LFIT: Learning from Interpretation Transition
(LFIT: BERRER NS DFE)

Katsumi Inoue

I =B

National Institute of Informatics
El BRI
SOKENDAI (The Graduate University for Advanced Studies)
=Y EAWNE Iy N 2
Tokyo Institute of Technology
RERIEKF

The 100th JSAI SIG-FPAI Meeting
AIHgeF= 81000 A THIGEEAREHTRE
Kumamoto, March 27" 2016

Members Involved

Katsumi Inoue (NII/SOKENDAI/Tokyo Tech, Japan)
Chiaki Sakama (wakayama University, Japan)

__Tony Ribeiro (SOKENDAI > Ecole Centrale de Nantes,
France)

Morgan Magnin (Ecole Centrale de Nantes/NII)

David Martinez (institut de Robotica i Informatica
Industrial, Spain)

Enguerrand Gentet (Université Paris-Sud, France)

and their colleagues

Contents

Motivation: Modeling in Dynamic Environments

Principles: LF1T (Learning from 1-Step Transitions)

— Bottom-Up Algorithm (generalization)

— BDD Optimization

— Top-Down Algorithm (specialization)

Extensions: LFKT (Learning Markov(k) Systems),
Multi-Valued/Asynchronous/Probabilistic Extensions
Applications: Biology, Robotics, AGI, etc.

Ongoing Work: DREAM Challenges, NN-LFIT

Contents

* Motivation:
— Modeling in Dynamic Environments
* Principles
* Extensions
* Applications
* Ongoing Work

Al in Dynamic Environments

* |dentifying the model of a system in dynamic
environments in order to achieve tasks even when
unknown situations are encountered.

— Phase 1: The internal model is constructed by learning from
environment and interaction with other systems.

— Phase 2: The model is used for choosing the next action.

— Phase Update: The effect/result of an action affects the
environment and updates time-series data, history,
experience and goals. Then the model is updated
accordingly.

— The agent also interacts with other agents, and its internal
model is refined by such interactions.

Background
Knowledge B

History/ O
Xperience

= con 0~
]

I

: Time-Series
Wl Data [

‘ Modél g \ Decision

Internal
State
BAINH E O

achine Learning

Dynamic lransition
ViodellChecking

ACﬁIO“ Il Other Agents

Dynamic Environments

Vector Representations of Worlds

cmyc-Ctrl TFBa-cmyc_ TFBa-KQ TFBe-cmyc TFBe-KO TFBc-cmyc TFBc-KO

—

(X5...,x)=(a,,...,a,):static
t t t N . d .
(X, ,....x,)=(a, ,...,a,):dynamic
Heat map: Transcriptome data for a subset of

eukaryotic TF Il B (TFB) perturbations
(Facciotti, M., et al., PNAS, Vo.104, 2007)

Aol

S

[o]o|ofo2]0fo7]0f0]0]..]..]

Word, context, or

Audio Spectrogram Image pixels document vectors

https://www.tensorflow.org/versions/r0.7/tutorials/word2vec/index.html

Network Representations of Models

* Mammallan Ce” CVCle Network Product € Rules leading to activity

9 CycD CycD
@ Rb (CyeD A CycE A CycA A CycB)
g V (p27 A CyeD A CycB)
@\ E2F (Rb A CycA A CycB) V (p27 A Rb A CycB)
CycE (E2F ARD)
@ CycA (E2F ARB ATIC0 A (Cahl A UbO))

V (CycA ARB A Cdc20 A (Cdhl A Ubc))

p27 (CyeD A CycE A CycA A CycB)

V (p27 A (CycE A CycA) A CycB A CycD)
Cdc20 CycB
Cdhl (CycAT A CycB) V (Cdc20) V (p27 A CycB)

UbcH10

UbcH10 (Cdhl) Vv (Cdhl A Ubc
A (Cdc20 Vv CycA Vv CycB))

CycB (Cdc20 A Cdhl)

Each node represents the activity of a key regulatory element, whereas the edges represent
cross-regulations. Blunt arrows stand for inhibitory effects, normal arrows for activations.
(Fauré et al., Bioinformatics, 22, 2006)

Logical Representations of Models

* Boolean Networks &} L
* Cellular Automata u i

!

. c(Xiy Yj» t+1) € c(Xy Yjr t), 2{c(Xi-1r Yj-1r t), c(Xy Yj-1r t), cl Xiv1r Yj-10 t), c(Xi-1 Y t),
Ga me Of I_Ife C(Xi+1l VJ; t)) C(Xi—]_r yj+]_; t)/ C(Xil yj+1l t)l C(Xi+1l yj+1l t) } 3

C(Xil le t+1) é nOt C(Xil le t)l 3 { C(Xi—ll yj—ll t)l C(Xil yj—ll t)l C(Xi+1l Yj—]_l t)l C(Xi—]_l VJ, t)l

(Xi41, Yjr t), c(x_y, Yjs1r t), c(x; Y1 t), c(Xy, Yj+1r t) }3.
Wolfram’s Rule 30

x M =x VX))

“zé* —

ey BT E
DY R B U
“%‘- LR ‘t‘".“ \
.\‘(“‘-' PR SR
~QL“

. ./J‘ F ot
R -r:.f, va,.
The hlstory-of the gene.rated) ;JJ?: :fﬁ’;-ﬁ’ﬁb:?ﬂ%fr i .’L”f . iJ”{J
7 Ps LK, ”‘,"v-x’- i u-’ Y 3
patterns with the starting ;55;54,,;1;1;;53%{@ ,,v;, j’, jff;,,
iy vf:‘i 7
i

o e 151 I
configuration (top) that consists 4 -u%‘:’;‘;gf;‘;r”fi’ 2l rﬁﬂ i

i
il b f,ﬁ””’;’i TJ"W”J

Ty .‘,f,:,"-‘_"ig PIEsA 7, 4', 2 "JJ JJ:’
of a 1 surrounded by O's. 77 ’{*"#’ﬂ;"’f‘#"{’ ,,”m /,,,JJ,,;,,; 5'15.’ "5;]?{;

J 501 TJ a“ 77
. ;?f;-;f .f:’*” o ﬁ%’ .

