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1 Background 

• “Graph Golf” 

– Aims at finding smallest-diameter graphs 

– We submitted eleven graphs, and won widest 

improvement award by using our approach 

• Order/Degree problem 

– Given order/degree 

– Find a graph with minimum diameter and average 

shortest path length (ASPL) 
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2 Submissions: 𝑛 = 512, 𝑑 = 8  
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Left: 𝑘 = 4, 𝑙 = 3.11138 
Our graph 

 

Right: 𝑘 = 5, 𝑙 = 3.26793 

Random graph 

Figures are from GraphGolf 2016 website. (http://research.nii.ac.jp/graphgolf/ranking.html) 

regularity 



3 Why does the difference occur? 

• We use Cayley graphs as a base 

– Studied in Degree/Diameter problem 

– Derived by mathematical way 

– It has regularity but not fit in ODP 

 

We will explain Cayley graphs later. 
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4 Degree/diameter problem (DDP) 

Given degree/diameter and find a graph with 

largest order 

• Has been studied for a long time   

• Many solutions are found 

• Not always be applied for ODP solutions 
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5 Motivation 

• Derive ODP from DDP 

– It will be useful if some alternation were 

applied 

– By adding (or removing) nodes/edges 

– Turn into desired order/degree graph 

which has smallest-diameter 

• Two DDP outcomes 

– Brown graphs, Cayley graphs 
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6 How to make small graphs 

1. Graph uniting method 

Using Brown graphs 
Applied to: (1 024, 32), (1 560, 40), (3 250, 57) 

2. Node adding method 

Using Cayley graphs 
Applied to: (256, 8), (512, 8), (1 024, 8) 

(10 000, 7), (10 000, 11), (10 000, 20), (100 000, 20) 

To get small graphs among various order/degree pairs, we use 

following two methods. 

Note: Base graph of (256, 8) is degree/diameter solution (n = 253, d = 8). So, node adding only. 

(1 024, 8)-graph is gained directly by Cayley graph. 
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Why we interested in DDP 
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8 Heuristics for diameter 3 graphs 

• Create a base graph 

– Targeted diameter 𝑘 = 3 

– Multiple Petersen graphs are connected 

• Greedily add edges 

– To increase the # of pentagons 

 

We described detail in GraphGolf 2015 
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9 Before the competition began 

Using heuristics and 2-opt search … 

• We made (36, 3)-graph 

– Submitted it in June 24. 

– Tied for first place 

 

• Other graphs 

– Complete defeat 
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10 Its problems 

• We can only make graphs 𝑘 = 3 
In GraphGolf 2016, graphs of 

(64, 8), (300, 7), (1 024, 32), (1 560, 40), (3 250, 57) has 𝑘 = 3 

• Remainder  15 graphs 
– 𝑘 = 4: (256, 8), (300, 7), (512, 8), (1 024, 11) , (10 000, 20) 

– 𝑘 = 5: (1 024, 8), (1 800, 7), (10 000, 11), (100 000, 20) 

– 𝑘 = 6: (96,3), (100 000, 11) 

– 𝑘 = 7: (10 000, 7) 

– 𝑘 = 8: (100 000, 7) 

– 𝑘 = 9: (384, 3) 

– 𝑘 = 11: (1024, 3) 

 

Widest Improvement is difficult to attain. 
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11 What can we do in the competition? 

Also, we  focused on  Deepest Improvement 

However 

– We don’t have enough computation power 

– Not professional in graph theory 

No idea to get another graphs 
We depended on knowledge from DDP outcomes. 
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Degree/Diameter problem 
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13 DDP outcomes 

We looked at 

• Degree/Diameter problem 

– (253, 8)-graph 

– Its 𝑘 = 3, 𝑙 = 2.730 

While in GraphGolf 

– Random (256, 8)-graph 

– Its 𝑘 = 4, 𝑙 = 2.88 
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Can be expected 



14 Idea 

• The difference is order 

– (253, 8)-graph has good 𝑘 and 𝑙.  

• Change order  

– By adding nodes/edges randomly 

• Iterate it 

– Make many graphs 

– Leave the smallest-diameter one 
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15 Result of (256,8)-graph 

• Then we got 

– 𝑘 = 4, 𝑙 = 2.743 

– Faster than making it from random 

• Finally 

– Use 2-opt to it 

– 𝑘 = 4, 𝑙 = 2.735 
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Rank Author Diam. ASPL 

1 Our team 4 2.73597 

2 Ryuhei Mori  4 2.74859  

256 nodes, degree 8 

21 days 

about 10 

minutes 

few 

weeks 



16 Experience from (256,8)-graph 

• DDP solution can be used 

–As a good base graph 

–Studied for a long time 

–Many solutions are found 

 

It seems to work out well. 

