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AI	in	Dynamic	Environments	
•  Iden2fying	the	model	of	a	system	in	dynamic	
environments	in	order	to	achieve	tasks	even	when	
unknown	situa2ons	are	encountered.		
–  Phase	1:	The	internal	model	is	constructed	by	learning	from	
environment	and	interac2on	with	other	systems.			

–  Phase	2:	The	model	is	used	for	choosing	the	next	ac2on.			
–  Phase	Update:	The	effect/result	of	an	ac2on	affects	the	
environment	and	updates	2me-series	data,	history,	
experience	and	goals.		Then	the	model	is	updated	
accordingly.			

–  The	agent	also	interacts	with	other	agents,	and	its	internal	
model	is	refined	by	such	interac2ons．	
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Vector	Representa2ons	of	Worlds	

h[ps://www.tensorflow.org/versions/r0.7/tutorials/word2vec/index.html	
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Heat map: Transcriptome data for a subset of 
eukaryotic TF II B (TFB) perturbations 
(Facciotti, M., et al., PNAS, Vo.104, 2007) 



Network	Representa2ons	of	Models	
•  Mammalian	Cell	Cycle	Network	

	

Each	node	represents	the	ac2vity	of	a	key	regulatory	element,	whereas	the	edges	represent	
cross-regula2ons.		Blunt	arrows	stand	for	inhibitory	effects,	normal	arrows	for	ac2va2ons.			
(Fauré	et	al.,	Bioinforma1cs,	22,	2006)	

Product	←	Rules	leading	to	ac2vity	



Logical	Representa2ons	of	Models	

•  Boolean	Networks	
•  Cellular	Automata	

Game	of	Life	
	
Wolfram’s	Rule	30	

The	history	of	the	generated	
pa[erns		with	the	star2ng	
configura2on	(top)	that	consists	
of	a	1	surrounded	by	0's.	

xi
t+1 = xi-1

t    (xi
t ∨ xi+1

t) 

c(	xi,	yj,	t+1)	←		c(	xi,	yj,	t),	2	{	c(	xi−1,	yj−1,	t),		c(	xi,	yj−1,	t),	c(	xi+1,	yj−1,	t),		c(	xi−1,	yj,	t),						
c(	xi+1,	yj,	t),	c(	xi−1,	yj+1,	t),		c(	xi,	yj+1,	t),		c(	xi+1,	yj+1,	t)	}	3.			

C(	xi,	yj,	t+1)	←	not	c(	xi,	yj,	t),	3	{	c(	xi−1,	yj−1,	t),		c(	xi,	yj−1,	t),	c(	xi+1,	yj−1,	t),		c(	xi−1,	yj,	t),				
c(	xi+1,	yj,	t),	c(	xi−1,	yj+1,	t),		c(	xi,	yj+1,	t),		c(	xi+1,	yj+1,	t)	}	3.	



•  Input:	Time-Series	Data		
				(Vector-Representa2on)		

0-1(Boolean)	vectors	
=	interpreta$ons	

•  Output:	Dynamical	Model		
				(Network/Logical-Representa2on)	

Boolean	networks		
=	normal	logic	program	
c.f.	(Inoue,	IJCAI-11)	

•  LFIT—firstly	presented	by	Inoue	and	Sakama	at	
ILP	2012	as	a	short	paper	

Learning	From	Interpreta2on	Transi2on	(LFIT)	
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Learning	From	Interpreta2on	Transi2on	(LFIT)	
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Normal	Logic	Programs	
•  A	normal	logic	program	(NLP)	P	is	a	set	of	rules:	

H		← A1	∧	…	∧	Am	∧	¬B1	∧	…	∧	¬Bn		(m,n	≥	0)	
	where	H,	Ai	and	Bj	are	atoms	and	¬		is	(default)	nega1on.			

•  P	is	definite	if	n	=	0	for	every	rule	in	P.				
•  ground(P)	:	the	set	of	ground	instances	of	all	rules	in	P.	
•  The	Herbrand	base	HBP	is	the	set	of	ground	atoms	in	language(P).	
•  An	(Herbrand)	interpreta1on	I	of	an	NLP	P:		I	⊆	HBP	(I	∈	2HBP).			
•  I	∈	2HBP	sa1sfies	(╞ )	a	ground	rule	of	the	form:		

H		← A1	∧	…	∧	Am	∧	¬B1	∧	…	∧	¬Bn	
				iff		∀i.	Ai	∈	I	and	∀j.	Bj	∉	I	imply	that	H	∈	I.	
•  I	is	an	(Herbrand)	model	of	P	if	I	sa2sfies	all	rules	in	ground(P).	



TP	operator	

•  TP	(I)		:=		{	H	|	H	←	L1	∧...∧	Ln	∈	ground(P),		I	╞	L1	∧...∧	Ln	}.	
•  When	P	is	a	definite	program,	I	╞	A1	∧...∧	Am	iff	∀i.	Ai	∈	I.			
					In	this	case,	TP	operator	is	monotone,	and	the	sequence			

I0	=	{},			In+1	=	TP(In)		(n=0,...)		
					reaches	the	least	fixpoint	of	TP,	denoted	as	I*	=	TP↑ω:　 I*	=	TP	(I*).		

TP↑ω	is	the	least	model	of	P	(van	Emden	&	Kowalski,	1976).					
•  When	P	is	a	normal	program,			
						I	╞ A1	∧…∧	Am	∧	¬B1	∧…∧	¬Bn			iff		∀i.	Ai	∈	I	and	∀j.	Bj∉	I.			
					In	this	case,	TP	is	non-monotone	(Apt,	Blair	&	Walker,	1988).	
•  The	orbit	of	I	wrt	P	(Blair	et	al.,	1997)	is		〈TPk(I)〉k=0,1,2,…,		
					where	TP0(I)	=	I,		TPk+1(I)	=	TP(TPk(I))	for	k	=	0,	1,	2,	….	.			



TP	operator,	supportedness,	comple2on	

•  An	interpreta2on	I	is	supported	(Apt,	Blair	&	Walker,	1988)	
if		∀A	∈	I.	∃(A	←A1∧…∧Am∧¬B1	∧…∧¬Bn)	∈	ground(P)						
such	that	∀i.	Ai	∈	I	and	∀j.	Bj	∉	I.	