;J"‘ 51 4{‘ J r % J”@] T JY Ji ‘J J 7"" W, "']'YY{:
At ‘f I -:,’: JTJJ% ;‘Jla ’f‘ [ff JVJ‘ f’;’f 1’ r‘{rﬁ ng‘-;'r'-zjy‘# e 7" Jr u— ‘
- :«ff . frjj J,J,ﬁ::f «ff;q;ﬁ:‘;, - - f i
AT s v iy i o j Z 3
e f ,Yl'é’.f e ,*-f e f -{J 7 f'f,n "

Learning From Interpretation Transition (LFIT)

* Input: Time-Series Data

(Vector-Representation
0-1(Boolean) vectors

° ° 0 50 100 150 200 250 300 350 400 450 500
= Interpretations e
"G1" - "G2" "G3" "G4" "G5" "G6

. ARNEL(U,E) - ANNEL(U,E=)
° ARNTL(0,T) :- CLOCK(0,T-1).
[] ARNTL(0,T) :- CRY1(0,T-1), CRY2(0,T-1).
ARNTL(0,T) :- CRY1(0,T-1), NRIDI(1,T-1).
[] ARNTL(0,T) CRY1(0,T-1), NRID1(0,T-1).
CRY1(0,T-1), PER1(1,T-1).
CRY1(0,T-1), PER1(2,T-1).
CRY1(0,T-1), PERZ(2,T-1).
CRY1(0,T-1), PER2(3,T-1).

ARNTL(0,T) CRY1(0,T-1), PPARA(1,T-1).

° ° ARNTL(0,T) CRY1(0,T-1), PPARA(O,T-1).
ARNTL(0,T) CRY1(1,T-1), CRY2(0,T-1).

ARNTL(0,T) CRY1(1,T-1), NR1D1(2,T-1).

- ARNTL(0,T) CRY1(1,T-1), NR1D1(0,T-1).

ARNTL(0,T) CRY1(1,T-1), PER1(0,T-1).

ARNTL(0,T) CRY1(1,T-1), PER1(2,T-1).

ARNTL(0,T)
ARNTL(0,T)
ARNTL(0,T)
ARNTL(0,T)
ARNTL(0,T)

Boolean networks =

:
:
ARNTL(0,T) *
:
:
:

CRY1(1,T-1), PER2(2,T-1).
CRY1(1,T-1), PER2(3,T-1).
CRY1(1,T-1), PPARA(2,T-1).
CRY1(1,T-1), PPARA(0,T-1).
CRY1(2,T-1), CRY2(0,T-1), PPARA(1,T-1).
CRY1(2,T-1), NR1D1(1,T-1).
CRY1(2,T-1), NR1D1(2,T-1).
CRY1(2,T-1), PER1(0,T-1).
CRY1(2,T-1), PER1(2,T-1)
CRY1(2,T-1), PER2(2,T-1).
CRY1(2,T-1), PER2(3,T-1).
CRY1(2,T-1), PPARA(2,T-1).

ARNTL(0,T)
ARNTL(0,T)
ARNTL(0,T)

[T N N N N N N A N N R

, PER2(0,T-1).
, PPARA(1,T-1).

ARNTL(0,T)

= normal logic program -

ARNTL(0,T)
ARNTL(0,T)
ARNTL(0,T)
ARNTL(0,T)

c.f. (Inoue, IJCAI-11) =
* LFIT—firstly presented by Inoue and Sakama at
ILP 2012 as a short paper

, NRIDI(1,T-1).
CRY1(3,T-1), NR1D1(2,T-1).
CRY1(3,T-1), PER1(0,T-1).

CRY1(3,T-1), PER2(0,T-1), PPARA(2,T-1).
CRY2(1,T-1).

NR1D1(3,T-1).

PER1(3,T-1).

PER2(1,T-1).

PPARA(3,T-1).

ARNTL(0,T-1).

CLOCK(0,T-1) -

CRY1(0,T-1), CRY2(O0,1

CRY1(1,T-1), NR1D1(2,T-1).
CRY1(1,T-1), NR1D1(0,T-1).
CRY1(1,T-1), PER1(0,T-1).

» Inoue, K., Ribeiro, T., Sakama, C.: “Learning from Interpretation Transition”,
Machine Learning, 94(1):51-79, 2014.

Contents

Motivation

Principles:

LF1T (Learning from 1-Step Transitions)
— Bottom-Up Algorithm (generalization)

— BDD Optimization

— Top-Down Algorithm (specialization)
Extensions

Applications

Ongoing Work

Learning From Interpretation Transition (LFIT)

Extensions:

* delays (k-Markov system)

* multi-valued variables

Internal e asynchronous update
State * nondeterministic/

probabilistic transitions

Attractor

1 1 1

0 0 0

...... 1 1 1
Time-Series = : : PIVESLE LG
Xn 0 1 1 1

Data Vector t=0, t=1, - t=k-1,t=k t=k+1, t=k+)2,---

Input: pairs of interpretations of the form (I, I, ,) € 28 x 2HB
Output: logic program P such that I, = Tp (I;) for any (I;, I;41)

Dynamic Environments

» Inoue, K., Ribeiro, T., Sakama, C.: “Learning from Interpretation Transition”,
Machine Learning, 94(1):51-79, 2014.

