needs the services provided by that agent.

The above advantages are unique in comparison
with existing approaches, for example, Cambridge
University’s Sentient Computing system and HP’s
Cooltown systems. Moreover, this framework enables
each mobile agent to be tied to a radio-ID or infrared-
ID tag attached to a person, place, or thing in the
physical world.

2.3. Narrowing the Gap Between Physical
and Logical Mobility

This framework can inform mobile agents attached
to tags about their proper destinations according to
the current position of the tags. We call computing
devices that can execute mobile agent-based appli-
cations agent hosts. This framework permits agent
hosts to be mobile or stationary, but each host must
be equipped with its own tag and must advertise its
profile information to LISs that detect the tag. The
framework supports two types of linkage between a
physical entity or place and more than one mobile
agent:

ž The framework binds one or more mobile agents
to a tag, which is attached to a moving entity,
such as a user or a nonelectronic object. When
a tagged entity moves within a place, the frame-
work prompts agents, which are bound to the mov-
ing entity, to move to appropriate stationary hosts
within the same place, as Figure 1 shows.

ž The framework allows physical places to have
their own agents that support location-dependent
services. When a user with network-enabled com-
puting devices is in a given place, the framework
instructs the agents that are attached to the place
to migrate to the visiting devices, where they pro-
vide the location-dependent services of the place
as shown in Figure 2.

This framework permits a combination of both forms
of linkage, while existing related approaches, such
as Cambridge University’s Sentient Computing and
HP’s Cooltown, only support one of them. In addition
to this, the framework does not distinguish between
mobile and stationary devices. In the framework,
multiple sensors do not have to be neatly distributed
in a space such as rooms or buildings to completely

Copyright 2003 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2003; 3:411–423

414 I. SATOH

Fig. 1. Migration of an agent, which is attached to a moving entity, to a computer at the current location of the entity.

Fig. 2. Migration of an agent, which is attached to a particular place, to a computer visiting that place.

cover the spaces; instead, they can be placed near
more than one agent host and the coverage areas of
sensors can overlap.

2.4. Design Principles

In addition to accomplishing the goals presented
above, the framework has the following advantages:

Autonomy: When an LIS detects the movement of a
tag in the physical world, it informs agents bound to
the tag about the network address and the capabilities
of more than one candidate destination that the agents
should visit, but the LIS itself does not send agents
to a destination. Each of these agents selects one
host from the candidate destinations recommended
by the LIS and migrates to the selected host, since it
is an autonomous entity. Moreover, when the capa-
bilities of a candidate destination do not satisfy all
the requirements of an agent, the agent itself should
decide, on the basis of its own configuration policy,
whether or not it will migrate itself to the destination
and adapt itself to the destination’s capabilities.

Scalability: Our final goal is widespread building-
wide and city-wide deployment. It is almost impos-
sible to deploy and administer a system in a scal-
able way when all of the control and management

functions are centralized. Our framework consists of
multiple servers, which are individually connected to
other servers in a peer-to-peer manner. Each LIS only
maintains up-to-date information on the identifiers of
tags, which are present in one or more of the specific
places it manages, instead of on tags in the whole
space.

Extensibility: LISs and agent hosts may be dynami-
cally deployed and frequently shut down. The frame-
work permits each LIS to run independently of the
other LISs and offers an automatic mechanism for the
registration of agent hosts. The mechanism requires
agent hosts to be equipped with tags so that they are
locatable and can advertise their capabilities.

Reconfigurability: In the framework, not only port-
able components but also system components, such as
the sensors and agent hosts, are movable. As a result,
it is almost impossible to maintain a geographical
model of the whole system. To solve this problem, the
framework provides a demand-driven mechanism for
discovering agents and agent hosts that are required;
this mechanism was inspired by ad hoc mobile net-
working technology [3].

Modularity and application independence: The
framework should be as independent as possible of
the underlying sensor technologies and mobile agent

Copyright 2003 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2003; 3:411–423

USER AND PROGRAM MOBILITY IN UBIQUITOUS COMPUTING ENVIRONMENTS 415

systems. This minimizes the effects of the distribution
and heterogeneity of the underlying locating infra-
structure on the applications. The framework itself
is independent of application-specific tasks because
such tasks are performed within mobile agents.

Personalization and privacy: The framework only
maintains per-user profile information within those
agents that are bound to the user. It promotes the
movement of such agents to appropriate hosts near the
user in response to the user’s movements. Thus, the
agents do not leak profile information on their users
to other parties and they can interact with their mobile
users in personalized form that has been adapted to
respective individual users.

