

Average Shortest Path Length of

Graphs of Diameter 3

<u>Nobutaka Shimizu</u> (The University of Tokyo)

Ryuhei Mori (Tokyo Institute of Technology)

0. Introduction

Average Shortest Path Length (ASPL)

Definition

- G = (V, E) : undirected graph
- dist(i, j) : length of shortest *i*-*j* path

• ASPL = ASPL(G) :=
$$\sum_{i \neq j \in V} \operatorname{dist}(i, j) / {\binom{n}{2}}$$

• $\operatorname{diam}(G) := \max_{i \neq j \in V} \operatorname{dist}(i, j)$: diameter

Average Shortest Path Length (ASPL)

	1	2	3	4	5	6	7
1	0	1	1	2	2	2	2
2		0	1	2	1	2	2
3			0	1	2	1	1
4				0	2	2	1
5					0	2	1
6						0	1
7							0

 $ASPL = \frac{1 \times 10 + 2 \times 11}{21} = 1.523...$

 $\operatorname{diam}(G) = 2$

Our Problem

Problem

- Given *n* and *d*
- Find a *d*-regular graph of *n* nodes with minimum ASPL.

(*d*-regular graph : all degrees = *d*)

d edges

Background

- lower ASPL \rightarrow less hops \rightarrow better performance
- complete graphs \rightarrow minimum ASPL
- In practice, degree (# of links) is limited
 - Iow ASPL graphs with limited degree

Complete Graph

Related Problems

- Order / Degree Problem
 - Given *n* and *d*
 - Find a *d*-regular graph of *n* vertices with minimum diameter.
- Degree / Diameter Problem
 - Given *D* and *d*
 - Find a *d*-regular graph of diameter *D* with maximum number of nodes.

unexplored

explored

(graph theory)

Contributions

- Derive an equality and inequalities of the ASPL of graphs of diameter 3.
- Propose an efficient algorithm for our problem.

1. Naïve Algorithm

Local Search

- Construct a *d*-regular graph (initial graph).
- Repeat improving the graph.
- Terminate when some condition is satisfied.

If G cannot be improved for any edge pairs, terminate

• If G cannot be improved for any edge pairs, terminate

Time Complexity

n = # of nodesd = degree

• Calculating $ASPL(G) \cdots O(VE) = O(n^2d) \rightarrow too slow$

• For G of diameter 3 \cdots O(d) (ASPL(G') - ASPL(G)) \rightarrow still slow

n = # of nodesd = degree

- The input (*n*, *d*) for which a.e. graphs are diameter 3
- More precisely, $n \approx d^2$ (*n* is near to d^2)

From numerical experiments

2. Observation & Main Theorem

distance table of graphs of diameter 3:

	1	2	3	4	5	6	7	each no
1	0	*	*	*	*	*	*	
2		0	*	*	*	*	*	#
3			0	*	*	*	*	
4				0	*	*	*	$\bullet ASPL($
5					0	*	*	
6						0	*	• #1 + #
7							0	

ach nonzero value = 1,2 or 3

of cells of 1 = # of edges = nd/2

• ASPL(G) $\propto 1 \times \#1 + 2 \times \#2 + 3 \times \#3$

•
$$\#1 + \#2 + \#3 = \binom{n}{2}$$

distance table of graphs of diameter 3:

								aab paptara value = 1.2 ar 2
	1	2	3	4	5	6	7	each nonzero value – 1,2 or 3
1	0	*	*	*	*	*	*	
2		0	*	*	*	*	*	We want to increase them!!
3			0	*	*	*	*	
4				0	*	*	*	• ASPL(G) $\propto 1 \times \#1 + 2 \times \#2 + 3 \times \#3$
5					0	*	*	$\langle n \rangle$
6						0	*	• $\#1 + \#2 + \#3 = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$
7							0	18

Moore Bound

Fact (the Moore Bound)

$$G = (V, E): d\text{-regular, } n \text{ nodes, diameter} = 3$$
$$\binom{n}{2} \cdot \text{ASPL}(G) \ge 3\binom{n}{2} - \frac{nd}{2} - nd^2$$
the ASPL when # of is maximum

- no triangles, no squares
 - > ASPL is minimum (i.e. the Moore Bound)

are undesirable

> we want to decrease triangles and squares

Moore Bound (again)

Fact (the Moore Bound)

