A Formalism for Hierarchical Mobile Agents

Ichiro Satoh

Department of Information Sciences, Ochanomizu University*/
Japan Science and Technology Corporation

E-mail:

Abstract

This paper presents a theoretical and practical frame-
work for constructing and reasoning about mobile
agents. The framework is formulated as a process cal-
culus and has two contributions. One of the contribu-
tions can model not only individual mobile agents but
also a group of mobile agents because the calculus allows
more than one mobile agent to be dynamically organized
into a single mobile agent. The other contribution can
exactly model many features of actual mobile agents,
such as mobility and marshaling, which are often ig-
nored in other existing frameworks but may seriously
affect the correctness of mobile agents. To demonstrate
the utility of the calculus, we constructed a practical
mobile agent system whose agents can be naturally and
strictly specified and verified in the calculus. The sys-
tem also offers a security mechanism for mobile agents
by using well-defined properties of the calculus.

1 Introduction

Mobile agents can travel from computer to computer
under their own control. They can provide a conve-
nient, efficient, and robust framework for implement-
ing distributed applications. Over the last few years,
a dozen mobile agent systems have been explored (for
example [8, 9, 12, 13, 18, 22]).

The correctness of each mobile agent depends not
only on the results of computation within a particu-
lar computer, but also on the migration of the agents.
Therefore, the construction and debugging of mobile
agent programs are far more complex and difficult than
those of ordinary parallel and distributed programs.
We need the support of formal methods for reasoning
about mobile agent programs. In the past few years,
several researchers have proposed methods such as the
Ambient calculus [5] and the Join-calculus [6]. How-
ever, these methods are not always fit for the devel-

*2-1-1 Otsuka Bunkyo-ku Tokyo 112-8610, Japan, Tel: +81-
3-5978-5388, Fax: +81-3-5978-5390

ichiro@is.ocha.ac. jp

opment of practical mobile applications. This is be-
cause they are just theoretical frameworks. Often they
cannot model several features of actual mobile agents
which may seriously affect the correctness of mobile
agents, for example, the process of marshaling agents
and computational resources.

The goal of this paper is to investigate not only a
formal model to reason about mobile agents but also a
practical framework to construct mobile agent-based
applications, which are available in real distributed
computing settings. We construct a process calculus
which permits expressing and analyzing mobile agents.
Like mobile ambients, our mobile agent can be a con-
tainer of other agents and migrate itself and its inner
agents into another mobile agent as a whole. Further-
more, we implement a new mobile agent system for con-
structing practical and large-scale mobile applications.
The system is based on the process calculus presented
in this paper. We try to keep the implementation of the
system within the calculus as much as possible so that
many well-defined and useful properties of the calculus
are inherited. We believe that the calculus presented
in this paper can provide a theoretical framework for
the mobile agent system, in particular a security mech-
anism for checking whether a moving agent is valid or
not in order to protect the system against invalid or
malicious agents.

In the next section, we discuss some of the related
work. In Section 3, we define a process calculus for
hierarchical mobile agents. Section 4 presents a mobile
agent system based on the calculus and how to write
agent programs in the system. In Section 5 we describe
the current status of an implementation of the system.
Section 6 gives some concluding remarks.

2 Background
Currently, a lot of mobile agent systems have been re-

leased (for example see Aglets [9], Mole [18], Odyssey
[7], Telescript [22], and Voyager [13]). To our knowl-

edge, all existing mobile agent systems, including mo-
bile object systems, lack any theoretical basis. Thus,
it is difficult to verify and guarantee the correctness of
mobile agents.

There is another problem in the development of mo-
bile agent-based applications. A large-scale application
software is often constructed as a collection of subcom-
ponents. Consequently, a mobile application needs to
be migrated as a whole with all its subcomponents.
This is because when such an application is moved,
there is a possibility that if some subcomponents were
left behind; the moving application could no longer rely
on the functions offered by the remaining subcompo-
nents. Therefore, we need a mechanism for combining
a group of mobile agents into a single mobile agent,
like component-based software development technology
[20].