3. Design and Implementation

This section presents the design of the SpatialAgent
framework and describes its prototype implementa-
tion. Figure 3 shows its basic structure.

3.1. Location Information Server

Each LIS can run on a stationary or mobile computer
and provides the following functionality:

Management of locating sensors: Each LIS man-
ages multiple sensors that detect the presence of tags
and maintains up-to-date information on the identi-
ties of tags that are within the zone of coverage of
its sensors. This is achieved by polling sensors or

receiving the events issued by the sensors themselves.
An LIS does not require any knowledge of other
LISs. To conceal the differences among the underly-
ing locating systems, each LIS maps low-level posi-
tional information from each of the locating systems
into information in a symbolic model of location. An
LIS represents an entity’s location in terms of the
unique identifier of the sensor that detects the tag of
the entity. We call each sensor’s coverage a cell, as
in the model of location described by Leonhardt [4].

Mechanism for Agent Discovery: Each LIS discov-
ers mobile agents that are bound to the tags within its
cells and maintains a database in which it stores infor-
mation about each of the agent hosts and each of the
mobile agents attached to the tagged entity or place.
When an LIS detects a new tag in a cell, it multicasts
a query that contains the identity of the new tag and
its own network address to all the agent hosts in its
current subnetwork. It then waits for reply messages
from the agent hosts. Here, there are two possible
scenarios: the tag may be attached to an agent host
or the tag may be attached to a person, place, or thing
other than the agent host.

ž In the first case, the newly arriving agent host
will send its network address and device profile
to the LIS; the profile describes the capabilities of
the agent host, for example, its input devices and
screen size. After receiving the reply, the LIS stores
the profile in its database and forwards the profile
to all agent hosts within the cell.

Fig. 3. Architecture of the SpatialAgent framework.

Copyright 2003 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2003; 3:411–423

416 I. SATOH

ž In the second case, agent hosts that have agents
tied to the tag will send their network addresses
and the requirements of acceptable agents to the
LIS; the requirements of each agent specify the
capabilities of the agent hosts that the agent can
visit and provide its services at.

The LIS then stores the requirements of the agents in
its database and moves the agents to appropriate agent
hosts in the manner discussed below. If the LIS does
not have any reply messages from the agent hosts,
it multicasts a query message to other LISs. When
the absence of a tag is detected in a cell, each LIS
multicasts a message with the identifier of the tag and
the identifier of the cell to all agent hosts in its current
subnetwork.

Navigation service: Next, we explain how agents
navigate to reach appropriate agent hosts. When an
LIS detects the movement of a tag, attached to a
person or thing, to a cell, it searches its database
for agent hosts that are present in the current cell
of the tag. It also selects candidate destinations
from the set of agent hosts within the cell, accord-
ing to their respective capabilities. The framework
offers a language based on CC/PP (composite capa-
bility/preference profiles) [5]. The language is used
to describe the capabilities of agent hosts and the
requirements of mobile agents in an XML notation.
For example, a description contains information on
the following properties of a computing device: the
vendor and model class of the device (PC, PDA,
phone, etc.), its screen size, the number of col-
ors, CPU, memory, input devices, secondary storage,
presence/absence of loudspeakers, and so on. Each
LIS is able to determine whether or not the device
profile of each agent host satisfies the requirements
of an agent by symbolical matching and quantitative
comparison of properties. The LIS informs each agent
about the profiles of agent hosts that are present in the
cell and that satisfy the requirements of the agent. The
agents are then able to autonomously migrate to the
appropriate hosts. The current implementation allows
each agent to specify the preferable capabilities of the
agent hosts that it may visit as well as the minimal
capabilities.

When there are multiple candidate destinations,
each of the agents that is tied to a tag must select one
destination on the basis of the profiles of the desti-
nations. Also, when one or more cells geographically
overlap, a tag may be in multiple cells at the same
time; agents tied to that tag may then receive can-
didate destinations from multiple LISs. Our goal is

to provide physical entities and places with computa-
tional functionality from locations that are near them.
Therefore, if there are no appropriate agent hosts in
any of the cells in which a tag is present but there
are some agent hosts in other cells, the current imple-
mentation of our framework is not intended to move
agents tied to the tag to hosts in different cells.