•  Prop.:				An	interpreta2on	I	is	a	model	of	P	iff		TP	(I)	⊆	I	.		
•  Prop.:				I	is	supported	iff		I	⊆	TP	(I)	.		
•  Cor.:						I	is	a	supported	model	of	P	iff		I	=	TP	(I)	.		
•  Prop.:				I	is	a	model	of	Comp(P)	iff		I	=	TP	(I)	,	where	Comp(P)	

is	Clark’s	comple2on	of	P	.		
•  Cor.:		I	is	a	supported	model	of	P	iff	I	is	a	model	of	Comp(P).	



TP	operator	for	NLPs	

•  p	←	q.		
•  p	←	¬r.	
•  r	←	p	∧	¬q.	
	

1.  {}			
2.  {p}		
3.  {p,r}	
4.  {r}	
5.  {}	
6.  repeat	2—5		

•  TP			is	non-monotone.			
•  No	fixpoint	is	reached	in	general.		
•  No	supported	model	exists	here.			
      



Learning	Logical	Dynamics	of	Systems	
•  Learning	ac2on	theories	in	ILP	

–  Event	calculus:	Moyle	&	Muggleton	(1997),	Moyle	(2003)	
–  Logic	programs:	with	situa2on	calculus:	Otero	(2003,	2005)	
–  Ac2on	languages:	Inoue	et	al.	(2005),	Tran	&	Baral	(2009)	
–  Probabilis2c	logic	programs:	Corapi	et	al.	(2011)	

•  Rela2onal	reinforcement	learning	
–  Logic	programs:	Džeroski	et	al.	(2001)	

•  Abduc2ve	ac2on	learning	
–  Abduc2ve	event	calculus:	Eshghi	(1988),	Shanahan	(2000)	

•  Learning	Petri	nets	:	Srinivasan	et	al.	(2015)	
•  Ac2ve	learning	of	ac2on	models	

–  STRIPS-like:	Rodrigues	et	al.	(2011)	
	

•  These	works	suppose	applica2ons	to	robo2cs	and	bioinforma2cs.					
•  However,	it	is	hard	to	infer	rules	of	systems	dynamics	due	to	presence	of	

posi2ve	and	nega2ve	feedbacks.			



LFIT:	Learning	from	Interpreta2on	Transi2ons	
	(Inoue,	Ribeiro	&	Sakama,	Machine	Learning,	2014)	

•  Herbrand	interpreta2on	I:	a	state	of	the	world	
•  Logic	program	P:	a	state	transi1on	system,	which	maps	an	

Herbrand	interpreta2on	into	another	interpreta2on	
•  Next	state	TP(I):	where	TP	is	the	immediate	consequence	operator	

(TP	operator).			
•  Learning	sezng:		

–  Given:	a	set	of	pairs	of	Herbrand	interpreta2ons	(I,J)	such	that	
J	=	TP(I),		

–  Induce	a	normal	logic	program	P.		
	

•  c.f.	learning	from	interpreta2ons	(LFI)	
–  Given:	a	set	S	of	Herbrand	interpreta2ons,		
–  Induce	a	program	P	whose	models	are	exactly	S.			

	



Subsump2on,	least	generaliza2on	
•  For	two	rules	R1,	R2	with	the	same	head,	R1	subsumes	R2	if	there	

is	a	subs2tu2on	θ	s.t.	b+(R1)θ	⊆	b+(R2)	and	b−(R1)θ	⊆	b−(R2).		
•  A	rule	R	is	the	least	(general)	generaliza1on	(lg)	of	R1	and	R2,	

wri[en	as	R	=	lg(R1,R2),	if	R	subsumes	both	R1	and	R2	and	is	
subsumed	by	any	rule	that	subsumes	both	R1	and	R2.		

•  The	lg	of	two	atoms	p(s1,…	,	sn)	and	q(t1,…	,	tn)	is	undefined	if	p	
≠	q;	and	is	p(lg(s1,t1),	…,	lg(sn,tn))	if	p	=	q.		

•  The	lg	of	two	rules	lg(R1,R2)	is	then	wri[en	as:		

lg(h(R1 ),	h(R2 ))			← ∧
L∈	b+ (R1 ),		K∈	b

+ (R2 )

lg(L,K )			∧	 ∧
L∈	b− (R1 ),		K∈	b

− (R2 )

	¬lg(L,K ).



LF1T:	Learning	from	1-Step	Transi2ons	
•  Input:	E	⊆	2HB	×	2HB:	(posi2ve)	examples/observa2ons,		
																	P	:	an	(ini2al)	NLP;		
•  Output:	NLP	P		s.t.			J	=	TP(I)		holds	for	any	(I,	J)	∈	E	

BoVom-Up	Algorithm	(Inoue	et	al.,	2012;2014)	
1.  If	E	=	∅	,	then	output	P	and	stop;	
2.  Pick	(I,	J)	∈	E;		put	E	:=	E	\	{(I,	J)};	
3.  For	each	A	∈	J,	let				

RIA	:=		A		←		∧	B∈I	B		∧		∧	C∈HB\I￢C	;	
1.  If	RIA	is	not	subsumed	by	any	rule	in	P,	then	P	:=	P	∪	{RIA}	and	

simplify	P	by	generalizing	some	rules	in	P	and	removing	all	
clauses	subsumed	by	them;	

2.  Return	to	1.	



Resolu2on	as	Generaliza2on	
•  (naïve/ground	resolu$on)	Let	R1	and	R2	be	two	ground	rules,	

and	l	be	a	literal	such	that	h(R1)	=	h(R2),	l	∈	b(R1)	and	Ī	∈	b(R2).	
If	(b(R2)	\	{Ī	})	⊆	(b(R1)	\	{l})	then	the	ground	resolu1on	of	R1	and	
R2	(upon	l)	is	defined	as	

											res(R1,R2)		:=		h(R1)		←		∧K	∈	b(R1)\{l}		K		
					In	par2cular,	if	(b(R2)	\	{Ī	})	=	(b(R1)	\	{l})	then	the	ground	

resolu2on	is	called	the	naïve	resolu1on	of	R1	and	R2	(upon	l).	
•  Example.		R1	=	(p	←	q∧r),	R2	=	(p	←	￢q∧r),	R3	=	(p	←￢q):		
						res(R1,R2)	=	res(R1,R3)	=	(p	←	r).	
•  Proposi$on:	The	naïve	resolu2on	of	R1	and	R2	is	the	least	

generaliza2on	of	them,	e.g.,	lg(R1,R2)	=	res(R1,R2).	
	



