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0. Introduction



Average Shortest Path Length (ASPL)

Definition

« ¢ =(V,E) : undirected graph

« dist(i,7) : length of shortest i-j path
« ASPL = ASPL(G) := )  dist(i, j) / (g)
i#jEV

e diam(G) := max dist(z,j) : diameter
JLE



Average Shortest Path Length (ASPL)
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AspL = 202Xy es  dlam(G) = 2
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Our Problem © dedges

Problem %\ O// Y,

e Given n and d

« Find a d-regular graph of n nodes with

minimum ASPL.

(d-regular graph : all degrees = d)



Background

lower ASPL — less hops — better performance
Complete Graph

complete graphs = minimum ASPL

In practice, degree (# of links) is limited

» low ASPL graphs with |limited degree



Related Problems

» Order / Degree Problem ;

e Givenn and d

« Find a d-regular graph of n vertices with minimum
diameter.

» Degree / Diameter Problem

e Given D and d

 Find a d-regular graph of diameter D with
maximum number of nodes.




Contributions

-

&

N

Derive an equality and inequalities of the ASPL of graphs of

diameter 3.

Propose an efficient algorithm for our problem.

/




1. Naive Algorithm



_ocal Search

« Construct a d-regular graph (initial graph).
« Repeat improving the graph.

« Terminate when some condition is satisfied.



Local Search
(Iterative First Improvement)

Switch the edges

initial graph Select two edges
If ASPL(G’) < ASPL(G) then

G+ G’

Random graphs

- If G cannot be improved for any edge pairs, terminate 11



Local Search
(Iterative First Improvemer| = & &

Switch the edges

initial graph Select two edges

Q- -

G G

If ASPL(G") < ASPL(G) then
G+ G

- If G cannot be improved for any edge pairs, terminate 12



Time Complexity

4 h

- Calculating ASPL(G) - O(VE) = O(n”d) = too slow

+ For G of diameter 3 - O(d) ( ASPL(G") — ASPL(G) ) — still slow

& v
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Ime Compjexity

Does not work well!!!

- FQr~



Our Target

n = # of nodes

d = degree

". The input (n,d) for which a.e. graphs are diameter 3

- More precisely, n =~ d? (n is near to d?)

\{

From numerical

experiments




2. Observation & Main Theorem



Observation

distance table of graphs of diameter 3:

each nonzero value = 1,2 or 3

# of cells of 1 = # of edges = nd/2

+ ASPL(G) o 1 X #1 + 2 X #2 + 3 X #3

CHL 4 H2F H3 = (Z’)

O % | % | % | % |%|%|
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Observation

distance table of graphs of diameter 3:

each nonzero value = 1,2 or 3

We want to increase them!!

+ ASPL(G) o 1 X #1 + 2 X #2 + 3 X #3

CHL 4 H2F H3 = (Z’)

O % | % | % | % |%|%|
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Observation

Assume diameter = 3 d nodes
Consider “Breadth First Search” from (r)

/

* many nodes - low ASPL
- We want to increase them
- #of‘ <dd-1)
_ J

equality holds — graph is optimal

19



Moore Bound
Fact (the Moore Bound)

G = (V,E): d-regular, n nodes, diameter = 3

(Z) . ASPL(G) = 3 (Z) — % — nd?
T

| o
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Observation

Here is a triangle...

(# of edges below the two
nodes decreases.
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Observation

Here is a triangle...

(# of edges below the two
nodes decreases.

A[decrease them!! ]

Triangles are undesirable

22




Observation

Here is a Square...

A[decrease them!! ]

Squares are undesirable

23




Observation

- No triangles, no squares

» ASPL is minimum (i.e. the Moore Bound)

Q—0O
. \C{ are undesirable

» we want to decrease triangles and squares




Moore Bound (again)
Fact (the Moore Bound)

G = (V,E): d-regular, n nodes, diameter = 3

(Z) . ASPL(G) = 3 (Z) — % — nd?

e

| o
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ASPL Upper Bound

Theorem

G = (V, F): d-regular, n nodes, diameter = 3

0) 1m0 <2(3) - ni o QP as{ L)

(This bound can be seen as an approximation.)



ASPL Lower Bound

Theorem

G = (V, F): d-regular, n nodes, diameter = 3

(0) 1m0 >3(3) - ni o QP as{ L)

( A ( A
N Y]
\ / \ /

(This bound can be seen as an approximation.)

—




ASPL Characterization

Theorem

G = (V, F): d-regular, n nodes, diameter = 3

(

n
2

) . ASPL(G) = 3 (n) N a3

2

by o

2

# 4

r

\

v

m — 1 nodes

1

}

/

2

# 4

m nodes




3. Proposed Algorithm



Proposed Algorithm

évaluate graphs by

£(G) = 3A 42

where

R e




Proposed Algorithm

-
/ L(Z) . ASPL(G) < 3 — ? — nd? + 3# {C@)}e#{m}
Evaluate graphs by y

vV’
£(G) = 3A 42

where

R~ o




Time Complexity

/f(G’) — f(G) : can be calculated in O(1) time

Obtained by switching two edges of ¢ ]