We set goal to Widest Improvement. 
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Method 1 
Graph uniting method 
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18 Attempt to make another graph 

• Inspired by Brown’s construction 

Described in [1] at GraphGolf 2015 

• It can make a graph 𝐵(𝑝) 

Order = 𝑝2𝑘 + 𝑝𝑘 + 1 

Degree = 𝑝𝑘 + 1 

Diameter = 2 
p: a prime   k: a natural number 
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[1] R. Mizuno and Y Ishida, "The construction of a regular graph," 

http://research.nii.ac.jp/graphgolf/2015/candar15/graphgolf2015-mizuno.pdf 



19 Method 1: Approach 

• Select  Brown graph 

– select odd prime 𝑝 satisfies 𝑛 > 𝑝2𝑘 + 𝑝𝑘 + 1  

– 𝑛 becomes discrete value 

• Brown graph doesn’t satisfy ODP constraint 

– Add nodes by uniting other graphs 

– Add edges randomly to get the graph regular 
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20 Method 1: Parameters we use 
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In “Graph Golf 2016”, 𝑛, 𝑑 = (1 024,32), (1 560, 40), 

(3 250, 57) are featured. 

• (1 024, 32)-graph: Use 𝐵 31  

• (1 560, 40)-graph: Use 𝐵 37  

• (3 250, 57)-graph: Use 𝐵 19 , 𝐵(53) 

 

𝒌 𝒑 Order Degree 

1 

19 381 20 

31 993 32 

37 1 407 38 

53 2 863 54 



21 Method 1: (1 024,32)-graph 
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• Brown graph 

𝑛 = 993, 𝑘 = 2 

𝑑 = 32 (not regular) 

𝑙 = 1.967774 

• another graph 

𝑛 = 31, 𝑘 = 3 

𝑑 = 7 (not regular) 

𝑙 = 1.825806 



22 Method 1: Graph uniting 

Brute-force approach 

–Choose two vertices 𝑖, 𝑗  

–Add an edge between them 

–Try to connect all combinations 

–Leave the better one. 

Brown graphs 𝐵 𝑝  are not regular. So, vertices need 

connecting to another one. 
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After that we use 2-opt 



23 
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Rank Author Diam. ASPL 

1 Yawara Ishida & 

Ryosuke Mizuno 

3 1.99784 

4 Our team 3 2.01509 

Method 1: Results 

1 024 nodes, degree 32 

Rank Author Diam. ASPL 

1 Our team 3 2.03823 

2 H. Inoue 3 2.18947 

1 560 nodes, degree 40 

Rank Author Diam. ASPL 

1 Our team 3 2.07002 

3 H. Inoue 3 2.23220 

3 250 nodes, degree 57 

Roughly work well 

as we expected 

defeated 



24 Difficulties in Brown graph 

• Degree is not regular 

– 𝑝2𝑘 vertices have 𝑝 + 1, 𝑝 + 1 vertices have 𝑝 

– We don’t have a clue how to unite graphs well 

• How to get another graph 

– Random graph with 2-opt 

– Complete graph 

– etc... 
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We gave up. 



Method 2 
Node adding method 

Nov. 22, 2016. CANDAR'16. Hiroshima, Japan. 



26 Method 2: Cayley graphs 

Cayley graphs provides large (𝑑, 𝑘)-graphs in DDP. 

• Given  𝑚, 𝑛, 𝑟 
where  𝑟𝑛 ≡ 1 mod 𝑚 ,  gcd(𝜙(𝑚), 𝑛) > 1 

𝜙(𝑚): Euler’s totient function 

• Given  bouquets 

𝐵 1, 𝑙 = [(𝑎0, 𝑏0)|(𝑎1, 𝑏1)(𝑎2, 𝑏2) ⋯ (𝑎𝑙 , 𝑏𝑙)]  or 

𝐵 0, 𝑙 = [(𝑎1, 𝑏1)(𝑎2, 𝑏2) ⋯ (𝑎𝑙 , 𝑏𝑙)] 

• Order  𝑚𝑛 

• Degree   2𝑙 + 1 if using 𝐵 1, 𝑙 , or 2𝑙 if using 𝐵 0, 𝑙    
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Loz, E., & Pineda-Villavicencio, G. (2009). New Benchmarks for Large-Scale Networks with Given 

Maximum Degree and Diameter. The Computer Journal, 53(7). 



27 Method 2: Example of parameters 

𝒎 𝒏 𝒓 bouquets  Order Degree 

46 11 9 𝐵(0,4) 506 8 

555 18 4 𝐵(1,3) 9 990 7 

555 18 4 𝐵(1,5) 9 990 11 

555 18 16 𝐵(0,10) 9 990 20 

4 165 24 19 𝐵(0,10) 99 960 20 
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In “Graph Golf 2016”, 𝑛, 𝑑 = (512,8), (10 000, 7), (10 000, 11), 

(10 000, 20), (100 000, 20) are featured. 

