Decreasing	Good clauses	Deleting clauses	Experiments	Conclusion

Predicting Learnt Clauses Quality in Modern SAT Solvers

Gilles Audemard

Laurent Simon

CRIL - Lens - France

LRI - Paris - France

- No more traditional backtracks and lookahead thinkings
- Unassigning variables is *free* and detecting new unit clauses is cheap (and lazy)
- The solver doesn't know where it is... But know a lot about its past activities: All components are lookback-oriented

Bad points:

We don't fully understand our 1000-lines of code

Good points:

The SAT community is one of the leading community in the *scientific* study of algorithms.

WATCHED LITERALS : Lazy detection of unit clauses / Backtracking is free

BLOCKED LITERALS : Handle memory bandwidth bottlenecks

FAST RESTARTS : Restart every 32 conflicts (!!)... Follows special laws (Luby series)

PHASE CACHING : Allow fast restarts to be efficient

LEARNING : Learn a new clause at each conflict (leaf of the tree). Forget useless clauses

DECAYING HEURISTIC : Branches on variables that were often and recently used in conflict analysis

If you don't do one of this points, you loose.

 $\begin{aligned} \phi_1 &= x_1 \lor x_4 \\ \phi_2 &= x_1 \lor \overline{x_3} \lor \overline{x_8} \\ \phi_3 &= x_1 \lor x_8 \lor x_{12} \\ \phi_4 &= x_2 \lor x_{11} \\ \phi_5 &= \overline{x_3} \lor \overline{x_7} \lor x_{13} \\ \phi_6 &= \overline{x_3} \lor \overline{x_7} \lor \overline{x_{13}} \lor x_9 \\ \phi_7 &= x_8 \lor \overline{x_7} \lor \overline{x_9} \end{aligned}$

Introduction Decreasing Good clauses Deleting clauses Experiments Conclusion Concord C

 $\begin{array}{l} \phi_1 = \mathbf{X}_1 \lor \mathbf{X}_4 \\ \phi_2 = \mathbf{X}_1 \lor \overline{\mathbf{X}_3} \lor \overline{\mathbf{X}_8} \\ \phi_3 = \mathbf{X}_1 \lor \mathbf{X}_8 \lor \mathbf{X}_{12} \\ \phi_4 = \mathbf{X}_2 \lor \mathbf{X}_{11} \\ \phi_5 = \overline{\mathbf{X}_3} \lor \overline{\mathbf{X}_7} \lor \mathbf{X}_{13} \\ \phi_6 = \overline{\mathbf{X}_3} \lor \overline{\mathbf{X}_7} \lor \overline{\mathbf{X}_{13}} \lor \mathbf{X}_9 \\ \phi_7 = \mathbf{X}_8 \lor \overline{\mathbf{X}_7} \lor \overline{\mathbf{X}_9} \end{array}$

Introduction Decreasing Good clauses Deleting clauses Experiments Conclusion Concord C

 $\begin{aligned} \phi_1 &= \mathbf{X}_1 \lor \mathbf{X}_4 \\ \phi_2 &= \mathbf{X}_1 \lor \overline{\mathbf{X}_3} \lor \overline{\mathbf{X}_8} \\ \phi_3 &= \mathbf{X}_1 \lor \mathbf{X}_8 \lor \mathbf{X}_{12} \\ \phi_4 &= \mathbf{X}_2 \lor \mathbf{X}_{11} \\ \phi_5 &= \overline{\mathbf{X}_3} \lor \overline{\mathbf{X}_7} \lor \mathbf{X}_{13} \\ \phi_6 &= \overline{\mathbf{X}_3} \lor \overline{\mathbf{X}_7} \lor \overline{\mathbf{X}_{13}} \lor \mathbf{X}_9 \\ \phi_7 &= \mathbf{X}_8 \lor \overline{\mathbf{X}_7} \lor \overline{\mathbf{X}_9} \end{aligned}$

DL 4
$$X_7 \longrightarrow X_7, X_{13}[\phi_5], X_9[\phi_6], \overline{X_9}[\phi_7]$$