3.2. Agent Host

Each agent host has two forms of functionality: one
for advertising its capabilities and another for exe-
cuting and migrating mobile agents. When a host
receives a query message with the identifier of a
newly arriving tag from an LIS, it replies with one
of the following three responses: (i) if the identifier
in the message is identical to the identifier of the tag
to which it is attached, it returns profile information
on its capabilities to the LIS; (ii) if one of the agents
running on it is tied to the tag, it returns its net-
work address and the requirements of the agent; and
(iii) if neither of the above cases applies, it ignores
the message.‡

The current implementation of this framework is
based on a Java-based mobile agent system called
MobileSpaces [6].§ Each MobileSpaces runtime sys-
tem is built on the Java virtual machine, which con-
ceals differences between the platform architecture
of source and destination hosts, such as the operating
system and hardware. Each of the runtime systems
moves agents to other agent hosts over a Transmission
control protocol/Internet protocol (TCP/IP) connec-
tion. The runtime system governs all the agents inside
it and maintains the life cycle state of each agent.
When the life cycle state of an agent changes, for
example, when it is created; terminates; or migrates
to another host, the runtime system issues specific
events to the agent. This is because the agent may
have to acquire various resources or release them,
such as files, windows, or sockets, which it has pre-
viously captured. When a notification on the presence
or absence of a tag is received from an LIS, the run-
time system dispatches specific events to the agents
that are tied to that tag and run inside it.

‡ The current implementation assumes that LISs and agent
hosts can be directly connected through a wireless LAN
such as IEEE802.11b and thus does not support any
multiple-hop query mechanisms, unlike mobile ad hoc net-
working technology [3].
§ The framework itself is independent of the MobileSpaces
mobile agent system and can thus work with other Java-
based mobile agent systems.

Copyright 2003 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2003; 3:411–423

USER AND PROGRAM MOBILITY IN UBIQUITOUS COMPUTING ENVIRONMENTS 417

3.3. Mobile Agent Program

Each mobile agent is a collection of Java objects and
is equipped with the identifier of the tag to which
it is attached. It is a self-contained program and is
able to communicate with other agents. An agent
that is attached to a user always internally maintains
that user’s personal information and carries all its
internal information to other hosts. A mobile agent
may also have one or more graphical user interfaces
for interaction with its users. When such an agent
moves to other hosts, it can easily adjust its windows
to the screen of the new host by using the compound
document framework for the MobileSpaces system
that was presented in our previous paper [7].

Next, we explain the programming interface for
our mobile agents. Every agent program must be an
instance of a subclass of the abstract class Tagged-
Agent as follows:

1: class TaggedAgent extends Agent
implements Serializable f

2: void go(URL url) throws
NoSuchHostException f . . . g

3: void duplicate() throws
IllegalAccessException f . . . g

4: void destroy() f . . . g
5: void setTagIdentifier

(TagIdentifier tid) f . . . g
6: void setAgentProfile

(AgentProfile apf) f . . . g
7: URL getCurrentHost() f . . . g
8: boolean isConformableHost

(HostProfile hfs) f . . . g
9:

10: g

We now explain some of the methods defined in
the TaggedAgent class. An agent executes the
go(URL url) method to move to the destina-
tion host specified as url by its runtime system.
The duplicate() method creates a copy of the
agent, including its code and instance variables.
The setTagIdentifier method ties the agent
to the identity of the tag specified as tid. Each
agent can specify a requirement that its destination
hosts must satisfy by invoking the setAgentPro-
file() method, with the requirement specified as
apf. The class has a service method named isCon-
formableHost(), which the agent uses to decide
whether or not the capabilities of the agent hosts
specified as an instance of the HostProfile class
satisfy the requirements of the agent.

Each agent can have more than one listener object
that implements a specific listener interface to hook
certain events issued before or after changes in its life
cycle state or the movements of its tag.

1: interface TaggedAgentListener
extends AgentEventListener f

2: // invoked after creation at url
3: void agentCreated(URL url);
4: // invoked before termination
5: void agentDestroying();
6: // invoked before migrating to dst
7: void agentDispatching(URL dst);
8: // invoked after arrived at dst
9: void agentArrived(URL dst);

10: // invoked after the tag
arrived at another cell

11: void tagArrived(HostProfile[]
apfs, CellIdentifier cid);

12: // invoked after the tag left
rom the current cell

13: void tagLeft(CellIdentifier cid);
14: // invoked after an agent host

arrived at the current cell
15: void hostArrived(AgentProfile

apfs, CellIdentifier cid);
16:
17: g

The above interface specifies the fundamental meth-
ods that are invoked by the runtime system when
agents are created, destroyed, or migrate to another
agent host. Also, the tagArrived() callback
method is invoked after the tag to which the agent is
bound has entered another cell, to obtain the device
profiles of agent hosts that are present in the new cell.
The tagLeft() method is invoked after the tag is
no longer in a cell.