LF1T	(naïve	resolu2on)		[RIA	:=		A	←	∧	B∈I	B	∧	∧	C∈HB\I￢C]	

Step	 I	→	J	 Opera$on	 Rule	 ID	 P	 Pold	
1	 qr→pr	 Rqrp		 p		← ￢p	∧	q	∧	r	 1	 1	 {}	

Rqrr		 r		← ￢p	∧	q	∧	r	 2	 1,2	

2	 pr→q	 Rprq		 q		← p	∧	￢q	∧	r	 3	 1,2,3	

3	 q→pr	 Rqp		 p		← ￢p	∧	q	∧	￢r	 4	

res(4,1)	 p		← ￢p	∧	q		 5	 2,3,5	 +1,4	

Rqr		 r		← ￢p	∧	q	∧	￢r	 6	

res(6,2)	 r		← ￢p	∧	q		 7	 3,5,7	 +2,6	

4	 pqr→pq	 Rpqrp		 p		← p	∧	q	∧	r	 8	

res(8,1)	 p		← q	∧	r		 9	 3,5,7,9	 +8	

Rpqrq		 q		← p	∧	q	∧	r	 10	

res(10,3)	 q		← p	∧	r		 11	 5,7,9,11	 +3,10	

 pqr															pq																		p																					ε　　　　    　r	

 qr																pr															q	



Cont.	(naïve	resolu2on)	[RIA	:=		A	←	∧	B∈I	B	∧	∧	C∈HB\I￢C]	
Step	 I	→	J	 Opera$on	 Rule	 ID	 P	 Pold	

5	 pq→p	 Rpqp		 p		← p	∧	q	∧	￢r	 12	

res(12,5)	 p		← q	∧	￢r		 13	 5,7,9,11,13	 +12	

res(13,9)	 p		← q	 14	 7,11,14	 +5,9,13	

6	 p→ε	

7	 ε→r	 Rεr		 r		← ￢p	∧	￢q	∧	￢r	 15	

res(15,6)	 r		← ￢p	∧	￢r	 16	 7,11,14,16	 +15	

8	 r→r	 Rrr		 r		← ￢p	∧	￢q	∧	r	 17	

res(17,15)	 r		← ￢p	∧	￢q	 18	 7,11,14,16,18	 +17	

res(18,7)	 r		← ￢p	 19	 11,14,19	 +7,16,18	

p		← q.  
q		←  p	∧	r.	
r		← ￢p.	

proposi2onal	program	

p(t+1)		← q(t).  
q(t+1)		←  p(t)	∧	r(t).	
r(t+1)		← ￢p(t).	
first-order	program	



LF1T	(ground	resolu2on)	[RIA	:=		A	←	∧	B∈I	B	∧	∧	C∈HB\I￢C]	

Step	 I	→	J	 Opera$on	 Rule	 ID	 P	

1	 qr→pr	 Rqrp		 p		← ￢p	∧	q	∧	r	 1	 1	

Rqrr		 r		← ￢p	∧	q	∧	r	 2	 1,2	

2	 pr→q	 Rprq		 q		← p	∧	￢q	∧	r	 3	 1,2,3	

3	 q→pr	 Rqp		 p		← ￢p	∧	q	∧	￢r	 4	

res(4,1)	 p		← ￢p	∧	q		 5	 2,3,5	

Rqr		 r		← ￢p	∧	q	∧	￢r	 6	

res(6,2)	 r		← ￢p	∧	q		 7	 3,5,7	

4	 pqr→pq	 Rpqrp		 p		← p	∧	q	∧	r	 8	

res(8,5)	 p		← q	∧	r		 9	 3,5,7,9	

Rpqrq		 q		← p	∧	q	∧	r	 10	

res(10,3)	 q		← p	∧	r		 11	 5,7,9,11	

 pqr															pq																		p																					ε　　　　    　r	

 qr																pr															q	



Cont.	(ground	resolu2on)	[RIA	:=		A	←	∧	B∈I	B	∧	∧	C∈HB\I￢C]	
Step	 I	→	J	 Opera$on	 Rule	 ID	 P	

5	 pq→p	 Rpqp		 p		← p	∧	q	∧	￢r	 12	

res(12,5)	 p		← q	∧	￢r		 13	 5,7,9,11,13	

res(13,9)	 p		← q	 14	 7,11,14	

6	 p→ε	

7	 ε→r	 Rεr		 r		← ￢p	∧	￢q	∧	￢r	 15	

res(15,7)	 r		← ￢p	∧	￢r	 16	 7,11,14,16	

8	 r→r	 Rrr		 r		← ￢p	∧	￢q	∧	r	 17	

res(17,7)	 r		← ￢p	∧	￢q	 18	 7,11,14,16,18	

res(18,16)	 r		← ￢p	 19	 11,14,19	

p		← q.  
q		←  p	∧	r.	
r		← ￢p.	

proposi2onal	program	

p(t+1)		← q(t).  
q(t+1)		←  p(t)	∧	r(t).	
r(t+1)		← ￢p(t).	
first-order	program	



Worst-Case	Complexity	
•  Theorem:		Using	naïve	resolu2on,	the	memory	use	of	the	LF1T	

algorithm	is	bounded	by	O(n・3n),	and	the	2me	complexity	of	
learning	is	bounded	by	O(n2・9n),	where	n	=	|HB|.	On	the	other	
hand,	with	ground	resolu2on,	the	memory	use	is	bounded	by	
O(2n),	which	is	the	maximum	size	of	P,	and	the	2me	complexity	
is	bounded	by	O(4n).			