Introduction Decreasing Good clauses Deleting clauses Experiments Conclusion of the second of the se

DL 4
$$X_7 \longrightarrow X_7, X_{13}[\phi_5], X_9[\phi_6], \overline{X_9}[\phi_7]$$

 $\beta_1 = \operatorname{res}(x_9, \phi_7, \phi_6) = \overline{x_3} \lor x_8 \lor \overline{x_7} \lor \overline{x_{13}}$

Introduction Decreasing Good clauses Deleting clauses Experiments Conclusion of the second of the se

DL 4
$$x_7 \longrightarrow x_7, x_{13}[\phi_5], x_9[\phi_6], \overline{x_9}[\phi_7]$$

$$\beta_1 = \operatorname{res}(x_9, \phi_7, \phi_6) = \overline{x_3} \lor x_8 \lor \overline{x_7} \lor \overline{x_{13}}$$
$$\beta = \operatorname{res}(x_{13}, \beta_1, \phi_5) = \overline{x_3} \lor x_8 \lor \overline{x_7}$$

Introduction Decreasing Good clauses Deleting clauses Experiments Conclusion of A SHORT OVERVIEW OF A CDCL SOLVER CONFLICT ANALYSIS

DL 4
$$x_7 \longrightarrow x_7, x_{13}[\phi_5], x_9[\phi_6], \overline{x_9}[\phi_7]$$

$$\beta_{1} = \operatorname{res}(x_{9}, \phi_{7}, \phi_{6}) = \overline{x_{3}} \lor x_{8} \lor \overline{x_{7}} \lor \overline{x_{13}}$$
$$\beta = \operatorname{res}(x_{13}, \beta_{1}, \phi_{5}) = \overline{x_{3}} \lor x_{8} \lor \overline{x_{7}}$$

- First resolvent contains only one literal from the last decision level
- This is the "First UIP" scheme
- β is added to the clause database
- and ...

Introduction Decreasing Good clauses Deleting clauses Experiments Conclusion of A SHORT OVERVIEW OF A CDCL SOLVER BACKJUMPING

$$\beta = \overline{x_3} \lor x_8 \lor \overline{x_7}$$

OTHER COMPONENTS AND MOTIVATIONS

- CDCL solvers contain a lot of additional features and tricks
- heuristic
 - Dynamic: Award variables used during recent conflicts analyses
 - Progress saving
- Restarts : Static or Dynamic
- A hidden component: learnt clauses cleaning
 - To avoid memory blow up, one needs to remove some of the learnt clauses
 - Which ones ?
 - Currently: good clauses are supposed to be the reasons of unit propagation seen during recent conflicts analyses (follows the success of the VSIDS idea)

identifing good clauses during search

Introduction ○○○○○●	Decreasing	Good clauses	Deleting clauses ດດດດ	Experiments	Conclusion റ
OUTLINE	3				

- An empirical observation
- Identifying good clauses
- An agressive strategy to clean learnt clauses
- Experiments

- Before CDCL solvers: Solvers implement ideas (look-ahead, Mom's heuristics...) explaining performances was simple
- With CDCL: Look-back solvers (VSIDS heurisitics...) explaining performances is hard

We need strong empirical studies in order to understand and improve performances

Introduction	Decreasing ○●○○○○	Good clauses	Deleting clauses	Experiments	Conclusion ဂ
SOME PL	OTS				

EEN-PICO-PROP05-50 – UNSAT – 13,000 VARS AND 65,000 CLAUSES

- For each conflict, we store the decision level where it occurs
- We also compute the linear regression on these points
- Gives an idea of the global behavior of the computation

Introduction	Decreasing ○●○○○○	Good clauses ດດດດ	Deleting clauses ດດດດ	Experiments	Conclusion ი
SOME PL	OTS				

GRIEU-VMPC-S05-25 – SAT – 625 VARS and 76,000 clauses

- For each conflict, we store the decision level where it occurs
- We also compute the linear regression on these points
- Gives an idea of the global behavior of the computation

Introduction	Decreasing	Good clauses ດດດດ	Deleting clauses ດດດດ	Experiments	Conclusion റ
SOME PI	OTS				

SOME PLOIS MIZH-SHA0-35-3 – SAT – 20,000 VARS AND 120,000 CLAUSES

- For each conflict, we store the decision level where it occurs
- We also compute the linear regression on these points
- Gives an idea of the global behavior of the computation

- Of course, we do not expect to feet curves
- We try to make observations of the behaviour of a CDCL solver

AND...