G = (V, E): *d*-regular, *n* nodes, diameter = 3

$$\binom{n}{2} \cdot \text{ASPL}(G) \ge 3\binom{n}{2} - \frac{nd}{2} - nd^2$$

the ASPL when # of is maximum

ASPL Upper Bound

Theorem

$$G = (V, E): d\text{-regular, } n \text{ nodes, } \frac{\text{diameter} = 3}{\binom{n}{2} \cdot \text{ASPL}(G)} \le 3\binom{n}{2} - \frac{nd}{2} - nd^2 + 3\#\left\{\underbrace{0}_{2} + 3\#\left\{\underbrace{0}_{2} + 2\#\left\{\underbrace{0}_{2} + 2\#\left\{\underbrace{0}_{2$$

(This bound can be seen as an approximation.)

ASPL Lower Bound

Theorem

$$G = (V, E): d\text{-regular, } n \text{ nodes, diameter} = 3$$
$$\binom{n}{2} \cdot \text{ASPL}(G) \ge 3\binom{n}{2} - \frac{nd}{2} - nd^2 + 3\# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right\}}_{-\#} + 2\# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right\}}_{-\#} \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right\}}_{-\#} - \# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right\}}_{-\#} - \# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right\}}_{-\#} - \# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right\}}_{-\#} - \# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right\}}_{-\#} - \# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right\}}_{-\#} - \# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right\}}_{-\#} - \# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right)}_{-\#} - \# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right)}_{-\#} - \# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right)}_{-\#} - \# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right)}_{-\#} - \# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right)}_{-\#} - \# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right)}_{-\#} - \# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right)}_{-\#} - \# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right)}_{-\#} - \# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right)}_{-\#} - \# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right)}_{-\#} - \# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right)}_{-\#} - \# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right)}_{-\#} - \# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right)}_{-\#} - \# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right)}_{-\#} - \# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right)}_{-\#} - \# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right)}_{-\#} - \# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right)}_{-\#} - \# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right)}_{-\#} - \# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right)}_{-\#} - \# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right)}_{-\#} - \# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right)}_{-\#} - \# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right)}_{-\#} - \# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right)}_{-\#} - \# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right)}_{-\#} - \# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right)}_{-\#} - \# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right)}_{-\#} - \# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right)}_{-\#} - \# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right)}_{-\#} - \# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right)}_{-\#} - \# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right)}_{-\#} - \# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right)}_{-\#} - \# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right)}_{-\#} - \# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right)}_{-\#} - \# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right)}_{-\#} - \# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right)}_{-\#} - \# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right)}_{-\#} - \# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right)}_{-\#} - \# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right)}_{-\#} - \# \underbrace{\{ \begin{array}{c} \bullet \\ \bullet \\ \end{array}}$$

(This bound can be seen as an approximation.)

ASPL Characterization

Theorem

$$G = (V, E): d\text{-regular, } n \text{ nodes, diameter} = 3$$

$$\binom{n}{2} \cdot \text{ASPL}(G) = 3\binom{n}{2} - \frac{nd}{2} - nd^2 + 3\# \left\{ \begin{array}{c} & & \\$$

3. Proposed Algorithm

Proposed Algorithm

Evaluate graphs by

$$f(G) = 3\triangle + 2\Box$$

where

Proposed Algorithm Evaluate graphs by $\binom{n}{2} \cdot ASPL(G) \leq 3 - \frac{nd}{2} - nd^2 + 3\# \underbrace{\bigcirc}^{+2\#} \underbrace{\bigcirc$

where

Time Complexity

$\cdot f(G') - f(G)$: can be calculated in O(1) time

Obtained by switching two edges of *G*

We use

- T2[i][j] := # of i-j paths of length 2
- T3[i][j] := # of non-backtracking i-j paths of length 3

How many triangles/squares appear & disappear ?

Evaluation Algorithm

Let G' be a graph obtained by switching a c a c a c c c c b d

Then

$$\begin{split} f(G') - f(G) &= 3(-\mathrm{T2}[a][b] - \mathrm{T2}[c][d] + \mathrm{T2}[a][c] + \mathrm{T2}[b][d] \\ &- 2(\mathrm{T1}[a][d] + \mathrm{T1}[b][c])) \\ &+ 2(-\mathrm{T3}[a][b] - \mathrm{T3}[c][d] + \mathrm{T3}[a][c] + \mathrm{T3}[b][d] \\ &- 2(\mathrm{T2}[a][d] + \mathrm{T2}[b][c] - \mathrm{T1}[a][d]\mathrm{T1}[b][c])) \end{split}$$

• If G cannot be improved for any edge pairs, terminate

Simulated Annealing

- *T* is a parameter called *temperature*
- Algorithm terminates when *T* is sufficiently small.