•  Corollary:		Given	the	set	E	of	complete	state	transi2ons,	which	
has	the	size	O(2n),	the	complexity	of	LF1T(E,∅)	with	ground	
resolu2on	is	bounded	by	O(|E|2).	On	the	other	hand,	the	worst-
case	complexity	of	learning	with	naïve	resolu2on	is	O(n2・|E|4.5).			



Learning	Boolean	Networks	
•  Benchmarks	of	Boolean	networks	are	taken	from	(Dubrova	and	

Teslenko,	2011).			
•  All	possible	1-step	state	transi2ons	of	N	from	all	2|HB|	possible	

ini2al	states	I0’s	are	computed	from	the	benchmarks	by	firstly	
compu2ng	all	stable	models	of	τ(N)	∪	I0		using	the	answer-set	
solver	clasp,	then	by	running	LF1T	with	these	state	transi2ons.			

•  Environment:	Intel	Core	I7	(3610QM,	2.3GHz).	Time	limit:	1	hour.		
•  Boos2ng		is	effec2ve	to	reduce	the	size/number	of	rules.			



Learning	Robust	Boolean	Networks	

Li,	F.	et	al.:	The	yeast	cell-cycle	network	is	
robustly	designed,	PNAS,	101(14),	2004.	

• Most	transi2ons	from	212		states	belong	
to	the	same	basin	of	aerac1on.			

•  From	this	state	transi2on,	LFIT	learned	
54	state	transi2on	rules	in	0.8	sec.			

•  An	improved	learning	algorithm	using	
BDD	learned	the	same	rules	in	0.18	sec.		

Ø  Inoue,	K.,	Ribeiro	T.,	Sakama,	C.:	“Learning	from	Interpreta2on	Transi2on”,		
Machine	Learning,	94(1):51-79,	2014.	

Ø  Ribeiro,	T.,	Inoue,	K.,	Sakama,	C.:	“A	BDD-Based	Algorithm	for	Learning	from	
Interpreta2on	Transi2on”,	Post-Proc.	ILP	2013,	LNAI,	Vol.8812,	pp.47-63,	2014.			

LFIT	



Demonstra2on	

•  Bo[om-Up	Algorithm	(Version	1;	2014.03)	

E = {(pqr,pq),(pq,p),(p,_),(_,r),(r,r),(qr,pr),(pr,q),(q,pr)}

pqr pq p ε r

qr pr q

p

q r

p:- q.
q:- p, r.
r:- not p, q.
r:- not p, not r.



Cellular	Automata	(CA)	
•  A	CA	consists	of	a	regular	grid	of	cells.		
•  A	cell	has	a	finite	number	of	possible	states.		
•  The	state	of	each	cell	changes	synchronously	in	discrete	2me	steps	

according	to	local	and	iden2cal	transi2on	rules.		
•  The	state	of	a	cell	in	the	next	2me	step	is	determined	by	its	current	

state	and	the	states	of	its	surrounding	cells	(neighborhood).		
•  2-state	CA	is	regarded	as	an	instance	of	Boolean	networks.			
•  CA	is	a	model	of	emergence	and	self-organiza2on,	which	are	two	

important	features	of	the	nature/real-life	as	a	complex	system.	
•  1-dimensional	2-state	CA	can	simulate	Turing	Machine	(Wolfram).			
•  Mul2-state	CA:	Disease	Spreading	Model—0	(healthy),	1	(infected),	

values	in	between	(gradually	more	ill)	



Wolfram’s	Rule	110	

current	pa[ern	 111	 110	 101	 100	 011	 010	 001	 000	

new	state	for	
center	cell	 0	 1	 1	 0	 1	 1	 1	 0	

•  c(x,t+1)	←	c(x-1,t)	∧	c(x,t)	∧	￢c(x+1,t).	
•  c(x,t+1)	←	c(x-1,t)	∧	￢c(x,t)	∧	c(x+1,t).	
•  c(x,t+1)	←	￢c(x-1,t)	∧	c(x,t)	∧	c(x+1,t).	
•  c(x,t+1)	←	￢c(x-1,t)	∧	c(x,t)	∧	￢c(x+1,t).	
•  c(x,t+1)	←	￢c(x-1,t)	∧	￢c(x,t)	∧	c(x+1,t).	

•  Rule	110	is	known	to	be	Turing-complete.			
•  The	logic	program	is	acyclic	(Apt	&	Bezem,	1990).				

t	 0 1 2 3 4

0

1

2

3

4

5

6

7

8

9



Incorpora2ng	Background	Theories	

•  Torus	world:	length	4	
•  c(0,	t)	← c(4,	t).		
•  c(5,	t)	← c(1,	t).			

					c(3)		
→ c(2),	c(3)			
→ c(1),	c(2),	c(3)			
→ c(1),	c(3),	c(4)							a[ractor	
→ c(1),	c(2),	c(3)	→ …	
	
learning	rules:							0→1	(4),	1→2	(2),	2→3	(2).		
learning	posi2ve	rules:		(2),										(2),											(1).		

t	 (4)	 1	 2	 3	 4	 (1)	

0	

1	

2	

3	

4	

5	

6	



Incorpora2ng	Induc2ve	Bias	
•  Bias	I:	The	body	of	each	rule	exactly	contains	3	neighbor	literals.		
•  Bias	II:	The	rules	are	universal	for	every	2me	step	and	any	posi2on.			
•  Biases	I	and	II	imply	that	an1-instan1a1on	(AI)	can	be	applied	
immediately	instead	of	least	generaliza2on.			

						Step	 I	→	J	 Op.	 Rule	 ID	 P	

1	 0010→0110	 R32		 c(2)		← ￢c(1)	∧	￢c(2)	∧	c(3)	 1	

AI(1)	 c(x)		← ￢c(x-1)	∧	￢c(x)	∧	c(x+1)	 2	 2	

R33		 c(3)		← ￢c(2)	∧	c(3)	∧	￢c(4)	 3	

AI(3)	 c(x)		← ￢c(x-1)	∧	c(x)	∧	￢c(x+1)	 4	 2,4	

2	 0110→1110	 R21	 c(1)		← ￢c(0)	∧	￢c(1)	∧	c(2)	 5	

R232	 c(2)		← ￢c(1)	∧	c(2)	∧	c(3)	 6	

AI(6)	 c(x)		← ￢c(x-1)	∧	c(x)	∧	c(x+1)	 7	

res(7,2)	 c(x)		← ￢c(x-1)	∧	c(x+1)	 8	 4,8	

res(7,4)	 c(x)		← ￢c(x-1)	∧	c(x)		 9	 8,9	



Incorpora2ng	Induc2ve	Bias	(Cont.)	