However, existing mobile agent systems cannot
structurally assemble more than one mobile agent into
a mobile agent since each mobile agent is basically de-
signed as an isolated entity which always acts and mi-
grates independently. Although several systems pro-
vide the notion of inter-agent communication, they can
couple mobile agents loosely. Mole introduces the no-
tion of agent groups in order to encourage coordina-
tion among mobile agents [3]. Mole’s agent groups can
consist of agents working together on a common task
but are not mobile. Also, Telescript and Odyssey intro-
duce the concept of places in addition to mobile agents.
Places are agents which can contain mobile agents and
places inside them, but are not mobile. This is due to
a lack of practical applications of existing mobile agent
systems.

On the other hand, several researches have explored
theoretical models for mobile agents (for example Dis-
tributed 7-calculus [14], the Nomadic w-calculus [19],
the Join calculus [6], the Ambient calculus [5], and the
Seal calculus [21]).

Distributed w-calculus and the Nomadic m-calculus
are extensions of m-calculus. They have the notion
of locality but cannot express any structure of mobile
agents themselves as opposed to the tree structure of
the Join calculus and the nested structure of mobile
ambients.

The join-calculus [6] introduces a notion of named
locations which forms a tree and the mobility of an
agent is modeled as a transformation of subtrees from
one part of the tree to another. The calculus assumes
a kind of a global name server and it allows an agent
to directly migrate to its unique destination. Several
distributed implementations of the calculus are avail-
able (for example [10]). However, the calculus lacks
any mechanism to assemble more than one agent.

The ambient calculus [5] allows mobile agents (called
ambients in the calculus) to contain other agents and to
move as a whole with all its subcomponents. The calcu-
lus models the mobility of agents as a navigation along
a hierarchy of agents, whereas in real mobile agent sys-
tems agents are directly transmitted to other comput-
ers over a communication channel. The calculus has
been implemented in Java [4]. However, the imple-
mentation is not inherently designed to be executed in
any distributed system settings. The Seal calculus [21]
is similar to the mobile ambients and ours in its ex-
pressiveness of hierarchical structure of mobile agents,
but its main purpose is to reason about the security
mechanism of mobile agents.

Unlike other existing theoretical frameworks, our cal-
culus can represent marshalled agents to transmit over
network, because the process of marshalling of mobile
agents is crucial in the computation of mobile agents.
Moreover, it allows mobile agents to be freely moved
into any agents in the same agent hierarchy, unlike the
ambient calculus and the Seal calculus.

In an earlier paper [16], the author presented a prac-
tical mobile agent system, called MobileSpaces, which is
build on the Java virtual machine and can dynamically
aggregate a group of mobile agents, like the system pre-
sented in this paper. However, the main purpose of the
MobileSpaces system is to construct an extensible and
adaptive mobile agent system. The MobileSpaces sys-
tem is characterized in that it can dynamically adapt
its functions to its execution environments by migrat-
ing agents that offer the functions. Also, the previous
paper [16] lacks any theoretical foundation on its mo-
bile agent system.

On the other paper, in this paper we try to extend
the MobileSpaces system in order to construct mobile
applications which are large in scale and complicated.
The implemented system presented in this paper can
provide a practical framework for mobile agent-based
applications and has paid as much attention to keep
obeying our calculus for hierarchical mobile agents as
possible.

3 Framework

Before formally defining our framework, we summarize
its basic idea. Like other mobile agents, our mobile
agents are computational entities. When each agent
migrates, not only the code of the agent but also its
state can be transferred to the destination. Further-
more, our mobile agent model has the following unique
concepts.

Agent D

step 1 a Agent E migration
Agent A
Agent D
step 2 Agent E

gent ©
Agent A

Figure 1: Agent Hierarchy and Inter-agent Migration.

e Agent Hierarchy: Each mobile agent can be con-
tained within one mobile agent.

e Inter-agent Migration: Each mobile agent can
migrate between mobile agents as a whole with all
its inner agents.

Mobile agents are organized in a tree structure. Figure
1 shows an example of an inter-agent migration in an
agent hierarchy. When an agent contains other agents,
we call the former agent a parent and the latter agents
children. We call the agents which are nested by an
agent, the descendent agents of the agent. We call the
agents which are nesting an agent, the ancestral agents
of the agent, unlike the ambient calculus. Each agent
can freely move into any agents in the same agent hi-
erarchy except into itself or its descendants.