We use

- T2[i][j] := # of i-j paths of length 2

- T3[i][j] := # of non-backtracking i-j paths of length 3

(U

N

v




Switch
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Connect

Switch

Gl

[How many triangles/squares appear & disappear ? ]
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Evaluation Algorithm

Let G’ be agraph obtained by switching

O O O—~0
O O O—~0
Then

f(G") = f(G) = 3( = T2a][b] — T2[c][d] + T2[a][c] + T2[b][d]
— 2(T1[a][d] + T1[b][c]))
+2( — T3[a][b] — T3[c][d] + T3[a][c] + T3[b][d]
— 2(T2a]ld] + T2[bl[c| — T1[a][d|T1[b[c]))




Proposed Local Search flG)=aa+2

(Iterative First Improvement)

Switch the edges
computes

* initial graph Select two edges
- arrays (T2, T3) If f(G') < f(G) then
/
_> -> or -> G+ G
Update T2 and T3

- If G cannot be improved for any edge pairs, terminate 36



Proposed | ocal Search o
I I’St I m prOvemen | with arrays T2 and T3

Switch the edges

computes
* initial graph
- arrays (T2, T3) If f(G") < f(G) then

o /
* * or * G < G
Update T2 and T3
G/

update : O(d”) time

Select two edges

(occurs rarely)

- If G cannot be improved for any edge pairs, terminate



Proposed Local Search fiG)=3A+2

wgfive Fir/ NQqpre ent

computes
- initjgl giads

We could obtain the -
.» local optimal solution!! '

AN

- If G cannot be improved for any edge pairs, terminate



Simulated Annealing

Switch the edges

Comliutles " With probability
Initiat grap Select two edges ") —
- arrays (T2,T3) 2 min{l’exp <_ He )T f(G)>}
/
-> or -> G+ G
Update T2 and T3
G/

* T is a parameter called temperature

- Algorithm terminates when T is sufficiently small. 35



Simulated Annealing

Switch the edges
computes

* initial graph

= arrays (/
+ High T - random search

- Low T — Similar to lterative First Improvement

We decrease T gradually.

* T is a parameter called temperature
* Algorithm terminates when T is sufficiently small.

With probability

min {1, _— (_f(G') - /(@)

G+ G’

T

)}

Update T2 and T3

40




4. Numerical Experiments



Numerical Experiments (1/2)

Check the accuracy of approximations of the ASPL :

d
> (Z) - ASPL(G) = 3 — n? —nd? (the Moore Bound)
(@) F+2H < m >
") .4 > nd 2 <r W> 2#<r \>
> () ASPL(G) 23— —-—nd +3#1 pram [ L

( 3 ( 3
—# v 44 V>
\ y \ /

n nd [
. _ 2
> (2) ASPL(G) <3~——nd +3#)




Numerical Experiments (1/2)

(n,d) Moore {V} {i:g} [V] [V]
(4096, 60) —0.1206 0.0355 —0.0074
(4096, 64) —0.1544 0.0523 —0.0124
(10000, 60) —0.0209 0.0024 —0.0002
(10000, 64) —0.0270 0.0036 —0.0003




Numerical Experiments

(n,d) Moore {V} {i:g} [V] [VJ
(4096, 60) —0.1206 0.0355 —0.0074
(4096, 64) —0.1544 0.0523 —0.0124
(10000, 60) —0.0209 0.0024 —0.0002
(10000, 64> —0.0270 0.0036 —0.0003




Numerical Experiments (2/2)

/- Apply the proposed algorithm. \

* (n,d) for which diameter = 3 and sparse

> (n,d) = (10000, 60), (10000, 64)
« Start with random regular graphs.

« Compare the Iterative First Improvement (IFI) and the
\ Simulated Annealing (SA). (After the SA, do IFI) /




Numerical Experiments (2/2)

/- Apply the proposed algorithm.

* (n,d) for which diameter = 3 and sparse

N

> (n,d) = (10000, o
« Start with rand@{.
« Compare the Iterative First Improvement (IFI) and the
K Simulated Annealing (SA). (After the SA, do IFI)

/
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Numerical Experiments (2/2)

Random IFI SA
(n,d) ASPL gap ASPL gap Time ASPL gap Time
(10000,60) | 21.3 x 1073 | 6.8 x 1073 40h 30m| 6.2 x 1073 60 days
(10000,64) | 27.7 x 1073 | 10.8 x 1073 37h 00m| 10.0 x 1073 60 days

ASPL gap = (solution ASPL - Moore Bound) / solution ASPL




Numerical Expennss

The best graphs <
in Graph Golf!!
Random IFI »
(n,d) ASPL gap ASPL gap Time fPL gap Time
(10000,60) | 21.3x 1073 | 6.8x 1073 40h 30m| 6.2 x 1073 60 days
(10000,64) | 27.7 x 1073 | 10.8 x 1073 37h 00m| 10.0 x 1073 60 days

ASPL gap = (solution ASPL - Moore Bound) / solution ASPL



5. Conclusion



Conclusion

For graphs of diameter 3
- Characterize the ASPL by # of specific structures in the graph.

» Propose an efficient algorithm calculating one of the upper
bounds.

- We found low ASPL graphs by the proposed algorithm.

Future Work 1: Evaluation algorithm of [ igi j [V]

Future Work 2: Graphs of diameter 4 or more...