•  c(x,t+1)	←	￢c(x-1,t)	∧	c(x+1,t).							(8)	
•  c(x,t+1)	←	￢c(x-1,t)	∧	c(x,t).												(9)	
•  c(x,t+1)	←	c(x,t)	∧	￢c(x+1,t).										(12)	
•  c(x,t+1)	←	￢c(x,t)	∧	c(x+1,t).										(16)	
These	are	simpler	than	the	original	5	rules,	but	s2ll	have	one	redundant	rule.			

Step	 I	→	J	 Op.	 Rule	 ID	 P	

2	 0110→1110	 R233		 c(3)		← c(2)	∧	c(3)	∧	￢c(4)	 10	

AI(10)	 c(x)		← c(x-1)	∧	c(x)	∧	￢c(x+1)	 11	

res(11,9)	 c(x)		← c(x)	∧	￢c(x+1)	 12	 8,9,12	

3	 1110→1011	 R011		 c(1)		← ￢c(0)	∧	c(1)	∧	c(2)	 13	

R344	 c(4)		← c(3)	∧	￢c(4)	∧	c(5)	 14	

AI(14)	 c(x)		← c(x-1)	∧	￢c(x)	∧	c(x+1)	 15	

res(15,8)	 c(x)		← ￢c(x)	∧	c(x+1)	 16	 8,9,12,16	



LF1T-BDD	
(Ribeiro,	Inoue	and	Sakama,	ILP	2013)	
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Idea:	use	BDD	techniques	to	use	less	memory	and	learn	faster.	
Contribu$on:	extend	the	scalability	and	the	efficiency	of	LF1T.	
•  Naïve resolution ≒ symmetric reduction.   
•  New operation was devised for Ground resolution.   

NLP	P	
 
p ← q 
p ← p∧r 
q ← p∧￢q 
q ← p∧r 
q ←	￢q∧r 
r ← p∧q∧r 
r ← p∧￢q∧￢r 



Top-Down	LF1T	
(Ribeiro	and	Inoue,	ILP	2014)	

•  Idea:	Generate	rules	by	specializa2on	from	the	most	general	
ones	un2l	no	nega2ve	example	is	covered.			

•  Merit:	Learn	all	minimal	(prime	implicant)	rules.			
–  Unique	output,	Efficient	on	real	networks	

•  TD-LF1T	starts	with	an	ini2al	program	P0	=	{a.	|	a	∈	HB}.			
•  For	each	transi2on	(I,	J)	∈	E,	for	each	variable	A	that	does	not	

appear	in	J,	A	is	associated	with	the	set	of	its	an1-support	
ΚIA	:=		I	∪	{￢B|	B∈	HB	\	I};	

•  Each	rule	with	head	A	is	then	specialized	by	the	rules	each	of	
which	is	formed	by	adding	one	literal	from	ΚIA	to	its	body.		

•  Example:	from	the	state	transi2on	(bc,	ac),	the	rule	b.	is	replaced	
by	three	rules:	b	←a;	b	←￢b;	b	←￢c.			



Running	example	



Comparison	of	3	algorithms	
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What	is	the	Nondeterminism?	(A	possible	answer)	

When	different	transi1ons	are	possible,	star1ng	from	a	
single	state,	the	pathway	followed	depends	on	the	values	

of	the	corresponding	transi1on	delays.		
(Thomas	and	D'Ari,	1990)		

A

B

C	

S	

P	

RQ

t	=	-2	 t	=	-1	 t	=	0	 t	=	1	 t	=	2	

--	 P	 S	 A	 B	
Q	 R	 S	 A	 C	



Markov(k)	System	
(Ribeiro,	Magnin,	Inoue	and	Sakama,	FiBioE	2015)	

•  Let	HB	be	the	Herbrand	base	of	a	program	P	and	k	a	natural	
number.		The	1med	Herbrand	base	HBk	of	P	(with	period	k)	is:	

			where	t	is	a	constant	term	(the	current	2me	step).			
•  A	Markov(k)	system	S	with	respect	to	P	is	a	logic	program	

sa2sfying	that,	for	any	rule	R	∈	S,	h(R)	∈	HB	and	all	atoms	
appearing	in	b(R)	belong	to	HBk.			

•  Example:			S	=	{	a	← bt	∧	bt-1;	b	← at-2∧￢bt-2	}		
					is	a	Markov(2)	system.	

HBk = {vt−i|v ∈HB}
i=1

k

∪



Markov(2)	system	
•  S	=	{a	← bt	∧	bt-1;	b	← at-2∧￢bt-2	}	

a b b

ab b a

b b a

ε b ε

b ε ε

ab ε ε

a ε b

ε ε ε

a b ab ε



(Top-down)	LFkT	
Input:	A	set	of	traces	of	execu2ons	O	of	a	Markov(k)	system	S.		Note	
that	the	op2mum	delay	is	unknown	at	this	point.			
Step	1:	Ini2alize	a	logic	program	P	with	the	fact	rules.			
Step	2:	Pick	a	trace	T	from	O	and	update	the	delay	k	accordingly:		

a.  Ini2alize	a	program	with	the	fact	rules	for	each	new	delay	k.			
b.  Revise	these	logic	programs	with	all	previous	traces.	

Step	3:	Convert	the	trace	into	interpreta2on	transi2ons	and	
revise	the	programs	using	least	specializa2on.			
Step	4:	If	there	is	a	remaining	trace	in	O,	go	back	to	step	2.			
Step	5:	Merge	all	logic	programs	into	one	by	avoiding	rule	subsump2on.			
Step	6:	Remove	all	rules	that	are	not	necessary	to	explain	O.	
Output:	A	set	of	rules	with	the	op2mum	delay	which	realizes	O.	