Simulated Annealing

4. Numerical Experiments

Numerical Experiments (1/2)

Check the accuracy of approximations of the ASPL :

> $\binom{n}{2} \cdot ASPL(G) \ge 3 - \frac{nd}{2} - nd^2$ (the Moore Bound) > $\binom{n}{2} \cdot ASPL(G) \le 3 - \frac{nd}{2} - nd^2 + 3\# \left\{ \begin{array}{c} \\ \\ \\ \\ \end{array} \right\} + 2\# \left\{ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \right\}$ > $\binom{n}{2} \cdot ASPL(G) \ge 3 - \frac{nd}{2} - nd^2 + 3\# \left\{ \begin{array}{c} \\ \\ \\ \\ \end{array} \right\} + 2\# \left\{ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right\}$ -#

Numerical Experiments (1/2)

(n , d)	Moore		
(4096,60)	-0.1206	0.0355	-0.0074
(4096,64)	-0.1544	0.0523	-0.0124
(10000,60)	-0.0209	0.0024	-0.0002
(10000,64)	-0.0270	0.0036	-0.0003

relative error:

(approx. val – ASPL) / ASPL

Better than $\left\{ \begin{array}{c} \\ \end{array} \right\} \left\{ \begin{array}{c} \\ \end{array} \right\}$

Numerical Experiments But

Gra

 \rightarrow higher accuracy

But difficult to calculation

	(n , d)	Moore		
	(4096,60)	-0.1206	0.0355	-0.0074
	(4096,64)	-0.1544	0.0523	-0.0124
	(10000,60)	-0.0209	0.0024	-0.0002
	(10000,64)	-0.0270	0.0036	-0.0003
p	h is sparse			

44

Numerical Experiments (2/2)

- Apply the proposed algorithm.
- (*n*, *d*) for which diameter = 3 and sparse

 \succ (n,d) = (10000,60), (10000,64)

- Start with random regular graphs.
- Compare the Iterative First Improvement (IFI) and the Simulated Annealing (SA). (After the SA, do IFI)

Numerical Experiments (2/2)

- Apply the proposed algorithm.
- (*n*, *d*) for which diameter = 3 and sparse
 - (n,d) = (10000,Some speed-up techniques (omit in this presentation)
- Start with random regu
- Compare the Iterative First Improvement (IFI) and the Simulated Annealing (SA). (After the SA, do IFI)

Numerical Experiments (2/2)

initial temperature $T_0 = 11$ *k*-th temperature $T_k = T_0 / \log k$

47

	Random	IFI		SA	
(n, d)	ASPL gap	ASPL gap	Time	ASPL gap	Time
(10000,60)	21.3×10^{-3}	6.8×10^{-3}	40h 30m	6.2×10^{-3}	60 days
(10000,64)	27.7×10^{-3}	10.8×10^{-3}	37h 00m	10.0×10^{-3}	60 days

ASPL gap = (solution ASPL – Moore Bound) / solution ASPL

Nur	nerical	Exper	The in C	e best gr Graph Go	aphs olf!!
	Random	II	FI	$1 \wedge$	
(<i>n</i> , <i>d</i>)	ASPL gap	ASPL gap	Time	PL gap	Time
(10000,60)	21.3×10^{-3}	6.8×10^{-3}	40h 30m	6.2×10^{-3}	60 days
(10000,64)	27.7×10^{-3}	10.8×10^{-3}	37h 00m	10.0×10^{-3}	60 days

ASPL gap = (solution ASPL – Moore Bound) / solution ASPL

48

5. Conclusion

Conclusion

For graphs of diameter 3

- Characterize the ASPL by # of specific structures in the graph.
- Propose an efficient algorithm calculating one of the upper bounds.
- We found low ASPL graphs by the proposed algorithm.

Future Work 1: Evaluation algorithm of

Future Work 2: Graphs of diameter 4 or more...