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0. Introduction



• : undirected graph

• : length of shortest 𝑖-𝑗 path

•

• : diameter

Average Shortest Path Length (ASPL)

Definition
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1 2 3 4 5 6 7

1 0 1 1 2 2 2 2

2 0 1 2 1 2 2

3 0 1 2 1 1

4 0 2 2 1

5 0 2 1

6 0 1

7 0

Average Shortest Path Length (ASPL)
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Our Problem

(𝑑-regular graph :  all degrees = 𝑑)

Problem
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• Given 𝑛 and 𝑑

• Find a 𝑑-regular graph of 𝑛 nodes with 

minimum ASPL.

・・・

𝑑 edges



Background

Complete Graph
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• lower ASPL → less hops → better performance

• complete graphs → minimum ASPL

• In practice, degree (# of links) is limited

 low ASPL graphs with limited degree



Related Problems

• Given 𝑛 and 𝑑

• Find a 𝑑-regular graph of 𝑛 vertices with minimum 

diameter.

 Order / Degree Problem

 Degree / Diameter Problem

• Given 𝐷 and 𝑑

• Find a 𝑑-regular graph of diameter 𝐷 with 

maximum number of nodes.

unexplored

explored

(graph theory)
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Contributions
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• Derive an equality and inequalities of the ASPL of graphs of 

diameter 3.

• Propose an efficient algorithm for our problem.



1. Naïve Algorithm



Local Search
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• Construct a 𝑑-regular graph (initial graph).

• Repeat improving the graph.

• Terminate when some condition is satisfied.



If                                           then

Local Search 
(Iterative First Improvement)
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initial graph Select two edges

Switch the edges

・If G cannot be improved for any edge pairs, terminate

Random graphs



If                                           then

Local Search 
(Iterative First Improvement)
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initial graph

Switch the edges

Calculation of ASPL

(bottleneck)

・If G cannot be improved for any edge pairs, terminate

Select two edges



・ Calculating              …                        → too slow

・ For    of diameter 3 …        (                              ) → still slow

Time Complexity n = # of nodes
d = degree
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・ Calculating              …                        → too slow

・ For    of diameter 3 …        (                              ) → still slow

Time Complexity n = # of nodes
d = degree
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Does not work well!!!



Our Target

・ The input (𝑛, 𝑑) for which a.e. graphs are diameter 3

・ More precisely, 𝑛 ≈ 𝑑2 (𝑛 is near to 𝑑2)

n = # of nodes
d = degree

From numerical 

experiments



2. Observation & Main Theorem



1 2 3 4 5 6 7

1 0 ＊ ＊ ＊ ＊ ＊ ＊

2 0 ＊ ＊ ＊ ＊ ＊

3 0 ＊ ＊ ＊ ＊

4 0 ＊ ＊ ＊

5 0 ＊ ＊

6 0 ＊

7 0

Observation
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distance table of graphs of diameter 3:

each nonzero value = 1,2 or 3

# of cells of 1 = # of edges = nd/2

・

・



1 2 3 4 5 6 7

1 0 ＊ ＊ ＊ ＊ ＊ ＊

2 0 ＊ ＊ ＊ ＊ ＊

3 0 ＊ ＊ ＊ ＊

4 0 ＊ ＊ ＊

5 0 ＊ ＊

6 0 ＊

7 0

Observation
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distance table of graphs of diameter 3:

each nonzero value = 1,2 or 3

We want to increase them!!

・

・



Observation

・many nodes → low ASPL
・We want to increase them

・# of                ≤ 𝑑(𝑑 − 1)

𝒓

・・・

・・・・・・・・

・・・・・・・・・・・・・

Assume diameter = 3

Consider “Breadth First Search” from 𝒓

19
equality holds → graph is optimal

𝑑 nodes



Moore Bound

: 𝑑-regular, 𝑛 nodes, diameter = 3

𝑛

2
∙ ASPL 𝐺 ≥ 3

𝑛

2
−
𝑛𝑑

2
− 𝑛𝑑2

Fact (the Moore Bound)
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the ASPL when # of           is maximum



Observation

𝒓

・・・・・・・・

・・・・・・・・・・・・・

Here is a triangle...
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# of edges below the two 

nodes decreases.



Observation

𝒓

・・・・・・・・

・・・・・・・・・・・・・

Triangles are undesirable
22

# of edges below the two 

nodes decreases.

decrease them!!

Here is a triangle...



Observation

𝒓

・・・・・・・・

・・・・・・・・・・・・・

Here is a Square...
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decrease them!!

Squares are undesirable



Observation

・ no triangles, no squares

 ASPL is minimum (i.e. the Moore Bound)

・ are undesirable

 we want to decrease triangles and squares
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Moore Bound (again)

: 𝑑-regular, 𝑛 nodes, diameter = 3

𝑛

2
∙ ASPL 𝐺 ≥ 3

𝑛

2
−
𝑛𝑑

2
− 𝑛𝑑2

Fact (the Moore Bound)
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the ASPL when # of           is maximum



ASPL Upper Bound

: 𝑑-regular, 𝑛 nodes, diameter = 3

𝑛

2
∙ ASPL 𝐺 ≤ 3

𝑛

2
−
𝑛𝑑

2
− 𝑛𝑑2 + 3# +2#

Theorem

(This bound can be seen as an approximation.) 26



: 𝑑-regular, 𝑛 nodes, diameter = 3

𝑛

2
∙ ASPL 𝐺 ≥ 3

𝑛

2
−
𝑛𝑑

2
− 𝑛𝑑2 + 3#

ASPL Lower Bound
Theorem

−# −#

27(This bound can be seen as an approximation.)