Experiments	of	a	Markov(5)	system	
A	2me-delayed	gene	regulatory	networks	of	the	
human	HeLa	cell	cycling	(Li	et	al.,	2006).	

•  LFkT	input	goes	from	10	to	106	traces.	



Mul2-Valued	LFIT	
(Ribeiro,	Magnin,	Inoue	and	Sakama,	ICMLA	2015)	

•  Atoms	of	a	logic	program	to	the	form	varval	.	We	consider	a	
mul2-valued	logic	program	as	a	set	of	rules	of	the	form:		

vval	←	v1val1	∧...∧	vnvaln	
(v=val	←	v1=val1	∧...∧	vn=valn)	

				where	vval	and	vivali	are	atoms	(n	≥	0).			
	
•  Example:		P	=	{a1	← a0	∧	b2	;		b1	← a1∧b0	}.			
•  A	mul1-valued	interpreta1on	I	is	a	set	of	assignments	such	that	

I	contains	one	and	only	one	ground	atom	vval		for	any	v∈V.	
•  Note:	no	nega$on:	definite	programs	(or	equa2onal	theory)	
•  Generaliza2on	and	specializa2on	can	be	redifined	accordingly.		



Other	extensions	

•  From	synchronous	to	asynchronous	updates		
•  From	determinis2c	to	probabilis2c	and	nondeterminis2c	
transi2ons	(MarSnez	et	al.,	ICLP	2015;	ICAPS	2016)	

•  And	their	delayed	and/or	mul2-valued	versions	

•  Open	Ques2on:	When	there	are	incompa1ble	transi1ons,	
which	models	should	be	selected?		
–  delay,	synchronicity,	noise,	nondeterminism,	uncertainty,	etc.		



Contents	

•  Mo$va$on	
•  Principles	
•  Extensions	
•  Applica$ons:		

– Biology	
– Cellular	Automata	
– Robo2cs	(learning	ac2on	rules)		
– AGI	(learning	agents’	logics)	

•  Ongoing	Work	



Two	types	of	changes	
•  Endogenous	change:		

–  natural	growth	
–  physical	dynamics	
–  biological	development	
–  internal	change	in	the	closed	system	

•  Exogenous	change:		
–  ac2on	
–  external	event	
–  enzyma2c	reac2on	
–  decision/choice	with	free	will		
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Revising	Plans	in	Adap2ve	Systems	

Environment	System	

Domain	
model	

action 

reaction 

model revision 

Behavioural	model	revision	through	probabilis$c	rule	learning	
–  ac2on	rules	are	learned	from	logs	of	trails	using	ASP	

Ø  Sykes,	D.,	Corapi,	D.,	Magee,	J.,	Kramer,	J.,	Russo,	A.,	Inoue,	K.:	“Learning	
revised	models	for	planning	in	adap2ve	systems”,		ICSE	2013:	63-71.	



Planner 

Robot 

Model Learner 

Experiences 
Perception Action 

Learning	Uncertain	Ac$ons	in	Stochas$c	
Domains	for	Robot	Planning		
(joint	work	with	David	MarSnez	and	his	colleagues	in	CSIC-UPC)	



Learning	Uncertain	Ac2ons	through	LFIT	
(MarSnez	et	al.,	ICLP	2015;	ICAPS	2016)	

Input observations Symbolic
interpretation

Interpretation
transitions

LFIT

Grounded
transitions

Symbolic
transitions

Interpretation
transitions

Probabilistic
propositional rules

Symbolic planning
operators

Probabilistic
propositional rules

Operator
optimizationBest RDDL operators



  Learn	from	transi2ons	(statet,	ac2ont,	statet+1)	
  Learned	rule:	
	
p= 0.3 :   robot-at(X,Z) ← robot-at(X,Y)	∧￢obstacle-at(X,Z)	∧ move-north 

x1,y1 x1,y1 

Body	=	Precondi2ons							+	Head	=	Effect	 Ac2on	Probability	

Ac2on	Learning	with	LFIT		



IPPC	2014	Domains	(MarSnez	et	al.,	ICAPS	2016)	
•  Triangle Tireworld. (Easiest)  Uncertain effects, no exogenous effects, 

5 predicates, 3 actions, 7 operators with max 2 terms.  
•  Crossing Traffic. (Intermediate) Uncertain effects, exogenous effects, 

8 predicates, 4 actions, 6 operators with max 3 terms.  
•  Elevators. (Hard) Uncertain effects, exogenous effects, 10 predicates, 

4 actions, 17 operators with max 3 terms.    



“Can	Machines	Learn	Logics?”		

					Input															Agent	A	(human/computer)													Output	

S:	formulas																						Logical	System	L																									T	(⊆Th(S	))	

	

																																															Machine	M	

						(S	,	T)																								Learning	System	C																																														K	

 
 

•  Given	input	(S,	T),	a	machine	M	produces	an	axioma2c	system	K.			
•  It	is	possible	to	learn	meta-level	one-step	deduc2on	rules,	e.g.,	MP.				
•  Would	be	applied	to	learning	abduc2on	and	other	non-standard	logics.			
	
Ø  Sakama,	C.,	Inoue,	K.:	“Can	Machines	Learn	Logics?”,		8th	Int’l	Conf.	

Ar1ficial	General	Intelligence	(AGI	2015).						



Learning	Deduc$on	Rules	by	LF1T	
(Sakama,	Ribeiro	and	Inoue,	ILP	2015)	

•  We	assume	a	deduc2on	system	L	represented	by	a	
metalogic	program	P	that	provides	transi2ons	(I,	J)	
sa2sfying		J	=	TP(I).				

•  Given	(I,	J)	as	an	input,	our	goal	is	to	examine	
whether	LF1T	can	reproduce	correct	inference	rules	
of	L	represented	by	meta-rules	in	P.		

