Making smallest-diameter graphs at "Graph Golf"

<u>Takayuki Matsuzaki</u>

Graduate School of Science and Technology, Kumamoto University

Teruaki Kitasuka Graduate School of Engineering, Hiroshima University

Masahiro lida

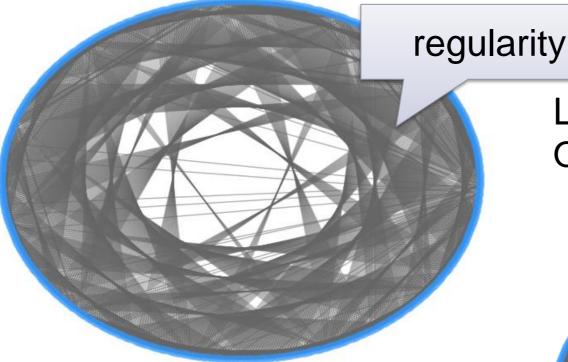
Faculty of Advanced Science and Technology, Kumamoto University

Background

"Graph Golf"

- Aims at finding smallest-diameter graphs
- We submitted eleven graphs, and won widest improvement award by using our approach
- Order/Degree problem
 - Given order/degree
 - Find a graph with minimum diameter and average shortest path length (ASPL)

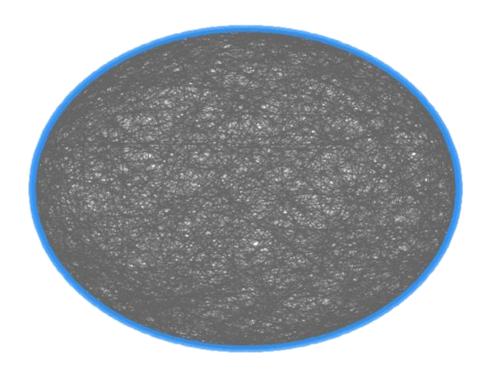
Submissions: n = 512, d = 8



Right: k = 5, l = 3.26793Random graph

Left: k = 4,

Left: k = 4, l = 3.11138Our graph



Figures are from GraphGolf 2016 website. (http://research.nii.ac.jp/graphgolf/ranking.html) Nov. 22, 2016. CANDAR'16. Hiroshima, Japan.

Why does the difference occur?

- We use Cayley graphs as a base
 - Studied in Degree/Diameter problem
 - Derived by mathematical way
 - It has regularity but not fit in ODP

We will explain Cayley graphs later.

Degree/diameter problem (DDP)

Given degree/diameter and find a graph with largest order

- Has been studied for a long time
- Many solutions are found
- Not always be applied for ODP solutions

Derive ODP from DDP

- It will be useful if some alternation were applied
- By adding (or removing) nodes/edges
- Turn into desired order/degree graph which has smallest-diameter
- Two DDP outcomes

- Brown graphs, Cayley graphs

How to make small graphs

To get small graphs among various order/degree pairs, we use following two methods.

1. Graph uniting method

Using Brown graphs

Applied to: (1 024, 32), (1 560, 40), (3 250, 57)

2. Node adding method

Using Cayley graphs

Applied to: (256, 8), (512, 8), (1 024, 8) (10 000, 7), (10 000, 11), (10 000, 20), (100 000, 20)

Note: Base graph of (256, 8) is degree/diameter solution (n = 253, d = 8). So, node adding only. (1 024, 8)-graph is gained directly by Cayley graph.

Why we interested in DDP

Heuristics for diameter 3 graphs

- Create a base graph
 - Targeted diameter k = 3
 - Multiple Petersen graphs are connected
- Greedily add edges

 To increase the # of pentagons

We described detail in GraphGolf 2015

Before the competition began

Using heuristics and 2-opt search ...

