
Mobile Agent-based Compound Documents

Ichiro Satoh
National Institute of Informatics /

Japan Science and Technology Corporation
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

Tel: +81-3-4212-2546 Fax: +81-3-3556-1916

ichiro@nii.ac.jp

ABSTRACT
This paper presents a mobile agent-based framework for building
mobile compound document, which can each be dynamically com-
posed of mobile agents and can migrate itself over a network as a
whole, with all its embedded agents. The key of this framework is
that it builds a hierarchical mobile agent system that enables mul-
tiple mobile agents to be combined into a single mobile agent. The
framework also provides several value-added mechanisms for visu-
ally manipulating components embedded in a compound document
and for sharing a window on the screen among the components.
This paper describes this framework and some experiences in the
implementation of a prototype system, currently using Java the both
implementation language and component development language,
and then illustrates several interesting applications to demonstrate
the framework’s utility and flexibility.

1. INTRODUCTION
The notion of compound documents is a document-centric compo-
nent framework, where various visible parts, such as text, images,
and video, created by different applications, can be combined into
one document and independently manipulated in-place in the doc-
ument. Several frameworks for software components have been
developed, such as COM/OLE [4], OpenDoc [1], and Common-
Point [11], although some of these have been discontinued. Al-
though there are few compound document frameworks available
on the market today, their advent appears to be necessary and un-
avoidable in the long run. Nowadays, documents must be available
in network environments, but there have been several problems in
the few existing compound document frameworks. A compound
component is typically defined by two parts: contents and codes
for modifying them. Contents are stored in the component but the
codes for accessing them are often not. Thus, when a user receives
a document, he/she cannot view or modify its contents, which need
the support of different applications, if he/she does not have the ap-
plications themselves. Moreover, compound documents are inher-
ently designed as passive entities in the sense that they are trans-
mitted over a network by external network systems such as elec-
tronic mail systems and workflow management systems. There-

fore, it is difficult to apply network processing to documents ac-
cording to their requirements or inner components. However, some
documents should determine their own destinations and itineraries
according to their contents, and some should be encrypted before
transmitting over the network.

This paper proposes a new framework for building mobile com-
pound documents. The key idea is to construct each document as
a collection of mobile agents, because accessing compound docu-
ments over a network requires a powerful infrastructure for build-
ing and migrating, such as mobile agents. Mobile agents are self-
contained and autonomous programs that can travel from computer
to computer under their own control. When an agent migrates over
the network, both the state and the code can be transferred to the
destination. As a result, the agent can continue its processing with-
out needing to be restarted or reinitialized, after arriving at its des-
tination. Therefore, such a document is a self-contained entity in
the sense that it can view or modify itself by using its own code.
Also, such a document can deliver itself to one or more computers
over a network according to its contents, independently of external
network systems. Therefore, I built a framework based on a unique
mobile agent system, called MobileSpaces, [13]. The system is
constructed using Java language [2] and provides mobile agents
that can move over a network, like other mobile agent systems.
However, it also allows multiple mobile agents to be hierarchically
assembled into a single mobile agent. Consequently, in this frame-
work, a compound document is a hierarchical mobile agent that
contains its contents and a hierarchy of mobile agents, which corre-
spond to nested components embedded in the document. Further-
more, the framework offers several mechanisms for coordinating
visible components so that they can effectively share the visual real
estate on a user screen in a seamless-looking way.

This paper is organized as follow: Section 2 surveys related work
and Section 3 presents the basic ideas of the compound document
framework, called MobiDoc. Section 4 details its prototype imple-
mentation and Section 5 discusses the usability of this framework
based on three practical examples. Section 6 makes some conclud-
ing remarks.

2. APPROACH
This section briefly describes the basic ideas of the framework for
building mobile agent-based compound documents, called MobiDoc.

2.1 Software Components as Mobile Agents
As defined in [19], a compound document is constructed as a col-
lection of visible components, such as text and images. On the
other hand, a mobile agent resembles a software component in the

sense that each agent is a self-contained module holding its code
and state. Moreover, each agent can migrate itself or be migrated
to another computer. However, most existing mobile agent systems
unfortunately lack any mechanism for structurally assembling more
than one mobile agent into a single mobile agent. This is because
each mobile agent is basically designed as an isolated entity that
always acts and migrates independently. Since a mobile agent is
characterized by its mobility, a composition of mobile agents must
be designed to keep their mobility. This framework is therefore
built on a mobile agent system, named MobileSpaces, [13]. The
system supports the execution and migration of mobile agents and
introduces two concepts: Agent Hierarchy and Group Migration.

migration

Step 1

Step 2

Agent D

Agent C

Agent E

Agent D

Agent C

Agent E

Computer A or Agent A Computer B or Agent B

Computer A or Agent A Computer B or Agent B

Figure 1: Agent hierarchy and group migration

� Agent Hierarchy means that each mobile agent can be con-
tained within one mobile agent. It lets us assemble more than
one mobile agent into a single mobile agent in a tree struc-
ture.