3.4. Security and Privacy

Since agents carry the profile information about the
entities, including people, and places that the agents
are bound to, they are required to protect such infor-
mation. Since the framework can be built on many
Java-based mobile agent systems, it can directly use
the security mechanism of the underlying mobile
agent system and the Java virtual machine. Actu-
ally, the MobileSpaces system can encrypt agents
that are to be encrypted before migrating them over
a network and then decrypt them after they arrive
at their destination. Moreover, since each mobile
agent is just a programmable entity, it can explic-
itly encrypt its particular fields and migrate itself with

Copyright 2003 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2003; 3:411–423

418 I. SATOH

these fields and its own cryptographic procedure. The
Java virtual machine can explicitly restrict agents to
only access-specified resources to protect hosts from
malicious agents. Although the current implementa-
tion cannot protect agents from malicious hosts,¶ the
MobileSpaces system supports some authentication
mechanisms for agent migration as mentioned in our
previous paper [8] so that each agent host can only
send agents to and only receive from the trusted hosts.

3.5. Current Status

The framework presented in this paper was imple-
mented in Sun’s Java Developer Kit version 1.1 or
later versions, including Personal Java. The remainder
of this section discusses some features of the current
implementation.

Locating systems: The current implementation of
our framework supports two commercial locating sys-
tems: RF Code’s Spider and Elpas’s EIRIS. The for-
mer provides active RF tags. Each tag has a unique
identifier that periodically emits an RF beacon that
conveys an identifier (every second). The system
allows us to explicitly control the omnidirectional
range of each of the RF receivers to read tags within a
range of 1 to 20 m. The other system provides active
infrared tags, which periodically broadcast their iden-
tifiers through an infrared interface (every four sec-
onds), like the Active Badge system [9]. Each infrared
receiver has omnidirectional infrared coverage, which
can be adjusted to cover distances in a range of 0.5 to
10 m. Although there are many differences between
the two locating systems, the framework abstracts
these differences away.

Performance evaluation: Although the current
implementation of the framework was not built for
performance, we measured the cost of migrating a 3-
Kbytes agent (zip-compressed) from a source host
to the destination host recommended by the LIS.
This experiment was performed with two LISs and
two agent hosts, each of which was running on
one of four computers (Pentium III-1GHz with Win-
dows2000 and JDK 1.4), which were directly con-
nected via an IEEE802.11b wireless network. The
latency of an agent’s migration to the destination after
the LIS had detected the presence of the agent’s tag
was 380 ms and the cost of agent migration between
two hosts over a TCP connection was 48 ms. The

¶ This problem is beyond the scope of this paper.

latency includes the costs of the following processes:
UDP-multicasting of the tags’ identifiers from the LIS
to the source host, TCP transmission of the agent’s
requirements from the source host to the LIS, TCP
transmission of a candidate destination from the LIS
to the source host, marshaling of the agent, the migra-
tion of an agent from the source host to the destination
host, unmarshaling of the agent, and security verifi-
cation. We believe that this latency is acceptable for
a location-aware system used in a room or a building.

4. Initial Experience

To demonstrate the utility of the SpatialAgent frame-
work, we developed several typical location-aware
applications for mobile or ubiquitous computing set-
tings.

4.1. Follow-me Desktop Applications

A simple application of the framework is a desktop
teleporting system, like a follow-me application [1],
within a richly equipped, networked environment
such as a modern office. The system tracks the current
location of the user and allows him/her to access
his/her applications at the nearest computer as he/she
moves around in the building. Unlike previous studies
of such applications, our framework can migrate not
only the user interfaces of applications but also the
applications themselves to appropriate computers in
the cell that contains the user’s tag. In our previous
paper [7], we also discussed our development of a
mobile window manager, which is a mobile agent
and can carry its entire range of desktop applications
to another computer and control the size, position,
and overlap of the applications’ windows. Using
the framework presented in this paper, the window
manager and desktop applications can automatically
be moved to and then executed on the computer that
is in the user’s current cell, which has the resources
required by the applications as shown in Figure 4.