Normal Logic Programs

A normal logic program (NLP) P is a set of rules:

H<-AA.AA_A=B/ A..A-B, (mn=0)
where H, A; and B, are atoms and = is (default) negation.
P is definite if n = 0 for every rule in P.
ground(P) : the set of ground instances of all rules in P.
The Herbrand base HB, is the set of ground atoms in language(P).
An (Herbrand) interpretation | of an NLP P: | C HB,, (I € 2HPr).
| € 2HBr satisfies (|=) a ground rule of the form:

H <A A.AA_A=B/ A..A-B,

iff Vi. A;€/and Vj.B;¢&/implythatHeE
[is an (Herbrand) model of P if | satisfies all rules in ground(P).

I, operator

To() := {H|H<LA.ALEgroundP), | EL A..AL,}

When P is a definite program, / |=A1 A AAIffFVIAEL

In this case, T, operator is monotone, and the sequence
I0= {}) In+1 = P(In) (nzol"‘)

reaches the least fixpoint of T,, denoted as 1* =T, | w: 1*=T,(/*).

T, 1 wis the least model of P (van Emden & Kowalski, 1976).

When P is a normal program,

| EA A.AA A =B A..A =B iff Vi A/ Eland V). BE .

In this case, T, is non-monotone (Apt, Blair & Walker, 1988).
The orbit of I wrt P (Blair et al., 1997) is {T,“(/))-0.1 ..
where T ,2(I) =1, T}*(l) = T,(T,X(/)) fork=0,1, 2,

T, operator, supportedness, completion

* Aninterpretation | is supported (Apt, Blair & Walker, 1988)
if VA€ /. (A <A A..AA_A=B; A...A=B,) E ground(P)
such that Vi. A;E/and Vj. B¢ |.

* Prop.: Aninterpretation/isa model of Piff T,(/)C 1.

* Prop.: /issupportediff IC T,(/).

* Cor.: [lisasupported model of Piff I=T,(/).

* Prop.: /isamodel of Comp(P)iff I=T,(l), where Comp(P)
is Clark’s completion of P.

 Cor.: /is asupported model of P iff | is a model of Comp(P).

T, operator for NLPs

1. {}
N 2. {p}
* p<— . 3. {p,r}
cr—pa-g. 4+ U

5. {}

6. repeat2—5

T, isnon-monotone.
* No fixpoint is reached in general.
* No supported model exists here.

Learning Logical Dynamics of Systems

Learning action theories in ILP

— Event calculus: Moyle & Muggleton (1997), Moyle (2003)
— Logic programs: with situation calculus: Otero (2003, 2005)
— Action languages: Inoue et al. (2005), Tran & Baral (2009)
— Probabilistic logic programs: Corapi et al. (2011)
Relational reinforcement learning

— Logic programs: Dzeroski et al. (2001)
Abductive action learning

— Abductive event calculus: Eshghi (1988), Shanahan (2000)
Learning Petri nets : Srinivasan et al. (2015)
Active learning of action models

— STRIPS-like: Rodrigues et al. (2011)

These works suppose applications to robotics and bioinformatics.

However, it is hard to infer rules of systems dynamics due to presence of
positive and negative feedbacks.

LFIT: Learning from Interpretation Transitions
(Inoue, Ribeiro & Sakama, Machine Learning, 2014)

 Herbrand interpretation /: a state of the world

* Logic program P: a state transition system, which maps an
Herbrand interpretation into another interpretation

* Next state T,(/): where T, is the immediate consequence operator
(T, operator).

* Learning setting:

— Given: a set of pairs of Herbrand interpretations (/,J) such that
J=Ty(l),

— Induce a normal logic program P.

e c.f.learning from interpretations (LFl)
— Given: a set S of Herbrand interpretations,
— Induce a program P whose models are exactly S.

Subsumption, least generalization

For two rules R,, R, with the same head, R, subsumes R, if there
is a substitution 8 s.t. b*(R,)0 & b*(R,) and b™(R,)0 & b (R,).

A rule R is the least (general) generalization (lg) of R, and R,,
written as R = Ig(R,R,), if R subsumes both R; and R, and is
subsumed by any rule that subsumes both R, and R,.

The Ig of two atoms p(s,,..., s,) and q(t,..., t,) is undefined if p
% q; andis p(lg(s,,t,), ..., Ig(s,t.) if p=q.

The Ig of two rules Ig(R,,R,) is then written as:

lg(h(R),h(R)) < I\ 1g(Lk) A N -igLK).