� Group Migration means that each mobile agent can migrate
to another location as a whole, with all of its inner agents.
This allows a group of mobile agents to be treated as a single
mobile agent in their agent migration.

The first concept is needed in the development of a mobile com-
pound document, because such a document should be able to con-
tain other components, like OpenDoc. In an agent hierarchy, each
agent is still active and mobile and thus can freely move into any
computers or any agents in the same agent hierarchy except into
itself or its inner agents, as long as the destination accepts the mov-
ing agent. The second concept enables a compound document to
migrate itself and its components as a whole. Accordingly, a com-
pound document is implemented as a collection of mobile compo-
nents and can be treated as a mobile component. Figure 1 shows an
example of group migration in an agent hierarchy.

2.2Mobile Agent-based Compound Documents
The notion of compound documents is a metaphor for organiz-
ing multiple components, where MobileSpaces can treat a mobile
agent as a mobile component or a composition of multiple com-
ponents and ship them across networks to other desktops. Conse-
quently, MobileSpaces is an infrastructure for building shippable
compound documents, but does not provide any document-centric
mechanisms for managing components in a compound document.
Therefore, we need a compound document framework for support-
ing mobile agent-based components, including graphical user in-
terfaces for manipulating visible components. Also, compound

documents need to have an intuitive way to be activated as ac-
tive contents, displayed and edited them seamlessly in a window,
and stored in a file. For example, a compound document must be
able to contain various kinds of contents, text, images, and video,
created by different applications, and draw them in their proper
representation manners on the document. Also, switching among
visual components within a document or across documents should
be less intrusive than switching among conventional applications.
This framework, called MobiDoc, is implemented as a collection
of Java objects that belong to one of about 50 classes. It defines the
protocols that let components embedded in a document communi-
cate with each other. It offers an in-place editing service similar to
those provided by OpenDoc and OLE. The service allows a user
to immediately edit any content in-place without having to launch
and execute different applications to create and assemble data. The
framework should offer several mechanisms for effectively sharing
the visual estate of a container among embedded components and
for coordinating their use of shared resources, such as the keyboard,
mouse, and windows.

3. IMPLEMENTATION
This section briefly overviews MobileSpaces and describes how to
construct components and compound documents as mobile agents.
The system can execute and migrate mobile agents that are incor-
porated using the two concepts presented in the previous section as
much as possible. It has been incorporated in Java Development
Kit version 1.2 and can run on any computer that has a runtime
system compatible with this version.

3.1 MobileSpaces Runtime System
The MobileSpaces runtime system is a platform for executing and
migrating mobile agents. It is built on a Java virtual machine and
mobile agents are Java objects [2]. Each component is implemented
a mobile agent in the system and the containment hierarchy of com-
ponents in a document is implemented as an agent hierarchy man-
aged by the system. The runtime system has the following func-
tions:

Agent Hierarchy Management
The agent hierarchy is given as a tree structure in which each node
contains a mobile agent and its attributes. The runtime system is
assumed to be at the root node of the agent hierarchy. Agent migra-
tion in an agent hierarchy is performed just as a transformation of
the tree structure of the hierarchy. In the runtime system, each agent
has direct control of its inner agents. That is, a container agent can
instruct its embedded agents to move to other agents or computers
and can marshal and destroy them. In contrast, each agent has no
direct control over its container agent, but each container offers a
set of service methods that can be accessed by it embedded agents.

Agent Execution Management:
The runtime system maintains the life-cycle of agents: initializa-
tion, execution, suspension, and termination. When the life-cycle
state of an agent is changed, the runtime system issues events to in-
voke certain methods in the agent and its containing agents. More-
over, the runtime system enforces interoperation among mobile
agent-based components. It monitors the changes in components
and propagates certain events to the right ones. For example, when
a component is added to or removed from its container component,
the system dispatches specified events to the component and the
container.

Java Virtual Machine

MobileSpaces
Runtime System

Agent E

Agent A

Agent B
Agent C

Agent D

Agent F

Java Virtual Machine

MobileSpaces
Runtime System

Agent A

Agent B
Agent C

Agent G
Agent Migration

Network

Agent H

Hierarchical Mobile AgentsHierarchical Mobile Agents

Figure 2: Agent migration between two mobilespaces runtime systems.