4.2. User Navigation System

We also developed a user navigation system that
assists visitors to a building. Several researchers have
reported on other similar systems [10,11]. In our
system, tags are distributed to several places within
a building, such as its ceilings, floors, and walls.
Each visitor carries a wireless-LAN-enabled tablet
PC, which is equipped with a locating sensor to detect

Copyright 2003 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2003; 3:411–423

USER AND PROGRAM MOBILITY IN UBIQUITOUS COMPUTING ENVIRONMENTS 419

Fig. 4. Follow-me desktop applications.

Fig. 5. The migration of an agent, which is attached to a place, to a visiting computer in the place.

(a) (b) RF-sensor

Tablet PC
(Agent Host)

Place-bound
Agent (Map Viewer)

RF-tag

IEEE
802.11b

The positions of RF-sensors

Fig. 6. (a) The positions of RF tags in a floor and (b) the screen shot of a map-viewer agent running on a tablet PC.

tags, and includes an LIS and an agent host. The
system initially deploys place-bound agents to invis-
ible computers within the building. When a tagged
position is located by the cell of the moving sen-
sor, the LIS running on the visitor’s tablet PC detects
the presence of the tag. The LIS detects the place-
bound agent that is tied to the tag. It then instructs
the agent to migrate to its agent host and provide
the agent’s location-dependent services at the host.
Figure 5 shows a situation in which a visitor with
his/her tablet PC equipped with an RF-based sen-
sor is roaming, first approaching place A and then

place B. The system enables more than one agent
tied to place A to move to the tablet PC; the agent
then returns to its home computer and the other
agents, which are tied to place B, move to the tablet
PC. Figure 6 shows a place-bound agent displaying
a map of its surrounding area on the screen of a
tablet PC.

4.3. Proactive Control of Home Appliances

We also used this framework to implement two proto-
type systems to control electric lights in a room. Each

Copyright 2003 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2003; 3:411–423

420 I. SATOH

light is equipped with a tag and is within the coverage
area of a sensor to detect tags. In a previous project
[12], we developed a generic server to control power
outlets through a commercial protocol called X10. In
both the approaches that we describe here, the lights
are controlled by switching their power sources on or
off through the X10 protocol.

User-aware automatic controller: The first system
provides proactive control of room lighting through a
similar approach used in the EasyLiving project [13].
Our approach can autonomously turn on room lights
whenever a tagged user is sufficiently close to them.
Suppose that each light is attached to a tag and is
within 3 m of a stationary RF Code’s Spider sensor.
A tag attached to each of the lights is correlated with
the mobile agent, which is our X10-based server’s
client and is running on the stationary agent host in
the room. When a tagged user approaches a light,
an LIS in the room detects the presence of his/her
tag in the cell that contains the light. The LIS then
moves the agent that is bound to his/her tag to the
agent host on which the light’s agent is running. The
user’s agent then requests that the light’s agent turns
the light on through the interagent communication.

Location-aware remote controller: The second sys-
tem allows us to use a PDA to remotely control
nearby lights. In this system, place-bound controller
agents, which can communicate with X10-based
servers to switch lights on or off, are attached to
places with room lights. As shown in Figure 7, each
user has a tagged PDA, which supports the agent
host with WindowsCE and a wireless LAN interface.jj

When a user with a PDA visits the cell that contains
a light, the framework moves a controller agent to the
agent host of the visiting PDA. The agent, now run-
ning on the PDA, displays a graphical user interface
to control the light. When the user leaves that loca-
tion, the agent automatically closes its user interface
and returns to its home host.

5. Related Work

This section discusses several systems that have influ-
enced various aspects of this framework, which seam-
lessly integrates two different approaches, that is,
ubiquitous and mobile computing.

jj Since existing Java VMs for WindowsCE-based PDAs are
lacking in terms of function and performance, the current
implementation of this example uses a lightweight version
of the MobileSpaces system.

RF-tag
attached to
a desklamp

RF-sensor
PDA
(Agent Host)

Desklamp

X10 Appliance
Module

Controller
Agent

Fig. 7. Controlling a desk lamp from a PDA.