	Decreasing	Good clauses	Deleting clauses		Conclusion
00000	000000	0000	0000	00000	
DECE					

DECREASING APPEARS IN A LOT OF PROBLEMS

Series	#Benchs	% Decr.	
een	8	62%	
goldb	11	100%	
grieu	7	71%	
hoons	5	100%	
ibm-2002	7	71%	
ibm-2004	13	92%	
manol-pipe	55	91%	
miz	13	0%	
schup	5	80%	
simon	10	90%	
vange	3	66%	
velev	54	92%	
all	199	83%	

OBSERVE AND PREDICT Where the solver does find a solution?

- Intersection of the linear regression with X-axis
- Lookback justification : one needs to do the search to compute this point (no prediction)

 Introduction
 Decreasing
 Good clauses
 Deleting clauses
 Experiments
 Conclusion

 OD CEDIVE
 AND DDEDICT
 0000
 0000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

OBSERVE AND PREDICT Where the solver does find a solution?

- Intersection of the linear regression with X-axis
- Lookback justification : one needs to do the search to compute this point (no prediction)

Introduction	Decreasing ○○○○○●	Good clauses	Deleting clauses ດດດດ	Experiments	Conclusion ი
RELATIC	ONSHIP				

- A strong relationship between lookback justification and effective number of conflicts
- No distinction between SAT and UNSAT instances

Decision levels decrease along the search

 Relationship between lookback justification and effective number of conflicts

- Enforce the decreasing of decision levels will help to
 - Speed up the search
 - Protect learnt clauses that play this role

Introduction	Decreasing	Good clauses ର●ରର	Deleting clauses ດດດດ	Experiments	Conclusion ဂ
INTUITIO	ONS				

- A lot of dependencies between variables During search those variables will probably be propagated together inside blocks of propagations
- One needs to collapse independant blocks of propagated literals in order to reduce the decision level

LITERAL BLOCK DISTANCE – LBD

The LBD score of a nogood is the number of different blocks of propagated literals

- This measure is computed only one time (at the construction of the clause)
- Good clauses should have a small LBD !!!

$$\beta = \overline{x_3} \lor x_8 \lor \overline{x_7}$$

LBD==2

- Only one literal from the last decision level (the assertive one)
- This literal will be **glued** to the other block
- binary clauses have LBD equal to 2
- VSIDS + progress saving: this should occurs a lot!!!

$$\beta = \overline{x_3} \lor x_8 \lor \overline{x_7}$$

$$x_3 \longrightarrow x_3, \overline{x_8}[\phi_2], x_{12}[\phi_3], \overline{x_7}[\beta]...$$

LBD==2

- Only one literal from the last decision level (the assertive one)
- This literal will be **glued** to the other block
- binary clauses have LBD equal to 2
- VSIDS + progress saving: this should occurs a lot !!!

$$\beta = \overline{x_3} \lor x_8 \lor \overline{x_7}$$

$$x_3 \longrightarrow x_3, \overline{x_8}[\phi_2], x_{12}[\phi_3], \overline{x_7}[\beta]...$$

LBD==2

- Only one literal from the last decision level (the assertive one)
- This literal will be **glued** to the other block
- binary clauses have LBD equal to 2
- VSIDS + progress saving: this should occurs a lot!!!