LE b*(R)), KE b*(R,) LE b™(R)), KE b™(R,)

LF1T: Learning from 1-Step Transitions

e Input: £ & 2HB x 2HB: (positive) examples/observations,
P : an (initial) NLP;
* Output: NLP P s.t. J=T,(/) holdsforany(/,J) € E

Bottom-Up Algorithm (Inoue et al., 2012;2014)
1. If E=9, then output P and stop;

2. Pick (1, J) € E; put E:=E\{(,))};

3. Foreach A € J, let

RIA = A <— A BE/B /\ A CEHB\/_IC;

1. If R, is not subsumed by any rule in P, then P := P U {R,} and
simplify P by generalizing some rules in P and removing all
clauses subsumed by them;

2. Return to 1.

Resolution as Generalization

* (naive/ground resolution) Let R, and R, be two ground rules,
and / be a literal such that h(R,) = h(R,), | € b(R,) and I € b(R,).
If (b(R,) \ {I'}) € (b(R,) \ {I}) then the ground resolution of R, and
R, (upon /) is defined as

res(R,,R,) := h(R,) < /\KE bR\ K
In particular, if (b(R,) \ {I'}) = (b(R,) \ {/}) then the ground
resolution is called the naive resolution of R1 and R2 (upon |).
« Example. R, =(p & gAr),R,=(p & —gAr), R;=(p €q):
res(R,R,) =res(R,R;) = (p < r).
* Proposition: The naive resolution of R, and R, is the least
generalization of them, e.g., Ig(R,R,) = res(R,R,).

LF1T (naive resolution) [r,=a< A ,c,8A A ccppy—C]

B (o

Cparo——<pa> —=p >
m-m_m--
qr->pr p="ANgAr
qu, r<——pAgAr 2 1,2
2 pr->q RPT, g<—pN\N—gAr 3 1,2,3
3 q->pr RY, p<"pAgA—r 4
res(4,1) p<—pAg 5 2,3,5 +1,4
RI, r<——pAgA —r 6
res(6,2) r<——pAg 7 3,5,7 +2,6
4 pgr->pq RPar) p<—pANgAr 8
res(8,1) p<—qAr 9 3,5,7,9 +8
Rpar g<—pANgAr 10

q
res(10,3) g<—pAr 11 5,7,9,11 +3,10

Cont. (naive resolution) [r,:= a< A ,c.8 A A o]

m-m_m-m

pqg—>p Pa, p<=pANgA —r
res(12,5) p<—q —r
res(13,9) p <q

6 p—>E
7 e>r Re. r<—pA—qgA —r
res(15,6) r<——p A\ —r
8 r->r R". r<——p A\ —gAr
res(17,15) r<— —p A\ g
res(18,7) r <= —p
P < 4.
g<—pAr.

r < —p.

propositional program

13
14

15
16
17
18
19

5,7,9,11,13

7,11,14

7,11,14,16

7,11,14,16,18
11,14,19

p(t+1) < q(t).
g(t+1) < p(t) A r(t).
r(t+1) < —p(t).

first-order program

+12

+5,9,13

+15

+17
+7,16,18

LF1T (ground resolution) [r,==a< A ,.,8 A

@D o

Cpgro—pg> —~p O
m-m_n—

/\ ce HB\/_'C]

qr->pr ar p<—"pAgATr
Ra" r<——pAgAr 2 1,2
pr->q RPT, g<—pA\N—gAr 3 1,2,3
q->pr RY, p<—"pAgA—r 4
res(4,1) p<——"pAg 5 2,3,5
R9, r——pAgA —r 6
res(6,2) r<——pAg 7 3,5,7
pqr->pq RPa" p<—pANgAr 8
res(8,5) p<—qgAr 9 3,5,7,9
Rpar_ q<pANagAr 10
res(10,3) g<—pAr 11 5,7,9,11

Cont. (ground resolution) [r, == a< A ,_8
mm_ﬂn

/\ ce HB\I_IC]

pq->p i, p<=pANgAr
res(12,5) p<—qgA —r 13 5,7,9,11,13
res(13,9) p <q 14 7,11,14
p—>E
E>F Re, r<——pA—-gA\—r 15
res(15,7) r<——p A —r 16 7,11,14,16
r->r R, r<——pA—qgAr 17
res(17,7) r<——pA —q 18 7,11,14,16,18
res(18,16) r——p 19 11,14,19
p<q. p(t+1) < qlt).
g<—pAr. q(t+1) < p(t) A r(t).

r < —p.

r(t+l) < —p(t).

propositional program first-order program

Worst-Case Complexity

* Theorem: Using naive resolution, the memory use of the LF1T
algorithm is bounded by O(n=3"), and the time complexity of
learning is bounded by O(n?=9"), where n = |HB|. On the other
hand, with ground resolution, the memory use is bounded by
O(2"), which is the maximum size of P, and the time complexity
is bounded by O(4").

 Corollary: Given the set E of complete state transitions, which
has the size O(2"), the complexity of LF1T(E,<) with ground
resolution is bounded by O(| E|?). On the other hand, the worst-
case complexity of learning with naive resolution is O(n?= | E|*>).

Learning Boolean Networks

 Benchmarks of Boolean networks are taken from (Dubrova and
Teslenko, 2011).

« All possible 1-step state transitions of N from all 21HBl possible

initial states /°s are computed from the benchmarks by firstly
computing all stable models of t(N) U [° using the answer-set
solver clasp, then by running LF1T with these state transitions.

Environment: Intel Core |7 (3610QM, 2.3GHz). Time limit: 1 hour.
Boosting is effective to reduce the size/number of rules.

Table 3 Learning time of LF1T for Boolean networks up to 15 nodes

Name # nodes | # X length of attractor | # rules (org./LFIT) | Naive | Ground
Arabidopsis thalania 15 10 x 1 28 /241 T.O. 13.825s
Budding yeast 12 7 %1 54754 6m0ls | 0.820s
Fission yeast 10 13 x 1 23724 5.208s 0.068s
Mammalian cell 10 1x1, 1x7 22722 5.7568 0.076s

Learning Robust.Boolean Networks

2 Lo
E:"Ai

(’ 09t

-l'“’ f i {OQ?J' .\“ ./.'.o
®

* Most transitions from 21? states belong
to the same basin of attraction.