I 	 J 	

(I , J)	 L	

 P	

LF1T	



Example		
•  Given	the	Herbrand	base:			
														B={	hold(p),	hold(q),	hold(r),	hold(p→r)	},		
					a	rule	with	hold(r)	in	the	head	is	constructed	as	follows.		
•  Step	0:		LF1T	starts	with	the	most	general	rule:		
　　																												hold(r)←                            (1)	
•  Step	1:		The	transi2on	({},{})	is	given.	(1)	is	inconsistent	

with	this	(namely,	{}	should	produce	{hold(r)}	under	(1)),	
so	(1)	is	minimally	specialized	by	introducing	an	atom	
from	B:		
																													hold(r)←hold(p)																(2)	
																													hold(r)←hold(q)																(3)	
																													hold(r)←hold(r)																	(4)	
																													hold(r)←hold(p→r)											(5)	



Example		

•  Step	2:		The	transi2on	({hold(p)},{hold(p)})	is	given.				
																									hold(r)←hold(p)																(2)	
is	inconsistent	with	this,	so	(2)	is	specialized	into			
																									hold(r)←hold(p),	hold(q)	
																									hold(r)←hold(p),	hold(r)	
																									hold(r)←hold(p),	hold(p→r)	
These	rules	are	respec2vely	subsumed	by	
																										hold(r)←hold(q)																(3)	
																										hold(r)←hold(r)																	(4)	
																										hold(r)←hold(p→r)											(5)	
hence	removed.	As	a	result,	(3),(4)	and	(5)	remain.		



Example		

•  Step	3:		The	transi2on	({hold(q)},{hold(q)})	is	given.	
																										hold(r)←hold(q)																					(3)	
					is	inconsistent	with	this,	so	(3)	is	specialized	into			
																										hold(r)←hold(q),	hold(p)						(6)	
																										hold(r)←hold(q),	hold(r)	
																										hold(r)←hold(q),	hold(p→r)	
				The	last	two	rules	are	respec2vely	subsumed	by					
																										hold(r)←hold(r)																					(4)	
																										hold(r)←hold(p→r)															(5)	
				and	removed.	As	a	result,		(4),	(5)	and	(6)	remain.		



input	 output	

({},	{})	 hold(r)←hold(p)									hold(r)←hold(q)	
hold(r)←hold(r)									hold(r)←hold(p→r)	

({hold(p)},{hold(p)})	 hold(r)←hold(p)									hold(r)←hold(q)	
hold(r)←hold(r)									hold(r)←hold(p→r)	

({hold(q)},{hold(q)})	 hold(r)←hold(q)										hold(r)←hold(r)									
hold(r)←hold(p→r)					hold(r) ←hold(p),hold(q)	

({hold(p→r)},{hold(p→r)})	 hold(r)←hold(r)									hold(r)←hold(p→r)					
hold(r) ←hold(p),hold(q)	

hold(r)←hold(p→r),hold(p)	
hold(r)←hold(p→r),hold(q)	

({hold(p),hold(q)},{hold(p),hold(q)})	
	

hold(r)←hold(r)							hold(r) ←hold(p),hold(q)	
hold(r)←hold(p→r),hold(p)	
hold(r)←hold(p→r),hold(q)	

({hold(p→r),hold(q)},{hold(p→r),hold(q)})	
	

hold(r)←hold(r)								
hold(r)←hold(p→r),hold(p)	
hold(r)←hold(p→r),hold(q)	

({hold(p→r),hold(p)},		{hold(p),hold(r)})	 hold(r)←hold(r)		:Repe$$on					
hold(r)←hold(p→r),hold(p)	:Modus	Ponens	



•  Given	B={	hold(p),	hold(￢p),	hold(q),	hold(￢q),	hold(p→q),	hold(q→r),	
hold(p→r)	},	LF1T	produces:		
–  hold(￢p)	← hold(￢q)	∧ hold(p→q)				:	Modus	Tollens	
–  hold(p→r)	← hold(p→q)	∧ hold(q→r)		:	Hypothe$cal	Syllogism	

•  Given	B={	hold(p),	hold(￢p),	hold(q),	hold(￢q),	hold(p∨q),		
hold(￢p∨￢q),	hold(r∨s),	hold(￢r∨￢s),	hold(p→r),	hold(q→s)	},		
LF1T	produces:		
–  hold(p)	← hold(p∨q)	∧ hold(￢q)				:	Disjunc$ve	Syllogism	
–  hold(r∨s)	← hold(p∨q)	∧ hold(p→r)	∧ hold(q→s)				

																																																																			:	Construc$ve	Dilemma	
–  hold(￢p∨￢q)	← hold(￢r∨￢s)	∧ hold(p→r)	∧ hold(q→s)				

																																																																			:	Destruc$ve	Dilemma	
•  Given	a	transi$on	(I,J)=({hold(p→q),	hold(q)},	{hold(p)}),	LF1T	produces		

–  hold(p)	← hold(q)∧hold(p→q)			
																	:	Fallacy	of	Affirming	the	Consequence	(a	rule	for	Abduc$on)		

																				

Experimental	Results		
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Scien$fic	Challenge	
(Ongoing	work	with	Morgan	Magnin,	Tony	Ribeiro,	Olivier	Roux)	
Goals:		
• Build	predic$ve	dynamic	models	from	$me	series	data		
• Assess	the	efficiency	of	the	approach	by	taking	part	to	an	open	
Machine	Learning	challenge.		
• Mo[o:	Logical	modeling	has	its	own	merits	compared	with		
con2nuous	approaches	(e.g.,	ODE)	
	

Underlying	ques$ons:		
• What	would	be	efficient	algorithms	for	discre$za$on	and	learning?		
• What	is	a	good	predic2ve	model?			
• How	to	validate	the	benefits	of	the	algorithms	on	"real-life"	data?		