Good clauses are GLUE clauses

Introduction	Decreasing	Good clauses ດດດດ	Deleting clauses ●০০০	Experiments	Conclusion ဂ
INTRODU	UCTION				

- Solvers performances are tightly related to their clauses database managment
 - Keeping too many clauses will decrease BCP performances
 - Deleting too many clauses will break the learning benefit
- Currently, good learnt clauses are related to their recent usefulness in conflict analysis
- It is not a very good measure, so the number of learnt clauses follows a geometric progression

Use static LBD measure

- Only LBD and size are used to identify good learnt clauses
 - Short LBD are good ones
 - In case of equality, prefer short clauses
- Remove half of learnt clauses every 20000 + 500 × x
- No matter the size of the initial formula

- ag : Agressive deletion strategy (instead of the classical one)
- lbd : static measure (instead of the dynamic one)
- 100 benchmarks from SAT-Race 2006
- Timeout : 1000 seconds

	#N (sat-unsat)
MINISAT	70 (35 – 35)

- ag : Agressive deletion strategy (instead of the classical one)
- lbd : static measure (instead of the dynamic one)
- 100 benchmarks from SAT-Race 2006
- Timeout : 1000 seconds

	#N (sat-unsat)
MINISAT	70 (35 – 35)
MINISAT +ag	74 (41 – 33)

- ag : Agressive deletion strategy (instead of the classical one)
- lbd : static measure (instead of the dynamic one)
- 100 benchmarks from SAT-Race 2006
- Timeout : 1000 seconds

#N (sat-unsat)
70 (35 – 35)
74 (41 – 33)
79 (47 – 32)

- ag : Agressive deletion strategy (instead of the classical one)
- lbd : static measure (instead of the dynamic one)
- 100 benchmarks from SAT-Race 2006
- Timeout : 1000 seconds

	#N (sat-unsat)
MINISAT	70 (35 – 35)
MINISAT +ag	74 (41 – 33)
MINISAT +lbd	79 (47 – 32)
MINISAT +ag+lbd	82 (45 – 37)

Introduction	Decreasing	Good clauses ດດດດ	Deleting clauses	Experiments	Conclusion ෆ
JUSTIFIC	ATION				

Introduction	Decreasing	Good clauses	Deleting clauses	Experiments	Conclusion ဂ
JUSTIFIC	ATION				

- 7 SOTA solvers :
 - ZCHAFF: 2001 2004
 - RSAT: 2007
 - MINISAT: 2007 2008 (luby restart, progress saving)
 - PICOSAT: 2008
 - Our solver : GLUCOSE, based on MINISAT (luby restart 32, progress saving)
- 234 Industrial instances from SAT competition 2007
- timeout : 10,000 seconds
- All instances are pre-processed with SatELite

ntroduction Decreasing		Good clauses ດດດດ	Deleting clauses ດດດດ	Experiments	Conclusion ဂ	
CACTUS	PLOT					

Introduction	Decreasing	Good clauses	Deleting clauses ດດດດ	Experiments	Conclusion ဂ
SOME D	DETAILS				

- #N : number of solved instances
- #U : unique solver to solve an instance
- #F : fast answer
- #S : speed on same subset of solved instances

solver	#N	(SAT-UNSAT)	#U	#F	#S
ZCHAFF 01	84	(47 – 37)	0	13	2.9
zchaff 04	80	(39 – 41)	0	5	3.9
MINISAT	132	(53 – 79)	1	16	2.1
MINISAT+	136	(66 - 74)	0	15	1.5
RSAT	139	(63 – 75)	1	14	1.7
PICOSAT	153	(75 – 78)	1	26	1.2
GLUCOSE	176	(75 – 101)	22	68	-

- Enhanced version of GLUCOSE participated to the SAT competition 2009
 - Dynamic restart strategy that enhance decreasing
 - Some data-structures hacks : blocked literals, binary clauses
 - available at http://www.lri.fr/~simon/glucose
- 292 instances in application category
- 50 solvers submitted

UNSAT problems : GOLD MEDAL : GLUCOSE: 127 instances solved

SAT+UNSAT problems GOLD MEDAL : precosat : 204 instances solved in 153,127s SILVER MEDAL : GLUCOSE: 204 instances solved in 180,345s

- A static measure of good learnt clauses
- An agressive clauses deletion strategy
- An efficient solver GLUCOSE

- Other measures are needed
- Improve performances on SAT problems
- Continue empirical study

Thanks for your attention