The first concept enables us to construct a mobile
application by organizing more than one mobile agent,
instead of constructing a large and monolithic mobile
agent. The second concept allows a group of mobile
agents to be treated as a single mobile agent. This
is needed for the development of a mobile application,
because a large-scale mobile application is often com-
posed of a collection of subcomponents. Consequently,
our mobile agents can be viewed as the mobile soft-
ware components that have been studied in component-
based software development technology [20].

3.1 The calculus

Our framework is defined as a process calculus like the
join calculus [6] and the ambient calculus [5]. It is
characterized in that it can model several features of
mobile agents; for example marshaling of agents, which
are often ignored in other existing frameworks, but may
seriously affect the correctness of mobile agents.

Definition 3.1 Let N be an infinite set of agent
names, ranged over by n,ni,no,. . .. 0

The framework describes mobile agents by means of
the expressions defined below.

Definition 3.2 The set M of mobile agent expres-
sions, ranged over by M, M7, M, ... is the smallest set
containing the following expressions:

S u= 0 | A | go(n).S
| if b then S; else Sy
M = n:{S|M} | My, M

where A is an element of a constant agent expression

and is always used in the form A 4 g and b is an
element of the boolean set {true, false}. 0

The intuitive meaning of constructors in M and S is
as follows:

e 0 represents a terminated agent program.

e if b then S| else S; behaves as Sy if bis true, oth-
erwise S;. We assume that b is given either true
or false before evaluating this expression.

o n : {{S| M]} represents a mobile agent named n
and behaves as sequential program S with its chil-
dren denoted M. The program is executed sequen-
tially and can instruct the agent to move. The
descendent agents can be executed in parallel.

e go(n) .S instructs the agent and its inner agents
to migrate to its destination agent named n, and
then behaves as S. If there is not any agent named
n, the agent is suspended until a time when such
an agent exists.

e M, , M represents two mobile agents My and Mo
which may execute in parallel.
The operational semantics of MobileSpaces is given as a
. . (M.
labeled transition system, written M; niMa) M. For
(M.
example, M, n:{Mz) M| means that mobile agent M;
sends/receives a marshaled mobile agent My and then
behaves as M;. Throughout this paper we will use a
structural congruence (=) over expressions. This is
the method followed by Milner in [11] to deal with the

m-calculus. The use of structural congruence allows us
to abstract away the static structure of networks.

Definition 3.3 = is the least syntactic congruence
defined by the following equations:

(i) if true then S; else S2 = S
if false then S; else 5o = S5

i) A=Sif AY S

(111) Ml,MQEMQ,Ml M,OEM
My, (Ma, Ms) = (M1, Ma), Ms

where we assume a-equivalence and syntactic equiv-
alence are included in =. We abbreviate transitive
closure of = to =. 0

Definition 3.4 The set £ of transition labels ranged
over by «, aq, ag, ... is the smallest set containing the
following expressions:

a == nl M) | ntT (M) | 7 U

(M) represents an agent which is marshaled into a bit-
stream that can be easily transferred over a network.
n | (M) represents the reception of a marshaled agent
M whose destination is n, n 1 (M) represents the dis-
patch of M to an agent named n, and 7 is an internal
execution. We now present the operational semantics
of our calculus.

D aps . n:(M)
efinition 3.5 — C MXLXM (written M —
M) is the least relation that is given by the following

axioms and rules.

OUT: n;: {go(n2) .S | M]} n2t(nulSI1MD) g

nl(Msz)

IN: n:{S|M]} —" n:{S|M, M}

1(M3) T(M3)
MOVE: M UMD My TS M
M, M, = M|, M,
[e3 !
LOCAL : M — M
[e3 !
n:{[SIM}} — n:{S|M]}
[e3 !
PARALLEL : My — M,
M, M: =% M|, M,
STRUCT: Mi=My M 2, M; M, = M

[e3

M, = M

. oy T
where we often abbreviate transitive closure of — to

— 0

The above labeled transitions have the following intu-
itive meaning:

e the OUT axiom transforms agent S named n; and
its inner agents M into (n : {{S" | M]}), correspond-
ing to a marshaled agent whose destination is an
agent named no.

e the IN axiom transforms a marshaled agent and
its inner agents whose destination is n into an
agent named n.

e the MOVE rule means that a marshaled agent
moving to n is received if there is an agent named
n.

e the LOCAL rule enables agent migration to occur
locally.