- We made (36, 3)-graph
 - Submitted it in June 24.
 - Tied for first place

Other graphs
Complete defeat

Its problems

• We can only make graphs k = 3

In GraphGolf 2016, graphs of (64, 8), (300, 7), (1 024, 32), (1 560, 40), (3 250, 57) has k = 3

- Remainder 15 graphs
 - k = 4: (256, 8), (300, 7), (512, 8), (1 024, 11), (10 000, 20)
 - k = 5: (1 024, 8), (1 800, 7), (10 000, 11), (100 000, 20)
 - k = 6: (96,3), (100 000, 11)
 - $k = 7: (10\ 000, 7)$
 - $k = 8: (100\ 000, 7)$
 - k = 9: (384, 3)
 - k = 11: (1024, 3)

Widest Improvement is difficult to attain.

What can we do in the competition?

Also, we focused on **Deepest Improvement**

However

- We don't have enough computation power
- Not professional in graph theory

No idea to get another graphs

We depended on knowledge from DDP outcomes.

Degree/Diameter problem

DDP outcomes

We looked at

Degree/Diameter problem

- (253, 8)-graph
- Its
$$k = 3$$
, $l = 2.730$ Can be expected

While in GraphGolf

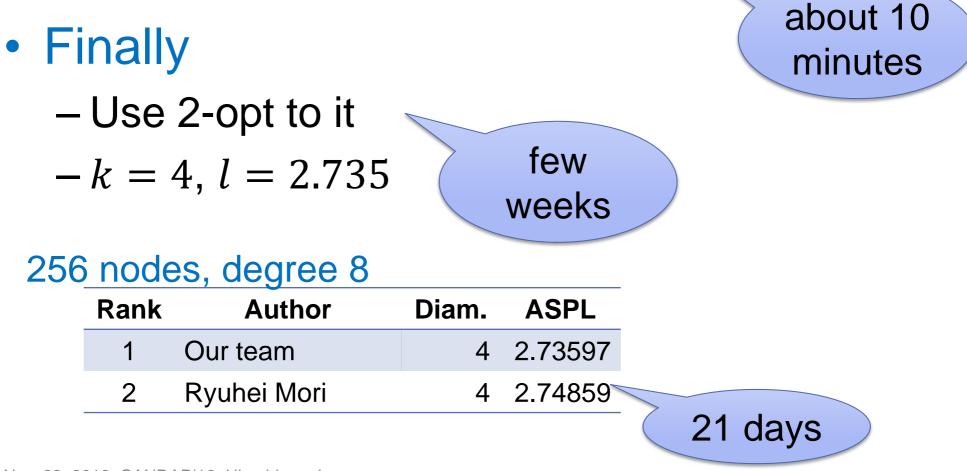
– Random (256, 8)-graph

- Its
$$k = 4, l = 2.88$$

- The difference is order
 (253, 8)-graph has good k and l.
- Change order
 - By adding nodes/edges randomly
- Iterate it
 - Make many graphs
 - Leave the smallest-diameter one

-k = 4, l = 2.743

- Faster than making it from random



Experience from (256,8)-graph

- DDP solution can be used
 - -As a good base graph
 - -Studied for a long time
 - -Many solutions are found

It seems to work out well. We set goal to Widest Improvement.

Method 1

Graph uniting method

Attempt to make another graph

- Inspired by Brown's construction
 Described in [1] at GraphGolf 2015
- It can make a graph B(p)Order = $p^{2k} + p^k + 1$ Degree = $p^k + 1$ Diameter = 2

p: a prime k: a natural number

[1] R. Mizuno and Y Ishida, "The construction of a regular graph," http://research.nii.ac.jp/graphgolf/2015/candar15/graphgolf2015-mizuno.pdf

• Select Brown graph

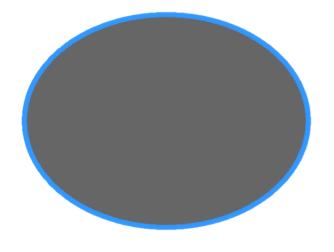
- select odd prime *p* satisfies $n > p^{2k} + p^k + 1$
- -n becomes discrete value
- Brown graph doesn't satisfy ODP constraint
 - Add nodes by uniting other graphs
 - Add edges randomly to get the graph regular

k	p	Order	Degree
	19	381	20
1	31	993	32
I	37	1 407	38
	53	2 863	54

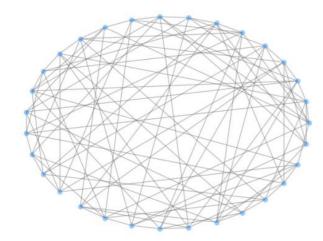
In "Graph Golf 2016", $(n, d) = (1\ 024, 32)$, $(1\ 560, 40)$, $(3\ 250, 57)$ are featured.