We compare several projects that support mobile
users in a ubiquitous computing environment with
our framework. Research on smart spaces and intel-
ligent environments has become popular at many
universities and corporate research facilities. Cam-
bridge University Sentient Computing project [1] pro-
vides a platform for location-aware applications using
infrared-based or ultrasonic-based locating systems
in a building. Using the Virtual Network Comut-
ing (VNC) system [14], the platform can track the
movement of a tagged entity, such as individu-
als and things, so that the graphical user inter-
faces of the user’s applications follow him/her while
he/she moves around. Although the platform pro-
vides functionality similar to that of our frame-
work, its management is centralized and it is diffi-
cult to dynamically reconfigure the platform when
sensors are added to, or removed from, the envi-
ronment. Since the applications must be executed
in remote servers, the platform may have nonneg-
ligible interactive latency between the servers and
the hosts that the user accesses locally. Our frame-
work, however, enables a user’s applications, includ-
ing user interfaces to be dynamically deployed and
directly run on computers close to the user so that
it can minimize temporal and spatial distances in
interactions between the user and the applications.
Recently, the project provided a CORBA-based mid-
dleware, called LocARE [15]. The middleware can
move CORBA objects to hosts according to the loca-
tion of tagged objects, but CORBA objects are not
always suited to implementation on user interface
components.

Copyright 2003 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2003; 3:411–423

USER AND PROGRAM MOBILITY IN UBIQUITOUS COMPUTING ENVIRONMENTS 421

The EasyLiving project provides context-aware
spaces, with a particular focus on home and office.
It used mounted sensors such as stereo cameras on
the room’s walls and tracks the location and identity
of people in the room. The system can dynamically
aggregate network-enabled input/output devices, such
as keyboards and mouses, even when they belong to
different computers in the space. However, its man-
agement is centralized and it does not dynamically
migrate software to other computers on the basis of
the position of the users. Both the projects assume
that locating sensors have initially been allocated in
the room and it is difficult to dynamically configure
the platform when sensors are added to, or removed
from, the environment, while our framework permits
sensors to be mobile and scattered throughout in the
space.

There have also been several studies on enhanc-
ing context awareness in mobile computing. HP’s
Cooltown [2] is an infrastructure that supports con-
text-aware services on portable computing devices. It
is capable of automatically providing bridges between
people, places, and things in the physical world and
web resources that are used to store information about
them. The bridges that it forms allow users to access
resources stored on the web via a browser, using stan-
dard HTTP communication. Although user familiarity
with web browsers is an advantage in this system, all
the services available in the Cooltown system are con-
strained by limitations of web browsers and HTTP.
Our framework, however, is not limited in its web-
based approach and can dynamically change mobile
agent–based applications, including viewer programs
for location-sensitive information based on the loca-
tions and requirements of users.

The NEXUS system [11], developed by Stuttgart
University, offers a generic platform that supports
location-aware applications for mobile users. Like the
Cooltown system, users require a PDA or tablet PC,
which is equipped with Global Positioning System
(GPS)-based positioning sensors and wireless com-
munication. Applications that run on such devices,
for example user navigation, maintain a spatial model
of the current vicinity of users and gather spatial data
from remote servers. Unlike our approach, however,
neither Cooltown nor NEXUS is suitable to support
mobile users through stationary computers distributed
in a smart environment.

Even though a number of mobile agent systems
have been developed, few researchers have attempted
to apply mobile agent technology to mobile and
ubiquitous computing. Kangas [16] developed a

location-aware augmented-reality system that enables
the migration of virtual objects to mobile computers,
but only when the computer is in a particular
space, like our framework. However, the system
is not designed to move such virtual objects
to ubiquitous computing devices. Hive [17] is a
mobile agent–based middleware to control devices in
ubiquitous computing environments, but it does not
support location-aware services.

Several researchers have explored location-sen-
sitive servers like our LIS. Their location models can
be classified into two types: spatial models based on
the concrete geographical coordinates of objects and
spatial models based on the geographical contain-
ment between objects. For example, the EasyLiving
project provides a geometric model based on the for-
mer approach, so it accurately represents the physical
relationships between entities in the world. Leon-
hardt [4] developed a location-tree model based on
the latter approach and used location-aware directory
servers. Our framework is based on a symbolic loca-
tion model like the geographical containment model.
However, it is unique to existing work in having the
ability to dynamically manage spatial models. That is,
it provides a demand-driven mechanism that discov-
ers the locations of agent hosts and agents, because it
permits all its elements, such as hosts and sensors, to
be mobile in and dynamically added to or removed
from a space.