Agent Migration Management:
Each document is saved and transmitted as a group of mobile agents.
When a component is moved inside a computer, the component and
its inner components can still be running. When a component is
transferred over a network, the runtime system stores the state and
the code of the component, including the components embedded
in it, into a bit-stream formed in Java’s JAR file format that can
compact the stored agent in zip-compression and support digital
signatures for authentication. The system provides a built-in mech-
anism for transmitting the bit-stream over the network by using an
extension of the HTTP protocol.1

The current system basically uses the Java object serialization pack-
age for marshaling components. The package does not support the
capturing of stack frames of threads. Instead, when a component
is serialized, the system propagates certain events to its embedded
components to instruct the agent to stop its active threads. For ex-
ample, each component can have one or more activities that are
performed using the Java thread library, but needs to capture cer-
tain events issued to stop its own activities before it migrates over
a network.

3.2 Mobile Agent-based Component
Each component, including a compound document is implemented
as a mobile agent, which consists of a body program and a set of
services implemented in Java language. The body program defines
the behavior of the component and the set of services defines vari-
ous APIs for components embedded within the component. Every
agent program has to be an instance of a subclass of the abstract
class ComponentAgent, which consists of some fundamental
methods to control the mobility and life-cycle of a mobile agent-
based component.

1: public class ComponentAgent extends Agent {
2: // (un)registering services for inner agents
3: void addContextService(
4: ContextService service) { ... }
5: void removeContextService(
6: ContextService service) { ... }
7:
8: // (un)registering listener objects
9: // to hook events

10: void addListener(

�Agent transmission and routing mechanisms of the MobileSpaces
can be dynamically changed according to the requirements of mov-
ing agents by using adaptive agent migration protocols studied in
another paper [15, 16].

inner agent A

an event from the container agent
or the runtime system

method 3
state

service method 1
service method 2

callback

getService()Se

inner agent B

Mobile Agent

agent
context

agent
program

Figure 3: Structure of a mobile agent

11: AgentEventListener listener) { ... }
12: void removeListener(
13: AgentEventListener listener) { ... }
14:
15: void getService(Service service)
16: throws ... { ... }
17: void go(AgentURL url)
18: throws ... { ... }
19: void go(AgentURL url1, AgentURL url2)
20: throws ... { ... }
21: byte[] create(byte[] data) throws ... { ... }
22: byte[] serialize(AgentURL url) throws ... { ... }
23: AgentURL deserialize(byte[] data)
24: throws ... { ... }
25: void destroy(AgentURL url) throws ... { ... }
26:
27: ComponentFrame getFrame() { .. }
28: ComponentFrame getFrame(AgentURL url) { ... }
29:
30: }

The methods used to control mobility and lifecycle defined in the
ComponentAgent class are as follows:

� An agent can invoke public methods defined in a set of ser-
vice methods offered by its container agent by invoking the
getService() method with an instance of the Service
class. The instance can specify the kind of service methods,
which have arbitrary objects as arguments, and the deadline
for timeout exception.

� The go(AgentURL url) method is an instruction to mi-

grate an agent to another agent or another computer. When
an agent performs the go(AgentURL url) method, the
agent migrates itself to the destination agent specified as url.
The go(AgentURL url1, AgentURL url2) method
instructs the inner agent specified as url1 to move to the
destination agent specified as url2.

� Each container agent can dispatch certain events to its in-
ner agents and notify them when specified actions happen
within their surroundings by using the dispatchEvent()
method.

This framework provides an event mechanism based on the dele-
gation event model introduced in the Abstract Window Toolkit of
JDK 1.1 or later, like Aglets [9]. When an agent is migrated, mar-
shaled, or destroyed, our runtime system does not automatically re-
lease all the resources, such as files, windows, and sockets, which
were captured by the agent. Instead, the runtime system can issue
certain events in the changes of life-cycle states. Also, a container
agent can dispatch specified events to its inner mobile agent-based
components at the occurrence of user-interface level actions, such
as mouse clicks, keystrokes, and window activation, as well as at
the occurrence of application-level actions, such as the opening and
closing of documents. To hook these events, each agent can have
one or more listener objects that implement specific methods in-
voked by the runtime system and its container component. A lis-
tener object implements a specific listener interface extended from
the generic AgentEventListener interface that defines call-
back methods that should be invoked by the core system before
or after the life-cycle state of the agent changes. The Compo-
nentEventListener interfaces are designed for mobile com-
ponents and shown as follows:

1: interface ComponentEventListener
2: extends AgentEventListener {
3: // invoked after creation at url
4: void create(AgentURL url);
5: // invoked before termination
6: void destroy();
7: // invoked after accepting a child
8: void add(AgentURL child);
9: // invoked before removing a child

10: void remove(AgentURL child);
11: // invoked after arriving at the destination
12: void arrive(AgentURL dst);
13: // invoked before moving to the destination
14: void leave(AgentURL dst);
15:
16: }

The above interface specifies fundamental methods invoked by the
runtime system, when agents are created, destroyed, persisted, and
migrated to another agent. Also, each component can have lis-
tener objects to hook events in user interfaces provided by Java’s
libraries.