* From this state transition, LFIT learned
54 state transition rules in 0.8 sec.

Li, F. et al.: The yeast cell-cycle network is | * An improved learning algorithm using
robustly designed, PNAS, 101(14), 2004. BDD learned the same rules in 0.18 sec.

» Inoue, K., Ribeiro T., Sakama, C.: “Learning from Interpretation Transition”,
Machine Learning, 94(1):51-79, 2014.

» Ribeiro, T., Inoue, K., Sakama, C.: “A BDD-Based Algorithm for Learning from
Interpretation Transition”, Post-Proc. ILP 2013, LNAI, Vol.8812, pp.47-63, 2014.

Demonstration

* Bottom-Up Algorithm (Version 1; 2014.03)

E = {(par,pa).(pa.p).(p,_).(_.r).(r.r),(ar,pr),(pr,q).(q,pr) }

Y

par —»| pa F» P ¥ & | T
m (»)
qr—)mL/q

Cellular Automata (CA)

A CA consists of a regular grid of cells.
A cell has a finite number of possible states.

The state of each cell changes synchronously in discrete time steps
according to local and identical transition rules.

The state of a cell in the next time step is determined by its current
state and the states of its surrounding cells (neighborhood).

2-state CA is regarded as an instance of Boolean networks.

CA is a model of emergence and self-organization, which are two
important features of the nature/real-life as a complex system.

1-dimensional 2-state CA can simulate Turing Machine (Wolfram).

Multi-state CA: Disease Spreading Model—0 (healthy), 1 (infected),
values in between (gradually more ill)

Wolfram’s Rule 110

current pattern

111

110

101

100

011

010

001

000

new state for
center cell

c(x,t+1) <— c(x-1,t) A c(x,t) A —c(x+1,t).
C(X)t+1) < C(X_llt) /\ _'C(X,t) /\ C(X+1rt)'
c(x,t+1) < —c(x-1,t) A c(xt) A c(x+1,t).

c(x,t+1) < —c(x-1,t) A c(x,t) A —c(x+1,t).
c(x,t+1) <= —c(x-1,t) A —c(x,t) A c(x+1,t).

Rule 110 is known to be Turing-complete.

O |0 |IN]J]oojlu | |WIN]|F-L |O|

The logic program is acyclic (Apt & Bezem, 1990).

Incorporating Background Theories

* Torus world: length 4
 ¢(0, t) < c(4,t).

e ¢(5,t) < (1, t). "

c(3)

— ¢(2), c(3)

— ¢(1), c(2), c(3)

— ¢(1), c(3), c(4) /] attractor
— ¢(1), c(2), c(3) — ...

o |~ |WIN|EFLR|O|~

learning rules: 0—1(4), 1—2(2), 2—3 (2).
learning positive rules: (2), (2), (1).

Incorporating Inductive Bias

e Bias |: The body of each rule exactly contains 3 neighbor literals.

e Bias Il: The rules are universal for every time step and any position.

e Biases | and Il imply that anti-instantiation (Al) can be applied
immediately instead of least generalization.

mm—_n-

0010->0110 R3, c(2) <= —c(1) A —c(2) A c(3) 1
Al(1) c(x) < —c(x-1) A —c(x) A c(x+1) 2 2
R3, c(3) < —c(2) A c(3) A —c(4) 3
Al(3) c(x) < —c(x-1) A c(x) A —c(x+1) 4 2,4
2 01101110 R2, c(1) < —c(0) A —c(1) A c(2) 5
R?3, c(2) < —c(1) A c(2) A ¢(3) 6
Al(6) c(x) < —c(x-1) A c(x) A c(x+1) 7
res(7,2) c(x) < —c(x-1) A c(x+1) 8 4,8
res(7,4) c(x) < —c(x-1) A c(x) 9 8,9

Incorporating Inductive Bias (Cont.)

mm—m_n-

011051110 R%3, c(3) < c(2) A ¢(3) A —c(4) 10
Al(10) c(x) < c(x-1) A c(x) A —c(x+1) 11
res(11,9) c(x) < c(x) A —c(x+1) 12 8,9,12
3 111051011 ROL, c(1) < —c(0) A ¢(1) A c(2) 13
R34, c(4) <= c(3) A —c(4) A c(5) 14
Al(14) c(x) < c(x-1) A —¢c(x) A c(x+1) 15
res(15,8) c(x) < —c(x) A c(x+1) 16 8,9,12,16

o c(x,t+1) < —c(x-1,t) A c(x+1,t). (8)

o c(x,t+1) < —c(x-1,t) A c(x,t). (9)
o c(x,t+1) < c(x,t) A —c(x+1,t). (12)
o c(x,t+1) < —c(x,t) A c(x+1,t). (16)

These are simpler than the original 5 rules, but still have one redundant rule.

LF1T-BDD

(Ribeiro, Inoue and Sakama, ILP 2013)

Idea: use BDD techniques to use less memory and learn faster.

Contribution: extend the scalability and the efficiency of LF1T.
« Nalve resolution = symmetric reduction.
* New operation was devised for Ground resolution.