- (1 024, 32)-graph: Use *B*(31)
- (1 560, 40)-graph: Use *B*(37)
- (3 250, 57)-graph: Use *B*(19), *B*(53)

Method 1: (1 024,32)-graph



• Brown graph n = 993, k = 2 d = 32 (not regular) l = 1.967774



• another graph n = 31, k = 3 d = 7 (not regular) l = 1.825806 Brown graphs B(p) are not regular. So, vertices need connecting to another one.

- Brute-force approach
 - -Choose two vertices *i*, *j*
 - -Add an edge between them
 - -Try to connect all combinations
 - -Leave the better one.

After that we use 2-opt

1 024 nodes, degree 32

Rank	Author	Diam.	ASPL
1	Yawara Ishida & Ryosuke Mizuno	3	1.99784
4	Our team	3	2.01509

1 560 nodes, degree 40

Rank	Author	Diam.	ASPL
1	Our team	3	2.03823
2	H. Inoue	3	2.18947

3 250 nodes, degree 57

Rank	Author	Diam.	ASPL
1	Our team	3	2.07002
3	H. Inoue	3	2.23220

Roughly work well as we expected

Difficulties in Brown graph

• Degree is not regular

- $-p^{2k}$ vertices have p + 1, p + 1 vertices have p
- We don't have a clue how to unite graphs well
- How to get another graph
 - Random graph with 2-opt
 - Complete graph
 - etc...

Method 2

Node adding method

Method 2: Cayley graphs

Cayley graphs provides large (d, k)-graphs in DDP.

- Given m, n, rwhere $r^n \equiv 1 \pmod{m}$, $gcd(\phi(m), n) > 1$ $\phi(m)$: Euler's totient function
- Given bouquets $B(1,l) = [(a_0,b_0)|(a_1,b_1)(a_2,b_2)\cdots(a_l,b_l)]$ or $B(0,l) = [(a_1,b_1)(a_2,b_2)\cdots(a_l,b_l)]$
- Order mn
- Degree 2l + 1 if using B(1, l), or 2l if using B(0, l)

Loz, E., & Pineda-Villavicencio, G. (2009). New Benchmarks for Large-Scale Networks with Given Maximum Degree and Diameter. The Computer Journal, 53(7).

Method 2: Example of parameters

m	n	r	bouquets	Order	Degree
46	11	9	<i>B</i> (0,4)	506	8
555	18	4	<i>B</i> (1,3)	9 990	7
555	18	4	<i>B</i> (1,5)	9 990	11
555	18	16	<i>B</i> (0,10)	9 990	20
4 165	24	19	<i>B</i> (0,10)	99 960	20

In "Graph Golf 2016", (*n*, *d*) = (512,8), (10 000,7), (10 000,11), (10 000,20), (100 000,20) are featured.

Approach

- Make Cayley graph as a base
- Adding nodes/edges
- Turn into desired order/degree graph

Method 2: How to add nodes?

- Add node one by one
- Add edges

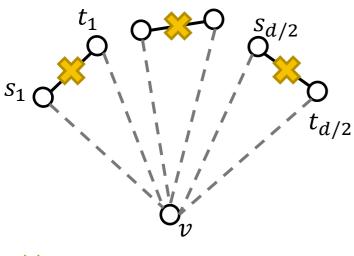
- Then check that the diameter has not increased

28

Two procedures

- Depending on whether order is even or odd

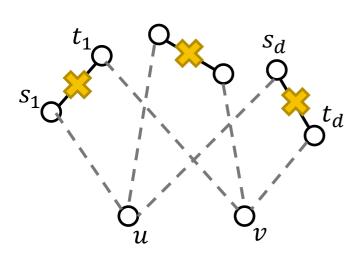
If d is even



- 1. Select d/2 edges which are not adjacent to each other
- 2. Delete edges selected in 1.
- 3. Add edges between v and s, t

Method 2: Node adding

If d is odd



- 1. Select *d* edges which is not adjacent to each other
- 2. Delete edges selected in 1.
- 3. Add edges between u, v and s, t

Method 2: How we select edges?