Example 3.6
basic expressions.

We show partial transitions of some

e A simple migration:
ny : {[go(ng) . S1 | Mi]}, ny : {{So| Mot
5 ng : {{So| Ma, nq ¢ {{S1| Mi]}]}

e Marshaling and Dispatching an agent:

ny : {[S1| M1, n2 : {{go(n4) . Sz | Ma]t]}

nal(na:{S2 | M2

e Receiving a serialized agent:

nal(na:{{S2 | M2
ng : {[Ss | M3, ng : {{Sa | Mu]}]} Ln2:{[Sy | Mal})

ng : {[S3| Mz, ng : {{Sa| Ma, ng : {[S2 | Ma]}]}]}

Our framework intends to introduce mobile agents as
mobile software components and it intends to construct
a large-scale mobile application as a compound mobile
agent, which contains mobile agents corresponding to
its subcomponents. Therefore, it is very convenient to
formulate a congruence relation to guarantee substi-
tutability between two mobile agents.

Definition 3.7 A binary relation R C M x M is a
bisimulation if (My, M) € R implies, for all a € L;

(i) VM}: M; == M] then

IMS: My == M} and (M}, M3) € R.
(ii) VM5: My == M} then

IM{: My == M] and (M], M}) € R.

where M =% M’ is given as M (——)* % (-
)* M'. We let “~” denote the largest bisimulation, and
we call My and My equivalent if My ~ M,. 0

From the above definition, we easily see that M ~ M,
Ml ~ M2 if M2 ~ Ml, and Ml ~ M3 if Ml ~ M2 and
MQ ~ Mg.

The following property can be proved by the action
induction on the structure of expression M.

Theorem 3.8 equivalence = is preserved by all op-
erators. 0

By this theorem we guarantee that if two mobile agents
are equivalent, the agents can substitute for one in any
context.

4 Implementation

This section presents a mobile agent system which can
accomplish mobile agents based on the calculus pre-
sented in the previous section. Hereafter, we describe
some features of the system.

4.1 The Runtime System

The runtime system is a platform for executing and
migrating mobile agents. It is built on the Java virtual
machine.

Agent Hierarchy Management: FEach runtime
system maintains an agent hierarchy that is imple-
mented as a tree structure where each node contains
a name, an agent program, and the references of the
nodes of its child agents. Each node corresponds to
an expression formed in n : {{S| M]}. The system can
transform the tree structure to migrate agents in the
agent hierarchy according to the rules presented in Def-
inition 3.5. It can also be abstracted as a stationary
agent at the root node of the tree structure.

Agent Migration Management: When an agent is
transferred over network, the runtime system marshals
the agent and its descendent agents into a bit-stream.
The runtime system can transfer the bit-stream to the
destination computer by using an application-layered
protocol for agent transmission whose mechanism is ex-
tended of the HTTP protocol over TCP/IP communi-
cation. On the receiver side, the runtime receives the
bit-stream and then reconstructs an agent and its de-
scendent agents. The process of migrating agents over
network corresponds exactly to the OUT and IN ax-
ioms.

In the current implementation of our system, each
agent is transformed into a bit stream formed in Java’s
JAR file format that can support digital signatures,
allowing for authentication. It uses the Java object
serialization package for marshaling agents. The pack-
age does not support the capturing of stack frames of
threads. Consequently, our system cannot serialize the
execution states of any thread objects.! Instead, when

1This limitation is not serious in the development of real mo-
bile agent-based applications, as discussed in [18].

an agent is serialized, the core system propagates cer-
tain events to its descendent agents in order to instruct
the agent to stop its active threads, and then auto-
matically stops and serializes them after a given time
period.

Agent Execution Management: According to the
PARALLEL rule, mobile agents can be executed in
parallel. The system controls the execution of agents
and activities of agents are implemented by the Java
thread library.

Security Mechanism: Security is essential in mo-
bile agent computing. The current implementation of
the system relies on the JDK 1.1 security manager
and it provides a simple mechanism for authentication
of agents. Moreover, since our system allows mobile
agents to be software components, a mobile agent em-
bedded in a system can be dynamically replaced by an-
other agent whose behaviors are equivalent to those of
the original agent. We intend to offer a security mech-
anism based on the bisimulation presented in Defini-
tion 3.7 into a mobile agent system in order to analyze
whether an old mobile agent can be replaced by a new
one.