PI

rules of p

rules of g

rules of r

NLP P

p<d
p < pAr

q< pA—q
q< pAr

q e—lq/\r

r<— pAgAr
—— p/\—lq/\—ur

Top-Down LF1T

(Ribeiro and Inoue, ILP 2014)

Idea: Generate rules by specialization from the most general
ones until no negative example is covered.

Merit: Learn all minimal (prime implicant) rules.

— Unique output, Efficient on real networks

TD-LF1T starts with an initial program PO = {a. | a € HB}.

For each transition (/, J) € E, for each variable A that does not
appearin J, A is associated with the set of its anti-support

K/A = | U {_lBl Be HB\I},

Each rule with head A is then specialized by the rules each of
which is formed by adding one literal from K, to its body.

Example: from the state transition (bc, ac), the rule b. is replaced
by three rules: b <—a; b <=—b; b <—c.

Running example

E = { (abc, ab), (ab, a), (a,€), (¢,¢), (c,c), (bc,ac) (ac, b) (b, ac) }
Init. | abc — ab ab— a a— € €E— C c—C
a. a. a. a + —a. a<+ b. a<+ b.
b. b. b + —a. a<+b. a<+ c. a+—aAc.
C. C + —a. b < —b. a<+ c. a<+——aAb: a<+—bAe

c < —b. b + c. b <+ —a. a<+—aAe | b+ —aAnb.
C <+ —cC. C + —a. b+ c. b+ c. b+ aA-c.
c + —b. b<+——aA—=b- | b+ —-aAb. b+ bAec.
At —Cr b+——=bAe- b+———aAe C <+ —a.
€c<+——=bA—e C + —a. Cc <+ —a. c+ bAc.
€<—aA—=b- | c+ bAc.
c + —b Ac.
bc — ac ac — b b— ac
a<+ b. a<+ b. a<+ b.
a< aANc. a+—aAbAes b+ aAec.
b+ aAc. b+ aAec. c + —a.
b+ —-aAbA —c. b<+ —-aAbA-—c.
h~—atbhbAe Cc + —a. b+ —-aAbA-—c.
C + —a. e+——aA—bAe is removed because
c+ -bAec. it cannot be specialized

Comparison of 3 algorithms

Algorithm Mammalian (10) Fission (10) Budding (12) Arabidopsis (16) T helper (23)
Naive 142 118/4.62s 126 237/3.65s 1 147 124/523s T.0. T.0O.
Ground 1036/0.04s 1218/0.05s 21 470/0.26s 271 288/4.25s T.0O.
Ground-BDD 180/0.24s 147/0.24s 541/0.19s 779/2.8s 611/3360s
Full Naive 377 539/29.25s 345587 /24.03s T.0. T.0. T.0.
Full Ground 1066,/0.24s 1178/0.23s 23 738/4.04s 309 469/111s T.0.
Least Specialization 375/0.06s 377/0.08s 641/0.35s 2270/5.28s 3134/5263s
Properties of the differents LF1T algorithms
Alzorithm Complexity Scalability Performances Output ||Variables | Transitions
& Run Time| Memory |# Variables | Run Time | Memory | Sensitivity || Ordering [Ordering
Naive O(n°.9") | O(n.3™)
Ground o(4™) 0(2™) 16
Ground-BDD o(4") o(2")
Full Naive O(n>.9") | O(n*.3")
Full Ground O(n.4") | 0O(2") 16
Least Specialization| O(n.4") | O(2")

Contents

Motivation

Principles

Extensions:

— LFKT (Learning Markov(k) Systems)
— Multi-Valued LFIT

— Asynchronous LFIT

— Probabilistic LFIT

Applications

Ongoing Work

What is the Nondeterminism? (A possible answer)

When different transitions are possible, starting from a
single state, the pathway followed depends on the values
of the corresponding transition delays.

(Thomas and D'Ari, 1990)

e

mmmmm
BN
B A C

Markov(k) System

(Ribeiro, Magnin, Inoue and Sakama, FiBioE 2015)

 Let HB be the Herbrand base of a program P and k a natural
number. The timed Herbrand base HB, of P (with period k) is:

k
HB = U{vt_i |v EHB}
=1

where t is a constant term (the current time step).

* A Markov(k) system S with respect to P is a logic program

satisfying that, for any rule RE€ S, h(R) € HB and all atoms
appearing in b(R) belong to HB,.

* Example: S={a<b,Ab,;b<a_,A—b,,}
is @ Markov(2) system.

Markov(2) system

° S = {a < bt /\ bl’-l; b < at-Z/_Ibt-Z}

b

—>

€

—>

ab

3

v v v

a b» b | b
ab | b > a
b > b > a
e F» b > ¢
)
a —»
| S

ab

(Top-down) LFKT

Input: A set of traces of executions O of a Markov(k) system S. Note
that the optimum delay is unknown at this point.

Step 1: Initialize a logic program P with the fact rules.
Step 2: Pick a trace T from O and update the delay k accordingly:
a. Initialize a program with the fact rules for each new delay k.
b. Revise these logic programs with all previous traces.
Step 3: Convert the trace into interpretation transitions and
revise the programs using least specialization.
Step 4: If there is a remaining trace in O, go back to step 2.
Step 5: Merge all logic programs into one by avoiding rule subsumption.
Step 6: Remove all rules that are not necessary to explain O.
Output: A set of rules with the optimum delay which realizes O.

Experiments of a Markov(5) system

A time-delayed gene regulatory networks of the
human Hela cell cycling (Li et al., 2006).