The program of every component consists of these callback meth-
ods. Since the framework provides several value-added mecha-
nisms for managing components embedded in a compound doc-
ument, a user can easily define a new component by overwriting
its behaviors invoked at the specified timings on the corresponding
callback methods. I have already implemented a variety of mobile
agent-based components, such as text viewer/editor, image viewer
for GIF and JPEG, animation viewer, drawing program, clock, doc-
ument window, and so on. Each component is initially stored in a

file. Also, since the runtime system provides a mechanism for sav-
ing the code of an activated component and its state in a file, a
user can retrieve an active component from such a saved compo-
nent and duplicate the component within a container component,
without needing to initialize it.

3.3 MobiDoc Compound Document Framework
The MobiDoc framework is implemented as a collection of Java
classes to enforce some principles of component-interoperation and
a graphical user interface.

Visual Layout Management:
Each mobile agent-based component can be displayed within the
estate of its container component or in a window on the screen,
but it must be accessed through indirection: frame objects derived
from the ComponentFrame class as shown in Figure 4.2 Each
frame object is the area of the display that represents the contents of
components and is used for negotiating the use of geometric space
between the frame of its container component and the frame of its
component.

The frame object of each container component manages the display
of the frames of the components it contains. That is, it can control
the sizes, positions, and offsets of all the frames embedded within
it, while the frame object of each contained component is respon-
sible for drawing its own contents. For example, if a component
invokes the setFrameSize() method to change the size of its
frame, its frame must negotiate with the frame object of its con-
tainer for its size and shape and then redraw its contents within the
frame.

1: public class ComponentFrame
2: extends java.awt.Panel {
3: // sets the size of the frame
4: void setFrameSize(java.awt.Point p);
5: // gets the size of the frame
6: java.awt.Point getFrameSize();
7: // sets the layout manager for
8: // the embedded frames
9: void setLayout(CompoundLayoutManager mgr) {

10: // views the type of the component,
11: // e.g. iconic, thumbnail, or framed,
12: int getViewType();
13: // gets the reference of the container’s frame
14: ComponentFrame getContainerFrame();
15: // adds an embedded component as frame
16: void addFrame(ComponentFrame frame);
17: // removes an embedded component specified
18: // as frame
19: void removeFrame(ComponentFrame frame);
20: // gets all the references of embedded frames
21: ComponentFrame[] getEmbeddedFrames();
22: // gets the offset and size of the inner frame
23: // specified as cf
24: java.awt.Rectangle getEmbeddedFramePosition(
25: ComponentFrame cf);
26: // sets the offset and size of the inner
27: // frame specified as cf
28: void setEmbeddedFramePosition(
29: ComponentFrame cf, java.awt.Rectangle rect);
30:
31: }

When one component is active, another component is usually de-
�Although the ComponentFrame class is a subclass of the
java.awt.Panel class, we call instances derived from the class
frame objects because many existing compound document frame-
works often call the visual space of an embedded component a
frame.

In-Place Editor

Layout Manager

Inner Frames

Content Size
frame for Window

clock
agent

Canvas
Agent

Window AgentIn-Place Editor

Layout Manager

Inner Frames

Content Size
frame for Canvas

In-Place Editor

Layout Manager

Inner Frames

Content Size
frame for Clock

Hierarchical Mobile Agents

Mobile Compound Document

MobiDoc Framework

Figure 4: Components for compound document in agent hierarchy

activated but is not necessarily idle. To create a seamless applica-
tion look, components embedded in a container component need
to share in a coordinated manner several resources, such as key-
board, mouse, and window. Each component is restricted from di-
rectly accessing such shared resources. Instead, the frame object of
one activated component is responsible for handling and dispatch-
ing user interface actions issued from most resources, and can own
these resources until it sends a request to relinquish its resource.