We described an approach for developing location-
aware mobile agents in a previous paper [18]. The
approach allows mobile agents to follow their users
as they move, like the framework presented in this
paper. However, this approach allows the positions
of the users to be detected through a computer vision
technique and it maintains a geographical model of
the environment, including the positions of the users.
On the other hand, our present framework uses RF or
IR sensors to detect their presence and it maintains a
symbolic location model in the sense that it can only
detect the presence of tagged entities that are within
the coverage of the sensors. Also, since the target of
the previous approach was to support mobile users
from stationary computers in a ubiquitous comput-
ing environment, it could not support mobile users
from portable computing devices, whereas our frame-
work can support both ubiquitous and mobile com-
puting environments. Another paper [19] presented
an early prototype of the present framework, but did
not provide four linkages between physical and vir-
tual worlds as described in the second section of this
paper.

Copyright 2003 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2003; 3:411–423

422 I. SATOH

6. Future Work

Since the framework presented in this paper is
general-purpose, in future work we need to apply
it to specific applications as well as to the three
applications presented in this paper. Moreover, the
MobileSpaces system, which is the basis of this
framework, allows application-specific services to be
implemented as a collection of multiple agents rather
than a single agent. We are now developing a mech-
anism that enables an application-specific service to
be divided into multiple mobile agents. For exam-
ple, a mobile agent–based service may often require
various I/O devices, such as keyboards and speak-
ers, but cannot locate an agent host that has all of
these. If there are two hosts, where one has a key-
board and the other has speakers, the service can
be provided by the two hosts in combination. The
current mechanism for the exchange of information
between LISs is not satisfactory. We therefore plan
to develop a publish–subscribe system for the frame-
work. We have an approach in mind that would enable
the construction and management of configurable sen-
sor networks [20]. Since this approach allows sensor
nodes to be organized and configured according to
application requirements and changes in the physical
world, it would be useful in the dynamic customiza-
tion of our location information servers. We have also
developed an approach to the test of context-aware
applications on mobile computers [21]. We are inter-
ested in developing a methodology that would test
applications that were based on the framework.

7. Conclusion

A novel framework for the development and manage-
ment of location-aware applications in mobile and
ubiquitous computing environments has been pre-
sented in this paper. The framework provides people,
places, and things with mobile agents to support and
annotate them. Using location-tracking systems, the
framework can migrate mobile agents to stationary
or mobile computers near the locations of the people,
places, and things to which the agents are attached.
That is, it allows a mobile user to access its personal-
ized services in a ubiquitous computing environment
and provides location-dependent services to a user’s
portable computing device. The framework is decen-
tralized. In addition, it is a generic platform inde-
pendent of any higher-level applications and locat-
ing systems. We have designed and implemented a

prototype system of the framework and demonstrated
its effectiveness in several practical applications.

References

1. Harter A, Hopper A, Steggeles P, Ward A, Webster P. The
anatomy of a context-aware application. In Proceedings
of Conference on Mobile Computing and Networking
(MOBICOM ’99), ACM Press, 1999, pp. 59–68.

2. Kindberg T, Barton J, Morgan J, Becker G, Caswell D,
Debaty P, Gopal G, Frid M, Krishnan V, Morris H, Schet-
tino J, Serra B. People, Places, Things: Web Presence for
the Real World. Technical Report HPL-2000-16, Internet and
Mobile Systems Laboratory: HP Laboratories, Palo Alto, CA,
2000.

3. Perkins CE. Ad Hoc Networking. Addison-Wesley: Reading,
MA, 2001.

4. Leonhardt U, Magee J. Towards a general location service for
mobile environments. In Proceedings of IEEE Workshop on
Services in Distributed and Networked Environments, IEEE
Computer Society, 1999, pp. 43–50.

5. World Wide Web Consortium (W3C). Composite Capability/
Preference Profiles (CC/PP). http://www.w3.org/TR/NOTE-
CCPP, 1999.

6. Satoh I. MobileSpaces: a framework for building adaptive
distributed applications using a hierarchical mobile agent sys-
tem. In Proceedings of International Conference on Distributed
Computing Systems (ICDCS 2000), IEEE Computer Society,
2000, pp. 161–168.

7. Satoh I. MobiDoc: a framework for building mobile compound
documents from hierarchical mobile agents. In Proceedings of
Symposium on Agent Systems and Applications/Symposium on
Mobile Agents (ASA/MA 2000), Lecture Notes in Computer
Science, Springer, Vol. 1882, 2000, pp. 113–125.