However, the process of completely verifying whether
two agents are bisimilar or not is too heavyweight to be
used for runtime checking of receiving agents. There-
fore, in the current implementation of our system, each
program for agents is statically identified by a 64-bit
hash of its methods and fields. The runtime system
checks whether a new agent can offer the same methods
and fields of the old one according to the 64-bit iden-
tifier. An agent can be dynamically replaced by a new
agent which is equipped with all the public methods
supported by the original one, but the current imple-
mentation of our system does not allow the new agent
to inherit any internal state of the old agent.

4.2 Mobile Agent

Each agent has to be an instance of a subclass of ab-
stract class Agent as shown below. The Agent class
consists of certain methods invoked in the life cycle of
a mobile agent. Each agent has a globally unique iden-
tifier and one or more activities.

public class Agent extends MobileObject {
// (un)registering a context for its children
void addChildrenContext(Context context){ ... }
void removeChildrenContext(Context context){ ... }
// registering listeners to hook certain events
void addDefaultListener(

DefaultEventListener listener){ ... }

void removeDefaultListener(

—
—
—

ESA‘ESB

—
Agent A

[Child Agent B Child Agent C

getSer\I/ice()

agent \J [method 1
program

method 2 state
callbackﬂ method 3
1

(If' event handler (listener))
T J

7 an event from the base system
or the ancestral agents

Figure 2: the expression of a hierarchical mobile agent and its implementation.

DefaultEventListener listener){ ... }
// registering a name in an environment variable
void register(String name, String value)
throws ... { ... }
// migrating the agent specified as urll to
// the target agent specified as url2
void go(AgentURL url)
throws NoSuchAgentException ... { ... }
void go(AgentURL urlil, AgentURL url2)
throws NoSuchAgentException ... { ... }
// asking its parent agent a message
void getService(Message msg)
throws NoSuchMethodException R S
// issuing an event to an agent specified as url
void dispatchEvent(AgentURL url, AgentEvent evt)
throws ... { ... }

.

go(n) .S in our calculus is accomplished with the go ()
method in the Agent class. When an agent invokes the
go() command, the agent is moved to the destination
agent.

go(new AgentURL("matp://
some.where.com/agent1/agent2"));

where matp denotes a protocol for agent migration.
When an agent performs the above command, the
agent migrates itself and its descendants into the
/agent1/agent2 mobile agent located at the host (ad-
dressed as some.where.com). The other primitives of
the calculus, for example if b then S; else S; and A
can be accomplished through control flows of the Java
language.

The runtime system maintains the life-cycle of
agents: initialization, execution, suspension, and ter-
mination. When the life-cycle state of an agent is
changed, the system can invoke certain methods of
agents registered as listener objects. For example, the
DefaultEventListener interface specifies a listener
object whose methods are invoked by the system when
the agent is created, destroyed, serialized, and migrated
to another agent and when visiting agents enter and
leave from it.

interface DefaultEventListener
extends AgentEventListener {
// invoked after creation at url
void create(AgentURL url);
// invoked before termination
void destroy();
// invoked after accepting a child
void add(AgentURL child);
// invoked before removing a child
void remove(AgentURL child);
// invoked after arriving at the destination
void arrive(AgentURL dst);
// invoked before moving to the destination
void leave(AgentURL dst);

}

The above interface specifies fundamental methods in-
voked by the core system, when agents are created,
destroyed, persisted, and migrated to another agent.

Several existing mobile agent systems introduce the
concept of places. Though places are not mobile, they
can provide their own services and resources for visiting
agents. Similarly, our parent agents can be responsi-
ble for providing their own services and resources for
its children. A child agent can call methods given in
its parent agent by calling the getService() method
defined in the Agent class.

On the other hand, each agent has direct control of
its descendent agents. That is, an agent can instruct
its descendent agents to move to other agents, serial-
ize them and destroy them. Each agent can delegate
certain events to its descendent agents so that they do
something.? In contrast, each agent has no direct con-
trol of its ancestral agents.