The user can explicitly allocate and resize components in a doc-
ument. Using their container as the mediator, these components
cooperate to produce a seamless-looking document for the end user
within their surroundings. Furthermore, this framework allows each
container to explicitly define the rules of engagement that allow
components to share the container’s window, for example left-to-
right flow arrangement like lines of text in a paragraph, and align-
ment in rectangular grid of cells.

In-Place Editing:
This framework supports document-wide operations, such as mouse
clicks and keystrokes. It can dispatch certain events to its compo-
nents to notify them when specified actions happen within their
surroundings. Moreover, the framework provides each container
component with a set of built-in services for switching among mul-
tiple components embedded in the container and for manipulating
the borders of the frame objects of its inner components. One of
these services provides graphical user interfaces for in-place edit-
ing. This mechanism allows different components in a document
to share the same window and to automatically bring their editing
tools to the document. Consequently, components can be imme-
diately manipulated in-place, without the need to open a separate
window and launch an application for each component.

To directly interact with a component, we need to make the com-
ponent active by clicking the mouse within its frame. When a com-
ponent is active, we can directly manipulate its contents. When the
boundary of the frame is clicked, the frame becomes selected and
displays eight angular control points for moving it around and re-

sizing it, as shown in Figure 5. The user can easily resize and move
selected components by dragging their handles.

rectangle control pointinner component

window component
(container)

Figure 5: Selected component and its rectangle control points

Structured Storage and Migration:
When migrating over a network and being stored onto a disk, each
component must be responsible for transforming its own contents
and code into a stream of bytes by using the serialization facility of
the runtime system. However, the frame object of each component
is not stored in the component. Instead, it is dynamically created
and allocated in its container’s frame, when it becomes visible and
restored. The framework automatically deletes frame objects of
each component from the screen and stores specified attributes of
the frame object in a list of values corresponding to the attributes,
because other frame objects may refer to objects that are not serial-
izable, such as several visible objects in the Java Foundation Class
package. After restoring such serialized streams as components at
the destination, the framework appropriately redraws the frames of
the components, as accurately as possible.

Drag-and-drop Manipulation:
This framework lets the to user directly move or copy components
between different containers within a computer by using drag-and-

drop manipulation. A user typically initiates a drag by first posi-
tioning the mouse pointer over some selected component and then
pressing and holding down the mouse button. When the user re-
leases the mouse button at the new location, the framework exam-
ines whether or not the destination container can accept the kind of
selected component. If it can accept it, it moves the dragged com-
ponent to the destination container just as in an agent migration.
When copying a component, the framework makes a deep-copy
of the component, in the sense that the component and all its in-
ner components are duplicated without modifying its hierarchical
structure. Also, the framework supports an intermediary buffer for
copying and pasting components. The buffer corresponds to a clip-
board and is implemented by a storage agent that can contain other
components inside itself.

mouse-click

drag event
mouse-drag

mouse-drop
drop event

go command

migration

drag and drop

mouse manager
drag-and-drop
manager

component

source container destination container

Figure 6: Scenario: drag-and-drop between two container
components

Network-wide Component Assembly:
Nowadays, cut-and-paste is one of the most common manipulations
for assembling visible components. However, while a cut-and-
paste on the same computer is easy, the system often forces users
to transfer information between computers in a very different way.
Therefore, my framework offers a cut-and-paste mechanism among
different computers. When a cut operation occurs at a component
in one (source) container, the mechanism marshals the component
and transmits the resulting byte sequence to another (destination)
container at a local or remote computer by using the agent migra-
tion management of MobileSpaces. It becomes an infrastructure
for providing a network-wide, direct manipulation technique, such
as Pick-and-Drop, which is a kind of network-wide drag-and-drop
manipulation, studied in [12].

3.4 Current Status
The MobiDoc framework has been implemented in MobileSpaces
and Java language (JDK1.2 or later version), and we have devel-
oped various components for compound documents, including the
examples presented in this paper. The MobileSpaces system is a
general-purpose mobile agent system. Therefore, mobile agents in
the system may be unwieldy as components of compound docu-
ments, but our components can inherit the powerful properties of
mobile agents, including their activity and mobility.

Security becomes an essential issue in compound documents as

well as mobile agents. The current system relies on the Java se-
curity manager and provides a simple mechanism for authentica-
tion of components. A container component can judge whether it
accepts a new inner component or not beforehand, where the in-
ner components can know the available methods embedded in their
containers by using the class introspector mechanism of the Java
language. Furthermore, since a container agent plays a role in pro-
viding resources for its inner agent, it can limit the accessibility
of its inner components to resources such as window, mouse, and
keyboard, by hiding events issued from these resources.