" oW - &
@ o . l 5 ./o I T A
@\ @ T @ \ (o) (o) 9
AN d ‘
x 8P~ & 4 / S
=) . / S . / nye=—{om) \.
\@ = T=2 Goc2) (o) T=4
(et .
I @3 @ Run time (# of seconds)
-0 - # Traces k=1 k=2 k=3 k=4 k=5
10 0.23s 0.27s 0.16s 0.28s 0.31s
/ 100 1.87s 2.40s 1.63s 2.37s 2.84s
/ i 1 000 153s | 185s | 13.3s | 20.1s | 23.8s
10 000 146s 218s 147s 201s 234s
100 000 2177s | 2577s | 1 643s | 1 764s 2243s
1000000 | 27 768s | 22 517 | 12384 | 15670 | 20 413

e LFkT input goes from 10 to 10° traces.

Multi-Valued LFIT

(Ribeiro, Magnin, Inoue and Sakama, ICMLA 2015)

Atoms of a logic program to the form var“? . We consider a
multi-valued logic program as a set of rules of the form:

yval «— vlvall A A vnvaln

(v=val <= v,=val A...A v =val)

where v/ and v.*? are atoms (n = 0).

Example: P={al< a% A b%; bl < alAb%}.
A multi-valued interpretation | is a set of assignments such that
| contains one and only one ground atom v* for any v&V.

Note: no negation: definite programs (or equational theory)
Generalization and specialization can be redifined accordingly.

Other extensions

From synchronous to asynchronous updates

From deterministic to probabilistic and nondeterministic
transitions (Martinez et al., ICLP 2015; ICAPS 2016)

And their delayed and/or multi-valued versions

Open Question: When there are incompatible transitions,
which models should be selected?

— delay, synchronicity, noise, nondeterminism, uncertainty, etc.

Contents

Motivation
Principles
Extensions

* Applications:

— Biology

— Cellular Automata

— Robotics (learning action rules)
— AGI (learning agents’ logics)
Ongoing Work

Two types of changes

 Endogenous change:
— natural growth
— physical dynamics
— biological development
— internal change in the closed system

* Exogenous change:
— action
— external event
— enzymatic reaction
— decision/choice with free will

Revising Plans in Adaptive Systems

Environment

reaction

Behavioural model revision through probabilistic rule learning
— action rules are learned from logs of trails using ASP

» Sykes, D., Corapi, D., Magee, J., Kramer, J., Russo, A., Inoue, K.: “Learning
revised models for planning in adaptive systems”, ICSE 2013: 63-71.

Learning Uncertain Actions in Stochastic

Domains for Robot Planning
(joint work with David Martinez and his colleagues in CSIC-UPC)

=
\ FXxperiences /

Model

Planner

Perception

Robot

Action

Learning Uncertain Actions through LFIT
(Martinez et al., ICLP 2015; ICAPS 2016)

Interpretation
transitions

Grounded Symbolic
transitions transitions
Symbolic

Input observations

interpretation

Interpretation
transitions

LFIT

Best RDDL operators

Operator
optimization

Probabilistic

propositional rules

Symbolic planning <

Probabilistic

operators

propositional rules

Action Learning with LFIT

Learn from transitions (statet, action,, state
Learned rule:

t+1)

p= 0.3 : robot-at(X.Z) < robot-at(X,Y) N\ —obstacle-at(X,Z) N\ move-north

|

Probability Head = Effect Body = Preconditions + Action

IPPC 2014 Domains (Martinez et al., ICAPS 2016)

« Triangle Tireworld. (Easiest) Uncertain effects, no exogenous effects,
5 predicates, 3 actions, 7 operators with max 2 terms.

« Crossing Traffic. (Intermediate) Uncertain effects, exogenous effects,
8 predicates, 4 actions, 6 operators with max 3 terms.

« Elevators. (Hard) Uncertain effects, exogenous effects, 10 predicates,
4 actions, 17 operators with max 3 terms.

Triangle Tireworld Crossing Traffic Elevators
086 r T r v 0.6 r T v v 0.6 r v x .
—— Qur approach - —— Qur approach Our approach
05t B 1 0.5 IIIII&TI’Iixzka;??:?;EE: 05}}1 —
gos 1ot 1 804 "1»«-%11111-1-1'[1]
gos 1 %os | gos HHHIHI:
1\ | 3l 4 :] 3
goz- I\l] E 0.2t 1} 1 § 0.2 }]
o1l -l }}\ - 4 0.1 :[- 1 0.1 } 4
. H?HHHTH&H%H .H{UHH?IIHIHH: . hHUIHmIn:
0 0
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Number of Transiions per action (3 actions) Number of Transiions per action (4 actions) Number of Transitions per action (4 actions)

Figure 5: Comparison with Pasula et al. The results shown are the means and standard deviations obtained from 50 runs. The
evaluation was done with 5000 random transitions. Left: Triangle Tireworld (o =0.02, e =0.1, w =2, § =0, K = 00, no tree).
Center: Crossing Traffic (o =0.025, e=0.1, w=3, § =0.05, K =500, tree). Right: Elevators (o« =0.015, e=0.1, w=23,
6 =0.05, k =500, tree).

“Can Machines Learn Logics?”

Input Agent A (human/computer) Output
S: formulas > Logical System L > T(ESTh(S))
l Machine M
(S, 7) > Learning System C > K

* Giveninput (S, T), a machine M produces an axiomatic system K.
* Itis possible to learn meta-level one-step deduction rules, e.g., MP.
* Would be applied to learning abduction and other non-standard logics.