Approach 

– Make Cayley graph as a base 

– Adding nodes/edges 

– Turn into desired order/degree graph 



28 Method 2: How to add nodes? 

• Add node one by one 

• Add edges 
– Then check that the diameter has not increased 

• Two procedures 
– Depending on whether order is even or odd 
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29 Method 2: Node adding 
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1. Select 𝑑/2 edges which are not adjacent 

to each other 

2. Delete edges selected in 1.  

3. Add edges between 𝑣 and 𝑠, 𝑡 

𝑣 

𝑠1 

𝑡1 

𝑡𝑑/2 

𝑠𝑑/2 

If 𝑑 is even 

: Delete the edge 



30 Method 2: Node adding 

If 𝑑 is odd 

: Delete the edge 

𝑠1 

𝑡1 𝑠𝑑 

𝑡𝑑 

𝑣 𝑢 

1. Select 𝑑 edges which is not adjacent to 

each other 

2. Delete edges selected in 1.  

3. Add edges between 𝑢, 𝑣 and 𝑠, 𝑡 
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31 Method 2: How we select edges? 

Try not to give a bad effect as possible to 

diameter/ASPL 

Use edge betweenness as an indicator 

Edge betweenness 

Shows many shortest paths are 

passing along with the edge 

For example (right figure) 

original graph:  𝑘 = 3, 𝑙 = 1.64 

If deleting edge “2—7”, 𝑘 = 4, 𝑙 = 1.89 

If deleting edge “5—6”, 𝑘 = 3, 𝑙 = 1.67 
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Ulrik Brandes. (2008). On Variants of Shortest-Path Betweenness Centrality and their Generic 

Computation. Social Networks, 30(2):136-145. 

(100 000, 20)-graph: Calculating edge betweenness is time-consuming.  

So, we select edges randomly 



32 
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Rank Author Diam. ASPL 

1 Our team 4 3.11138 

4 H. Inoue 4 3.13453 

Method 2: Results 

512 nodes, degree 8 

Rank Author Diam. ASPL 

1 Our team 5 3.50538 

2 H. Inoue 5 3.51582 

1 024 nodes, degree 8 

Rank Author Diam. ASPL 

1 Our team 5 4.13341  

2 H. Inoue 5 4.13621 

100 000 nodes, degree 20 

Without using 2-opt 

We use 2-opt. 

Raw: 𝑘 = 4, 𝑙 = 3.1135 

Without using 2-opt 
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Rank Author Diam. ASPL 

1 Our team 7 5.05994 

3 H. Inoue 7 5.07192 

Method 2: Results 

10 000 nodes, degree 7 

Rank Author Diam. ASPL 

1 Our team 5 4.10656 

3 H. Inoue 5 4.10802 

10 000 nodes, degree 11 

Rank Author Diam. ASPL 

1 Our team 4 3.37597 

3 H. Inoue 4 3.37659 

10 000 nodes, degree 20 

Without using 2-opt 

Without using 2-opt 

Without using 2-opt 



34 Method 2: Open questions 

• How we select m, n, r, bouquets 

– Affect diameter/ASPL of results graph 

– There are many combinations of these pairs 

 

• Applicability of edge betweenness 

– Computational time grows 

– How much it effects to result 
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35 Applicability of edge betweenness 

• Compare ASPL  
Make (512, 8)-graphs for 100 times 

They are 𝑘 = 4. 

  

– Random 

min: 3.1161  median: 3.1172  max: 3.1187 

– Use edge betweenness 

min: 3.1159   median: 3.1168  max: 3.1180 
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ASPL became small but 

it is hard to say significant effect. 



36 Problems of edge betweenness 

It shows how much that edge contributes to 

shortest paths 

• Even though edge betweenness is low,  

there are shortest paths passing along. 

• If we delete that edges, how it affects later is 

unclear. 
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37 Brown graphs or Cayley graphs 

• Brown graphs 

– Have advantage (𝑘 = 2) 

– Not easy to get desired order/degree 

• Cayley graphs 

– Can change degree 

– Easy to add nodes/edges 

– Need to choose m, n, r, bouquets 
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Conclusion 
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39 Conclusion 

• “Graph Golf” 

– We submitted eleven graphs, and won widest 

improvement award by using new approach 

• Problems on 2-opt search 

– Make random graph and do 2-opt search 

– Execution time grows very rapidly 

• Our Approach 

– Find ODP solutions from DDP solutions 

– Use Brown or Cayley graph as a base 

– Turn into desired order/degree graph 
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