Even though our implementation was not built for performance, we
have conducted a basic experiment on component migration with
computers (Pentium III-800MHz with Windows2000 and SUN JDK
1.3). The cost of a component migration from a container to an-
other container in the same hierarchy was measured to be 30 ms,
including the cost to draw the visible content of the moving com-
ponent and to check whether the component is permitted to enter
the destination agent or not. The cost of component migration be-
tween two computers connected with Fast-Ethernet was measured
to be 120 ms. The cost is the sum of the marshaling, compression,
opening TCP connection, transmission, acknowledgment, decom-
pression, security and consistency verifications, unmarshaling, lay-
out of the visual space, and drawing of the contents. The moving
component is a simple text viewer and its size (the sum of code and
data) is about 4 Kbytes (zip-compressed). We believe that the la-
tency of component migration in our framework is reasonable for a
Java-based visual environment for building documents.

4. EXAMPLES
The MobiDoc compound document framework is powerful and
flexible enough to support a wide range of different applications.
This section shows some examples of compound documents based
on the MobiDoc framework.

4.1 Electronic Mail System
One of the most illustrative examples of the MobiDoc framework
is for the provision of mobile documents for communication and
workflow management. We have constructed an electronic mail
system based on the framework. The system consists of an in-
box document and letter documents as shown in Figure 7. The
inbox document provides a window that can contain two compo-
nents. One of the components is a history of received mails and the
other component offers a visual space for displaying the contents
of mail selected from the history. The letter document corresponds
to a mobile agent-based letter and can contain various components
for accessing text, graphics, and animation. It also has a window
for displaying its contents. It can migrate itself to its destination,
but it is not a complete GUI application because it cannot display
its contents without the collaboration of its container, i.e., the inbox
document.

For example, to edit the text in a letter component, simply click
on it, and then an editor program is invoked by the in-place edit-
ing mechanism of the MobiDoc framework. The component can
deliver itself and its inner components to an inbox document at the
receiver. After a moving letter has been accepted by the inbox doc-
ument, if a user clicks on a letter in the list of received mail, the
selected letter creates a frame object and requests the document to
display the frame object within the frame of the document. The
key idea of this mail system is that it composes different mobile
agent-based components into a seamless-looking compound docu-
ment and allows us to immediately display and access the contents

Text Editor Component
(Inner Mobile Agent)

Image Viewer Component
(Inner Mobile Agent)

Letter Component
(Container Mobile Agent)

Figure 7: Structure of a letter document

of the components in-place. Since the inbox document is the root of
the letter component, when the document is stored and moved, all
the components embedded in the document are stored and moved
with the document.

4.2 Desktop Teleporting
I constructed a compound document-based desktop system similar
to the Teleporting System and the Virtual Network Computing sys-
tem. Those systems are based on the X Window System and allow
the running applications in the computer display to be redirected to
a different computer display.

In contrast, my desktop system consists of mobile agent-based ap-
plications and thus can migrate not only the appearance of appli-
cations but also the applications themselves to another computer
(Figure 8). The system consists of a window manager document
and its inner applications. The manager corresponds to a desktop
document at the top of the component hierarchy of applications
separately displayed in their own windows on the desktop on the
screen. It can be used to control the sizes, positions, and over-
laps of the windows of its inner applications. When the desktop
document is moved to another computer, all the components, in-
cluding their windows, move to the new computer. The framework
tries to keep the moving desktop and applications the same as when
the user last accessed them on the previous computer, even if the
previous computer and network are not running. For example, the
framework can migrate a user’s custom desktop and applications to
another computer that the user is accessing.

4.3 Newsletter Editing System
This example is designed for editing an in-house newsletter. Each
newsletter is edited by automatically compiling one or more text
parts, which are written by different people, as shown in Figure
9. A newsletter is implemented as a compound document that can
contain text component inside it and each text part is a mobile agent
including a viewer/editor program and its own text data. When the
newsletter is being edited, each text part moves from the document
to the computer of its writer, and it displays a window for its editor
program on the computer desktop to promote and help the user’s
writing. It goes back to the document after the writer finishes writ-
ing his/her text and then the document arranges the arriving com-
ponents as a bound set. The document is still a mobile agent and
thus can be easily duplicated and distributed to multiple locations.