Try not to give a bad effect as possible to diameter/ASPL

Use edge betweenness as an indicator

Edge betweenness

Shows many shortest paths are passing along with the edge

For example (right figure)

original graph: k = 3, l = 1.64

If deleting edge "2—7", k = 4, l = 1.89

If deleting edge "5—6", k = 3, l = 1.67

3.25 5.5 4.75 3.25 4.75 4.75 3.5 4.75

(100 000, 20)-graph: Calculating edge betweenness is time-consuming. So, we select edges randomly

Ulrik Brandes. (2008). On Variants of Shortest-Path Betweenness Centrality and their Generic Computation. Social Networks, 30(2):136-145.

512 nodes, degree 8

Rank	Author	Diam.	ASPL	
1	Our team	4	3.11138	We use 2-
4	H. Inoue	4	3.13453	Raw: $k = k$

We use 2-opt. Raw: k = 4, l = 3.1135

1 024 nodes, degree 8

Rank	Author	Diam.	ASPL	
1	Our team	5	3.50538	Without using 2-opt
2	H. Inoue	5	3.51582	

100 000 nodes, degree 20

Rank	Author	Diam.	ASPL	
1	Our team	5	4.13341	Without using 2-op
2	H. Inoue	5	4.13621	

10 000 nodes, degree 7

Rank	Author	Diam.	ASPL	
1	Our team	7	5.05994	Without using 2-opt
3	H. Inoue		5.07192	

10 000 nodes, degree 11

Rank	Author	Diam.	ASPL	
1	Our team	5	4.10656	Without using 2-op
3	H. Inoue	5	4.10802	

10 000 nodes, degree 20

Rank	Author	Diam.	ASPL	
1	Our team	4	3.37597	Without using 2-opt
3	H. Inoue	4	3.37659	

Method 2: Open questions

- How we select m, n, r, bouquets
 - Affect diameter/ASPL of results graph
 - There are many combinations of these pairs
- Applicability of edge betweenness
 - Computational time grows
 - How much it effects to result

Compare ASPL

Make (512, 8)-graphs for 100 times They are k = 4.

-Random

min: 3.1161 median: 3.1172 max: 3.1187

– Use edge betweenness

min: 3.1159 median: 3.1168 max: 3.1180

ASPL became small but it is hard to say significant effect. 35

36

It shows how much that edge contributes to shortest paths

- Even though edge betweenness is low, there are shortest paths passing along.
- If we delete that edges, how it affects later is unclear.

Brown graphs or Cayley graphs

Brown graphs

-Have advantage (k = 2)

- Not easy to get desired order/degree

- Cayley graphs
 - Can change degree
 - Easy to add nodes/edges
 - -Need to choose m, n, r, bouquets

Conclusion

Conclusion

• "Graph Golf"

- We submitted eleven graphs, and won widest improvement award by using new approach
- Problems on 2-opt search
 - Make random graph and do 2-opt search
 - Execution time grows very rapidly
- Our Approach
 - Find ODP solutions from DDP solutions
 - Use Brown or Cayley graph as a base
 - Turn into desired order/degree graph

References

- Bachratý, M., & Širáň, J. (2014). Polarity graphs revisited. ARS MATHEMATICA CONTEMPORANEA, 8(1).
- Loz, E., & Pineda-Villavicencio, G. (2009). New Benchmarks for Large-Scale Networks with Given Maximum Degree and Diameter. The Computer Journal, 53(7).
- Ulrik Brandes. (2008). On Variants of Shortest-Path Betweenness Centrality and their Generic Computation. Social Networks, 30(2):136-145.