5 The Current Status

The MobileSpaces mobile agent system has been imple-
mented in the Java language (JDK1.1 or later version).

2The current implementation of MobileSpaces permits a par-
ent agent to obtain references to the Java objects corresponding
to its descendants.

The core system is constructed independently of the
underlying system and can run on any computer with
a 1.1-compatible Java runtime. We have tried to keep
the implementation within the framework as much as
possible.3

Even though our implementation was not built for
performance, we have performed a basic experiment
of agent migration for two cases: agent migration in
an agent hierarchy and agent migration between two
computers (Pentium 11-300 MHz with WindowsNT 4.0
and JDK 1.1.8) connected by 10BASE-T Ethernet.

5.1 Performance

To evaluate the cost of agent migration, we examined a
basic experiment of agent migration between two com-
puters.

Table 1: The time of agent migrations (msec)

time
agent migration between two computers 30
agent migration in an agent hierarchy 5

The first result is the time of an agent migration in an
agent hierarchy, and includes the cost to check whether
the visiting agent is permitted to enter the destination
agent or not. In the second experiment, agent migra-
tion is supported by the runtime system allocated on
two computers. Each runtime system can communicate
with the other by using an application-level protocol
between TCP/IP sockets. On the sender side, the run-
time system serializes and transfers the codes and state
of an agent (including its inner agents) to the transmit-
ter on the receiver side and waits for an acknowledg-
ment message. The marshaled agent consists of its seri-
alized state, its codes, and its attributes such as name
and capability, and is packed and compressed into a
bit-stream which amounts to 1.5Kbytes. The second
result is the sum of the marshaling, zip-based compres-
sion, opening TCP connection, transmission, security
verifications, decompression, unmarshaling, and clos-
ing TCP connection.

5.2 Examples

Various mobile application running on our mobile agent
system have been developed so far, for example work-
flow management, CSCW, distributed information re-

3 An implementation of the mobile agent system, including its
examples is available from http://islab.is.ocha.ac. jp/.

trieval, active networks, and so on (for example see our
other paper [16]).

One of the most important examples is applications
based on the concept of compound documents like
OpenDoc developed by Apple Computer and IBM [1].
Our agent hierarchy allows compound documents given
as mobile agents to be dynamically composed into a
compound document, while traditional mobile agents
are isolated programs and thus cannot support any
compound documents.

- - flmage Viewer
Component
! (Child Mobile Agent)
] i1 | Text Editor
| Component
! (Child Mobile Agent)

Letter Component -
(ParentMobi\gAgem} H |

Figure 3: Window of the Compound Letter Agent

We have constructed an electronic mail system where
each letter is a mobile agent incorporated with the
framework presented in this paper. Therefore, each
letter can contain more than one mobile agent-based
component: some text, graphics, and animations on
the document of the letter as shown in Figure 3 and
4. Users can edit these inner components written in
arbitrary data formats, because they are mobile agents
and thus can include programs to edit their own con-
tents. For example, to edit the text, simply click on
it, and its editor program is invoked. The letter agent
can autonomously deliver itself and its inner compo-
nents to the destination. The receiver can read all the
contents of the arriving letter, because the letter is a
mobile agent that contains its components to view the
contents.

Image Viewer
Text Editor Component
Component (Child Mobile Agent)

viewer

(Child Mobile Agent)

layout manager
[mail transfer |

migration

>

Letter Component
(Parent Mobile Agent)

Figure 4: Structure of the Compound Letter Agent

6 Conclusion

We have reported a project to construct a formal and
practical framework for mobile agents. While other
work in the area is focusing on a unification between
a theoretical foundation and its practical implemen-
tation. The framework introduces two new notions:
agent hierarchy and inter-agent migration. These no-
tions allow a group of mobile agents to be dynami-
cally assembled into a single mobile agent. The frame-
work consists of a process calculus for reasoning mobile
agents and a mobile agent system. The calculus can
model many features of mobile agents that are incor-
porated with these notions. The mobile agent system is
based on the Java language and can migrate hierarchi-
cal mobile agents over network. The implementation
of the system has tried to follow the calculus as much
as possible. This framework provides not only a formal
model to reason about mobile agents but also a pow-
erful framework to construct a mobile application that
is large in scale and complicated.