5. RELATED WORK
There have been several document-centric component technologies
so far. Among them OpenDoc and JavaBeans are characterized by

migration

step 1

Newspaper
Compound
Document

Host A

Editor Component

Host C

Host B

n

migration

migration

Editor Components

migration

step 2

Host A

Host C

Host B

ion

migration

migrationon

Editor Component

Newspaper Compound Document

Editor Components

Server

Server

Figure 9: Newsletter editing system

allowing a component to contain a hierarchy of nested components.
OpenDoc is a document-centric component framework originally
developed by Apple Computer and IBM, but it was dropped as a
commercial product. An OpenDoc component is a unit of visible
components that can be nested. Unlike mine, an OpenDoc com-
ponent cannot migrate itself over a network under its own control,
although it is equipped with scripts to control itself. JavaBeans
is a general framework for building reusable software components
designed for the Java language. The initial release of JavaBeans
(version 1.0 specified in [8]) does not contain a hierarchical or log-
ical structure for JavaBean objects, but its latest release specified in
[6] allows JavaBean objects to be organized hierarchically. How-
ever, the JavaBeans framework does not provide any higher-level
document-related functions. Moreover, it is not inherently designed
for mobility. Therefore, it is very difficult for a group of JavaBean
objects in the containment hierarchy to migrate to another com-
puter.

A number of other mobile agent systems have been released re-
cently, for example Aglets [9], Mole [3], Telescript [20], and Voy-
ager [10]. However, these agent systems unfortunately lack a mech-
anism for structurally assembling multiple mobile agents, unlike

migration

Computer A
(source)

Computer B
(destination)

Window Manager
(Container Component)

Editor Window
(Inner Component)

Clock Window
(Inner Component)

Figure 8: Desktop teleporting to another computer

component technologies. This is because each mobile agent is ba-
sically designed as an isolated entity that migrates independently.
Some of them offer inter-agent communication, but they can only
couple mobile agents loosely and thus cannot migrate a group of
mobile agents to another computer as a whole. Telescript intro-
duces the concept of places in addition to mobile agents. Places
are agents that can contain mobile agents and places inside them,
but they are not mobile. Therefore, the notion of places does not
support mobile compound documents.

To solve the above problem in existing mobile agent systems, we
constructed a new mobile agent system called MobileSpaces [13].
The system introduces the notion of agent hierarchy and inter-agent
migration. This system allows a group of mobile agents to be
dynamically assembled into a single mobile agent. Although the
system itself has no mechanism for constructing compound docu-
ments, it can provide a powerful infrastructure for implementing
compound documents to network computing settings. Also, I pre-
sented a compound document framework in another previous paper
[14] but the previous framework was designed as just a simple ex-
ample of MobileSpaces, instead of any general-purpose compound
document framework. Therefore, the previous framework lacks
many functionalities, which are provided by the framework pre-
sented in this paper. For example, it could deliver a compound
document as a whole to another computer but not decompose a
document into components nor migrate each component to another
computer independently, unlike the framework presented in this pa-
per.

ADK [7] is a framework for building mobile agents from JavaBeans.
It provides an extension of Sun’s visual builder tool for JavaBeans,
called BeanBox, to support the visual construction of mobile agents.
In contrast, I intend to construct a new framework for building mo-
bile compound documents in which each component can be a con-
tainer for components and can migrate over a network under its
own control. My compound document will be able to migrate itself
from one computer to another as a whole with all of its embedded
components to another computer and adapt the arrangement of its
inner components to the user’s requirements and its environments
by migrating and replacing corresponding components.

Here I should explain why a hierarchical mobile agent is essential
in the development of compound documents. You might think that
existing software development methodologies such as Java Beans
and OpenDoc, are components that can be shipped to other com-
puters. Indeed, in the current implementation of my system each
mobile agent can be a container of Java Beans and can migrate as
a whole with its inner Java Beans. However, Java Bean compo-

nents are not inherently designed to be mobile components, unlike
mobile agents. Therefore, it is difficult to get each Java Bean com-
ponent to move over a network under its own control. On the other
hand, my framework introduces a document (or a component) as
an active entity that can travel from computer to computer under
its own control. Therefore, my document can determine where it
should go next, according to its contents. Moreover, it can dynami-
cally change the layouts and combinations of its inner components,
and it cannot be dynamically adapted to the user’s requirements.

6. CONCLUSION
This paper has presented an approach for building mobile com-
pound documents. The key idea of the approach is to build com-
pound documents from hierarchical mobile agents in a hierarchical
mobile agent system, named MobileSpaces, which allows multiple
mobile agents to be dynamically assembled into a single mobile
agent. This approach allows a compound document to be dynami-
cally composed of mobile components, to deliver itself over a net-
work as a whole with its inner components, and to adapt itself to the
needs of its users and environments. I designed and implemented
a Java-based framework, called MobiDoc, to demonstrate the us-
ability and flexibility of this approach. The framework provides
value-added services for coordinating mobile agent-based compo-
nents embedded in a document with graphical user interfaces.