+2#



: 𝑑-regular, 𝑛 nodes, diameter = 3

𝑛

2
∙ ASPL 𝐺 = 3

𝑛

2
−
𝑛𝑑

2
− 𝑛𝑑2 + 3#

ASPL Characterization

+  

𝑚=3

𝑛−1

(−1)𝑚 # #・
・
・

・
・
・

𝑚 − 1 nodes 𝑚 nodes

Theorem
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+2#



3. Proposed Algorithm



Proposed Algorithm

Evaluate graphs by

where

= # = #
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Proposed Algorithm

Evaluate graphs by

where

= # = #
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Time Complexity

・ : can be calculated in        time

We use

・ T2[𝑖][𝑗] := # of 𝑖-𝑗 paths of length 2

・ T3[𝑖][𝑗] := # of non-backtracking 𝑖-𝑗 paths of length 3
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Obtained by switching two edges of 𝐺



Switch
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Switch

34

X X

Cut

Connect

How many triangles/squares appear & disappear ?



Evaluation Algorithm

Let G’ be a graph obtained by switching

Then
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𝑏

𝑐𝑎

𝑑 𝑏

𝑐𝑎

𝑑



If                           then

Proposed Local Search 
(Iterative First Improvement)
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computes
・initial graph
・arrays (T2, T3)

Select two edges

Switch the edges

・If G cannot be improved for any edge pairs, terminate

Update T2 and T3



If                           then

Proposed Local Search 
(Iterative First Improvement)
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Select two edges

Switch the edges

・If G cannot be improved for any edge pairs, terminate

Update T2 and T3

calculation :       time

with arrays T2 and T3

update :             time

(occurs rarely)

computes
・initial graph
・arrays (T2, T3)

time



If                           then

Proposed Local Search 
(Iterative First Improvement)
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computes
・initial graph
・arrays (𝑇2, 𝑇3)

Select two edges

Switch the edges

・If G cannot be improved for any edge pairs, terminate

Update 𝑇2 and 𝑇3

We could obtain the 
local optimal solution!!



Simulated Annealing
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computes
・initial graph
・arrays (𝑇2, 𝑇3)

Select two edges

Switch the edges

Update T2 and T3

With probability

・𝑇 is a parameter called temperature
・Algorithm terminates when 𝑇 is sufficiently small.



Simulated Annealing
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computes
・initial graph
・arrays (𝑇2, 𝑇3)

Select two edges

Switch the edges

Update T2 and T3

With probability

・𝑇 is a parameter called temperature
・Algorithm terminates when 𝑇 is sufficiently small.

・High 𝑇 → random search

・Low 𝑇 → Similar to Iterative First Improvement

We decrease 𝑇 gradually.



4. Numerical Experiments



Numerical Experiments (1/2)

Check the accuracy of approximations of the ASPL :

(the Moore Bound)





42



Numerical Experiments (1/2)

(𝒏, 𝒅) Moore

(4096, 60) −0.1206 0.0355 −0.0074

(4096, 64) −0.1544 0.0523 −0.0124

(10000, 60) −0.0209 0.0024 −0.0002

(10000, 64) −0.0270 0.0036 −0.0003

relative error:

(approx. val – ASPL) / ASPL 43



Numerical Experiments (1/2)

(𝒏, 𝒅) Moore

(4096, 60) −0.1206 0.0355 −0.0074

(4096, 64) −0.1544 0.0523 −0.0124

(10000, 60) −0.0209 0.0024 −0.0002

(10000, 64) −0.0270 0.0036 −0.0003
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Graph is sparse
→ higher accuracy

Better than

But difficult to calculation



Numerical Experiments (2/2)

(After the SA, do IFI)
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• Apply the proposed algorithm.

• (𝑛, 𝑑) for which diameter = 3 and sparse

 (𝑛, 𝑑) = (10000, 60), (10000, 64)

• Start with random regular graphs.

• Compare the Iterative First Improvement (IFI) and the 

Simulated Annealing (SA).



Numerical Experiments (2/2)

(After the SA, do IFI)
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• Apply the proposed algorithm.

• (𝑛, 𝑑) for which diameter = 3 and sparse

 (𝑛, 𝑑) = (10000, 60), (10000, 64)

• Start with random regular graphs.

• Compare the Iterative First Improvement (IFI) and the 

Simulated Annealing (SA).

Some speed-up techniques (omit in this presentation)



Numerical Experiments (2/2)

Random IFI SA

(𝑛, 𝑑) ASPL gap ASPL gap Time ASPL gap Time

(10000, 60) 21.3 × 10−3 6.8 × 10−3 40h 30m 6.2 × 10−3 60 days

(10000, 64) 27.7 × 10−3 10.8 × 10−3 37h 00m 10.0 × 10−3 60 days

ASPL gap = (solution ASPL – Moore Bound) / solution ASPL

initial temperature 𝑇0 = 11

𝑘-th temperature 𝑇𝑘 = 𝑇0/ log 𝑘
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Numerical Experiments (2/2)

ASPL gap = (solution ASPL – Moore Bound) / solution ASPL 48

Random IFI SA

(𝑛, 𝑑) ASPL gap ASPL gap Time ASPL gap Time

(10000, 60) 21.3 × 10−3 6.8 × 10−3 40h 30m 6.2 × 10−3 60 days

(10000, 64) 27.7 × 10−3 10.8 × 10−3 37h 00m 10.0 × 10−3 60 days

The best graphs 
in Graph Golf!!



5. Conclusion



Conclusion

For graphs of diameter 3

・ Characterize the ASPL by # of specific structures in the graph.

・ Propose an efficient algorithm calculating one of the upper 

bounds.

・ We found low ASPL graphs by the proposed algorithm.

Future Work 1: Evaluation algorithm of 

Future Work 2: Graphs of diameter 4 or more...
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