This work is still working in progress. The original
goal of our calculus is to construct a security mecha-
nism for checking whether receiving mobile agents are
valid or not in hierarchical mobile agent settings. How-
ever, the calculus and its algebraic properties are too
costly to be used as a security mechanism in runtime.
Therefore, we are developing a type-theoretic frame-
work based on the calculus. Also, in our previous paper
[15], we constructed an algebraic framework for alge-
braic framework for optimizing parallel programs and
are interested in applying the framework to our calcu-
lus.

Acknowledgements

We would like to thank anonymous referees for provid-
ing many constructive and valuable suggestions.

References

[1] Apple Computer Inc., OpenDoc: White Paper, Apple
Computer Inc., 1994.

[2] K. Arnold and J. Gosling, The Java Programming Lan-
guage, Addison-Wesley, 1996.
[3] J. Baumann and N. Radounklis, Agent Groups in Mo-

bile Agent Systems, Conference on Distributed Appli-
cations and Interoperable Systems, 1997.

[4] L. Cardelli, Ambient, Available from
http://www.luca.demon.co.uk/Ambit/Ambit.html

[5] L. Cardelli and A. D. Gordon, Mobile Ambients, Foun-
dations of Software Science and Computational Struc-
tures, LNCS, Vol. 1378, pp. 140155, 1998.

[6] C. Fournet, G. Gonthier, J. Levy, L. Marnaget, and
D. Remy, A Calculus of Mobile Agents, Proceedings of
CONCUR’96, LNCS, Vol. 1119, pp.406-421, Springer,
1996.

[7] General Magic, Inc. Introduction to the Odyssey,
http://www.genmagic.com/agents, 1997.

[8] R.S. Gray, Agent Tcl: A Transportable Agent System,
CIKM Workshop on Intelligent Information Agents,
1995.

[9] B. D. Lange and M. Oshima, Programming and De-
ploying Java Mobile Agents with Aglets, Addison-
Wesley, 1998.

[10] C. Le Fessant, The JoCAML system prototype, from
http://join.inria.fr/jocaml, 1998.

[11] Milner, R., Parrow. J., Walker, D., A Calculus of Mo-
bile Processes, Information and Computation, Vol.100,
pl-77, 1992.

[12] D. S. Milojicic, W. LaForge, and D. Chauhan, Mo-
bile Objects and Agents (MOA), USENIX Conference
on Object Oriented Technologies and Systems, April
1998.

[13] ObjectSpace Inc, ObjectSpace Voyager Technical
Overview, ObjectSpace, Inc. 1997.

[14] J. Riely and M. Hennessy, Distributed Processes
and Location Failures, ICALP’97, LNCS, Vol. 1256,
pp-471-481, Springer, 1997.

[15] I. Satoh, An Algebraic Framework for Optimizing Par-
allel Programs, Proceedings of Symposium on Soft-
ware Engineering for Parallel and Distributed Systems,
pp-28-38, IEEE Press, April, 1998.

[16] I. Satoh, MobileSpaces: A Framework for Building
Adaptive Distributed Applications using a Hierarchi-
cal Mobile Agent System, to appear in Proceedings of
IEEE International Conference on Distributed Com-
puting Systems (ICDCS’2000), IEEE Press, April,
2000.

[17] I. Satoh, A Hierarchical Model of Mobile Agents and
Its Multimedia Applications, to appear in Proceedings
of Workshop on Multimedia Network Systems, IEEE
Press, July, 2000.

[18] M. Strasser and J. Baumann, and F. Hole, Mole:
A Java Based Mobile Agent System, Proceedings of
ECOOP Workshop on Mobile Objects, 1996.

[19] P. Swell, P. T. Wojciechowski, and B. C. Pierce,
Location-Independent Communication for Mobile
Agents: A Two-Level Architecture, Workshop on In-
ternet Programming Languages, LNCS, Vol. 1686,
Springer, 1998.

[20] C.Szyperski, Component Software, Addison-Wesley,
1998.

[21] J. Vitek, Seal: A Framework for Secure Mobile Com-
putations, Workshop on Internet Programming Lan-
guages, LNCS, Vol. 1686, Springer, 1998.

[22] J. E. White, Telescript Technology: Mobile Agents,
General Magic, 1995.