Finally, I would like to point out further issues to be resolved. In
the current system, resource management and security mechanisms
were incorporated relatively straightforwardly. These should now
be designed for mobile compound documents. Additionally, the
programming interface of the current system is not yet satisfactory.
We should design a more elegant and flexible interface incorporat-
ing with existing compound document technologies. In the current
implementation, each component must be written in Java, but it
can run an interpreter of other programming languages inside it. I
am interesting in implementing visual components equipped with
such an interpreter for scripting languages, such as JavaScript, Tcl,
and Lisp so that the behaviors of a component can be defined us-
ing these languages. To develop compound documents more effec-
tively, we need a visual builder for mobile components.

Acknowledgments
I would like to thank the anonymous reviewers for their making
giving a lot of significant comments about an earlier version of this
paper.

7. REFERENCES
[1] Apple Computer Inc., “OpenDoc: White Paper”, Apple

Computer Inc., 1994.

[2] K. Arnold and J. Gosling, “The Java Programming
Language”, Addison-Wesley, 1998.

[3] J. Baumann, F. Hole, K. Rothermel, and M. Strasser, “Mole -
Concepts of A Mobile Agent System”, Mobility: Processes,
Computers, and Agents, pp.536-554, Addison-Wesley, 1999.

[4] K. Brockschmidt, “Inside OLE 2”, Microsoft Press, 1995.

[5] L. Cardelli and A. D. Gordon, “Mobile Ambients”,
Foundations of Software Science and Computational
Structures, LNCS, Vol. 1378, pp. 140–155, 1998.

[6] L. Cable, “Extensible Runtime Containment and Server
Protocol for JavaBeans”, Sun Microsfystems,
http://java.sun.com/beans, 1997.

[7] T. Gschwind, M. Feridun, and S. Pleisch, “ADK: Building
Mobile Agents for Network and System Management from
Reusable Components”, in Proc. Symposium on Agent
Systems and Applications / Symposium on Mobile Agents
(ASA/MA’99), pp.13-21, IEEE Computer Society, 1999.

[8] G. Hamilton, “The JavaBeans Specification”, Sun
Microsfystems, http://java.sun.com/beans, 1997.

[9] B. D. Lange and M. Oshima, “Programming and Deploying
Java Mobile Agents with Aglets”, Addison-Wesley, 1998.

[10] ObjectSpace Inc, “ObjectSpace Voyager Technical
Overview”, ObjectSpace, Inc. 1997.

[11] M. Potel and S. Cotter, “Inside Taligent Technology”,
Addison-Wesley, 1995.

[12] J. Rekimoto, “Pick-and-Drop: A Direct Manipulation
Technique for Multiple Computer Environments”, ACM
Symposium on User Interface Software and Technology
(UIST’97), pp.31-39, October 1997.

[13] I. Satoh, “MobileSpaces: A Framework for Building
Adaptive Distributed Applications Using a Hierarchical
Mobile Agent System”, Proceedings of International
Conference on Distributed Computing Systems
(ICDCS’2000), pp.161-168, IEEE Computer Society, April,
2000.

[14] I. Satoh, “MobiDoc: A Framework for Building Mobile
Compound Documents from Hierarchical Mobile Agents”,
Proceedings of Symposium on Agent Systems and
Applications / Symposium on Mobile Agents
(ASA/MA’2000), Lecture Notes in Computer Science,
Vol.1882, pp.113-125, Springer, 2000.

[15] I. Satoh, “Adaptive Protocols for Agent Migration”,
Proceedings of IEEE International Conference on
Distributed Computing Systems (ICDCS’2001), pp.711-714,
IEEE Computer Society, 2001.

[16] I. Satoh, “Network Processing of Mobile Agents, by Mobile
Agents, for Mobile Agents”, Proceedings of 3rd
International Workshop on Mobile Agents for
Telecommunication Applications (MATA’2001), Lecture
Notes in Computer Science (LNCS), Vol.2146, Springer,
pp.81-92, August, 2001.

[17] I. Satoh, “Flying Emulator: Rapid Building and Testing of
Networked Applications for Mobile Computers”, to appear
in Proceedings of Conference on Mobile Agents (MA’2001),
LNCS, Springer, 2001.

[18] Sun Microsystems, “The Bean Development Kit”,
http://java.sun.com/beans/, July, 1998.

[19] C. Szyperski, “Component Software”, Addison-Wesley,
1998.

[20] J. E. White, “Telescript Technology: Mobile Agents”,
General Magic, 1995.