Abstrac2on	of	systems	to	build	qualita2ve	dynamic	models	

Time	series	data	
Regulatory	networks:	up	to	
45.000	genes	over	48	2me	

points	for	every	gene	

LFIT   

Logic	program	

Discre2za2on	of	
the	expression			



A	wide	range	of	possible	models	and	
inference	algorithms	

•  Expression	discre$za$on		
-  Boolean	
-  Mul2-valued		

•  Time	discre$za$on		
-  Event-driven	model		
-  Discrete-2me	model		
-  Dense-2me	model		

•  Seman$cs	of	discrete	transi$ons		
-  Synchronous		
-  Par2ally	synchronous	(a	set	of	transi2ons	can	be	fired	

altogether)		
-  Asynchronous	(one	at	a	2me)	

• Determinism	of	discrete	transi$ons	:	yes	or	no		
• Markov	property:	yes	or	no		



DREAM	Challenges	data:	
• Predict	steady	states	and	associated	model	(without	signs):		

• DREAM4	(2009):	100	genes	over	21	2me	points	[synthe1c	data]	
• DREAM5	(2010):	1000	genes	over	17	2me	points	[real	data]	

• Predict	trajectories	and	associated	model:		
DREAM8	(2013):	40	genes	over	8	2mes	points	[real	data]	

	
Circadian	rhythm	(French	ANR-funded	project):	predict	trajectories	and	
associated	model	(with	nature	of	interac2ons)	
Input:	expression	data	(Delaunay	et	al.)	[real	data]	

•  45.000	genes	
•  4	datasets	(1	normal	+	3	perturba2ons)	
•  48	2me	points	for	every	gene	

Two	main	targets	



•  Start:	2006		
•  Periodicity:	Annual		
•  DREAM	=	"Dialogue	for	Reverse	Engineering	Assessments	and	
Methods”:	Reverse	engineering	for	regulatory,	signaling,	and	
metabolic	networks	
•  Aim:	encourage	the	design	of	new	efficient	computa2onal	
models	and	methods	to	analyze	systems	from	biology		
•  URL:	h[p://dreamchallenges.org	
•  A	wide	range	of	partners	(IBM	Research,	Sage	Bionetworks,	…)		
• Main	compe2tor:	kaggle		
•  Reward:	no	financial	prize,	but	publica2ons	in	journals		
• Main	issue:	how	to	rank	methods?		
•  Scoring	commiVee	for	each	challenge	
•  Evalua$on	criteria:	Predic2ve	power	with	specific	metrics:	
AUPvR,	AUROC	



Predic2on	problems	issued	in	DREAM	

•  Structure	of	the	network		
•  Behavioral	predic$on	with	regard	to	specific	condi2ons	(e.g.,	

knockouts)	or	ini2al	states		
•  Steady	states		
•  Trajectories		

•  Judges	are	blind	to	the	approach	that	is	used,	i.e.,	only	the	
predic2on	results	counts…	(at	least	at	short-term	perspec2ve)	

•  Computa$onal	$me	is	not	a	criterion	that	is	assessed	in	this	kind	
of	challenge.		
•  Most	methods	tend	to	lie	in	the	range	of	minutes	to	hours.	
•  But	some	others	could	take	up	to	48h	per	gene.	
	



•  Targeted	systems	(adapted	from	E.	coli	and	yeast	network):		
•  5	different	systems	each	composed	of	10	genes		
•  5	different	systems	composed	of	100	genes		

• Datasets	available	for	each	system	of	10	genes	(resp.	100):	
•  5	(resp.	10)	$me	series	data	with	21	$me	points	corresponding	
to	different	perturba$ons			

•  Steady	state	at	wild	type,	i.e.	1	steady	state		
•  Steady	state	a�er	knocking	out	each	gene,	i.e.	10	steady	states	
(resp.	100)		

•  Steady	state	a�er	knocking	down	each	gene	(transcrip2on	rate	at	
50%),	i.e.	10	steady	states	(resp.	100)		

•  Steady	states	a�er	some	random	mul2factorial	perturba2ons,	
i.e.	10	steady	states	

About	DREAM4	data	



Learning	experiments	with	LFkT	
•  Learn	independently	each	series	with	LFkT	

•  Evaluate	rules	on	all	series	(full	cross-valida2on)	



•  Goal:	Given	an	ini$al	state	and	{5	for	networks	of	10	genes;	20	for	
networks	with	100	genes}	different	condi$ons	of	dual	genes	to	be	
knockout	simultaneously,	predict	point	aVractors	

•  Evalua$on	of	precision:	mean	square	error	of	the	difference	
between	predicted/expected	values	

Evalua2on	on	DREAM4	data	

Experiments run on a processor Intel Xeon (X5650, 2.67GHz) with 12GB of RAM 



Comparison	with	other	methods	



•  Advantages:		
-  Con2nuous	variables	
-  Good	generaliza2on	
-  Inter-variables	learning	
-  Manage	delays	efficiently	(RNN)	

	
•  Challenges:	
-  Architecture	choice	
-  Rule	extrac$on	

	

Ar2ficial	Neural	Networks:	learning	transi2on	
(Ongoing	work	with	Enguerrand	Gentet	)	

x1(t)	

x2(t)	

x3(t)	

x4(t)	

xn(t)	

x1(t+1)	

x2(t+1)	

x3(t+1)	

x4(t+1)	

xn(t+1)	

transi2on	

Rules?	



Ar2ficial	Neural	Networks:	ongoing	work	
Ongoing:	NN-LFIT	
- 	Learning	Boolean	networks	
- 	4-layer	NN	(2	hidden	layers)	
- 	No	delays	

Results:	
- 	Successful	learning	
- 	Good	generaliza2on	

Training	on	60%	of	transi2ons:	
	0%	error	on	the	remaining	40%	

Training	on	30%	of	transi2ons:	
	0.5%	error	on	the	remaining	70%	

Training	on	the	whole	set	of	transi2on:	
	all	the	transi2ons	are	successfully	learned	

Plans:		
- 		con2nuous	values	
- 		rule	extrac2on	
- 		delays	

	



LFIT:	Summary	

•  Mo$va$on:	Modeling	in	Dynamic	Environments	
•  Principles:	LF1T	(Learning	from	1-Step	Transi2ons)		

–  Bo[om-Up	Algorithm	(generaliza2on)	
–  BDD	Op2miza2on	
–  Top-Down	Algorithm	(specializa2on)	

•  Extensions:	LFkT	(Learning	Markov(k)	Systems),	
Mul2-Valued/Asynchronous/Probabilis2c	Extensions	

•  Applica$ons:	Biology,	Robo2cs,	AGI,	etc.			
•  Ongoing	Work:	DREAM	Challenges,	NN-LFIT	
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