8. Satoh I. Network processing of mobile agents, by mobile
agents, for mobile agents. In Proceedings of Workshop on
Mobile Agents for Telecommunication Applications (MATA
2001), Lecture Notes in Computer Science, Springer,
Vol. 2164, 2001, pp. 81–92.

9. Want R, Hopper A, Falcao A, Gibbons J. The active badge
location system. ACM Transactions on Information Systems
1992; 10(1): 91–102.

10. Cheverst K, Davis N, Mitchell K, Friday A. Experiences of
developing and deploying a context-aware tourist guide: the
GUIDE project. In Proceedings of Conference on Mobile
Computing and Networking (MOBICOM 2000), ACM Press,
2000, pp. 20–31.

11. Hohl F, Kubach U, Leonhardi A, Rothermel K, Schwehm M.
Next century challenges: nexus—an open global infrastructure
for spatial-aware applications. In Proceedings of International
Conference on Mobile Computing and Networking (MOBI-
COM ’99), ACM Press, 1999, pp. 249–255.

12. Nakajima T, Satoh I, Aizu H. A virtual overlay network for
integrating home appliances. In Proceedings of International
Symposium on Applications and the Internet (SAINT 2002),
IEEE Computer Society, 2002, pp. 246–253.

13. Brumitt BL, Meyers B, Krumm J, Kern A, Shafer S. EasyLiv-
ing: technologies for intelligent environments. In Proceedings
of International Symposium on Handheld and Ubiquitous Com-
puting, 2000, 12–27.

14. Richardson T, Stafford-Fraser Q, Wood K, Hopper A. Virtual
network computing. IEEE Internet Computing 1999; 2(1):
33–38.

15. Lopez de Ipina D, Lo S. LocALE: a location-aware lifecycle
environment for ubiquitous computing. In Proceedings of
Conference on Information Networking (ICOIN-15), IEEE
Computer Society, 2001.

Copyright 2003 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2003; 3:411–423

USER AND PROGRAM MOBILITY IN UBIQUITOUS COMPUTING ENVIRONMENTS 423

16. Kangas K, Roning J. Using code mobility to create ubiquitous
and active augmented reality in mobile computing. In
Proceedings of Conference on Mobile Computing and
Networking (MOBICOM ’99), ACM Press, 1999, pp. 48–58.

17. Minar N, Gray M, Roup O, Krikorian R, Maes P. Hive:
distributed agents for networking things. In Proceedings of
Symposium on Agent Systems and Applications/Symposium on
Mobile Agents (ASA/MA ’99), IEEE Computer Society, 1999.

18. Tanizawa Y, Satoh I, Anzai Y. A mobile agent framework for
ubiquitous computing environments. Information Processing
Society Journal 2002; 43(12): 3774–3784 (in Japanese).

19. Satoh I. Physical mobility and logical mobility in ubiquitous
computing environments. In Proceedings of Conference on
Mobile Agents (MA ’02), Lecture Notes in Computer Science,
Springer, Vol. 2535, 2002, pp. 186–202.

20. Umezawa T, Satoh I, Anzai Y. A mobile agent-based frame-
work for configurable sensor networks. In Proceedings of
International Workshop on Mobile Agents for Telecommuni-
cation Applications (MATA 2002), Lecture Notes in Computer
Science, Springer, Vol. 2521, 2002, pp. 128–140.

21. Satoh I. Flying emulator: rapid building and testing of
networked applications for mobile computers. In Proceedings
of Conference on Mobile Agents (MA 2001), Lecture Notes in
Computer Science, Springer; Vol. 2240, 2001, pp. 103–118.

Author’s Biography

Ichiro Satoh received his B.E.,
M.E., and Ph.D. degrees in com-
puter science from Keio Univer-
sity, Japan, in 1996. From 1996 to
1997, he was a research associate
in the Department of Information
Sciences, Ochanomizu University,
Japan, and from 1998 to 2000 he
was an associate professor in the
same department. Since 2001, he
has been an associate professor in

National Institute of Informatics, Japan. He was also a
researcher of Japan Science and Technology Corporation
from 1999 to 2001. His current research interests include
distributed and mobile computing. He received IPSJ paper
award, IPSJ Yamashita SIG research award, and JSSST
Takahashi research award. He is a member of six learned
societies, including ACM and IEEE.

Copyright 2003 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2003; 3:411–423