» Sakama, C., Inoue, K.: “Can Machines Learn Logics?”, 8% Int’l Conf.
Artificial General Intelligence (AGI 2015).

Learning Deduction Rules by LF1T

(Sakama, Ribeiro and Inoue, ILP 2015)

* We assume a deduction system L represented by a
metalogic program P that provides transitions (/, J)
satisfying J = Tp(/).

e Given (/,J) as an input, our goal is to examine
whether LF1T can reproduce correct inference rules
of L represented by meta-rules in P.

| —> p —> J

u |

U= 1T — >t

Example

* Given the Herbrand base:
B={ hold(p), hold(q), hold(r), hold(p—r) },
a rule with hold(r) in the head is constructed as follows.
e Step 0: LF1T starts with the most general rule:
hold(r)< (1)

e Step 1: The transition ({},{}) is given. (1) is inconsistent
with this (namely, {} should produce {hold(r)} under (1)),
so (1) is minimally specialized by introducing an atom
from B:

hold(r)<—hold(p) (2)
hold(r)<—hold(q) (3)
hold(r)<—hold(r) (4)

hold(r)<—hold(p—r) (5)

Example

e Step 2: The transition ({hold(p)},{hold(p)}) is given.
hold(r)<—hold(p) (2)
is inconsistent with this, so (2) is specialized into
hold(r)<—hold(p), hold(q)
nold(r)<—hold(p), hold(r)
nold(r)<—hold(p), hold(p—r)
These rules are respectively subsumed by

hold(r)<—hold(q) (3)
hold(r)<—hold(r) (4)
nold(r)<—hold(p—r) (5)

hence removed. As a result, (3),(4) and (5) remain.

Example

e Step 3: The transition ({hold(q)},{hold(q)}) is given.
hold(r)<—hold(q) (3)

is inconsistent with this, so (3) is specialized into

hold(r)<—hold(q), hold(p) (6)
hold(r)<—hold(q), hold(r)
hold(r)<—hold(q), hold(p—r)

The last two rules are respectively subsumed by
hold(r)<—hold(r) (4)
hold(r)<—hold(p—r) (5)

and removed. As a result, (4), (5) and (6) remain.

({3 {})
({hold(p)},{hold(p)})

({hold(q)},{hold(q)})

({hold(p—r)},{hold(p—r)})

({hold(p),hold(q)},{hold(p),hold(q)})

({hold(p—r),hold(q)},{hold(p—r),hold(q)})

({thold(p—r),hold(p)}, {hold(p),hold(r)})

hold(r)<—hold(p) hold(r)<—hold(q)
hold(r)<—hold(r) hold(r)<—hold(p—r)
hold{r}=hold({p) hold(r)<—hold(q)
hold(r)<—hold(r) hold(r)<—hold(p—r)
hold({r)}<=hold{qg) hold(r)<—hold(r)
hold(r)—hold(p—r) hold(r) <hold(p),hold(q)

hold(r)<—hold(r) hold{r}=hold{p—r)
hold(r) <hold(p),hold(q)
hold(r)<—hold(p—r),hold(p)

hold(r)<—hold(p—r),hold(q)

hold(r)<—hold(r) held{r)<held{p);hold{g)
hold(r)<—hold(p—r),hold(p)
hold(r)<—hold(p—r),hold(q)

hold(r)<—hold(r)
hold(r)<—hold(p—r),hold(p)

hold(r)<—hold(r) :Repetition
hold(r)<—hold(p—r),hold(p) :Modus Ponens

Experimental Results

Given B={ hold(p), hold(—p), hold(qg), hold(—q), hold(p—q), hold(g—r),
hold(p—r) }, LF1T produces:

— hold(—p) < hold(—/q) A hold(p—q) : Modus Tollens
— hold(p—r) < hold(p—q) A hold(g—r) : Hypothetical Syllogism
Given B={ hold(p), hold(—p), hold(q), hold(—q), hold(p V q),
hold(—pV —q), hold(r V's), hold(—rV —s), hold(p—r), hold(g—s) },
LF1T produces:
— hold(p) < hold(pV g) A hold(—q) : Disjunctive Syllogism
— hold(rVs) < hold(pVag) A hold(p—r) A hold(g—s)
: Constructive Dilemma
— hold(—pV —q) < hold(—rV —s) A hold(p—r) A hold(g—s)
: Destructive Dilemma
Given a transition (1,J)=({hold(p—q), hold(q)}, {hold(p)}), LF1T produces

— hold(p) < hold(q) Ahold(p—q)
: Fallacy of Affirming the Consequence (a rule for Abduction)

Contents

Motivation
Principles

Extensions
Applications
Ongoing Work:

— DREAM Challenges
— NN-LFIT

Scientific Challenge

(Ongoing work with Morgan Magnin, Tony Ribeiro, Olivier Roux)

Goals:
eBuild predictive dynamic models from

e Assess the efficiency of the approach by taking part to an open
Machine Learning challenge.

eMotto: Logical modeling has its own merits compared with
continuous approaches (e.g., ODE)

Underlying questions:

e\What would be efficient algorithms for discretization and learning?
e\What is a good predictive model?

eHow to validate the benefits of the algorithms on "real-life" data?

Abstraction of systems to build qualitative dynamic models

0 0.6665114 0.1272186 0.3550646 0.7745716 0.1
50 0.3257748 0.1218223 0.3464115 0.7229108 0.1
100 | 01775012 | 00443587 | 05712888 | 0586828 | 02
150 0.1838851 0.0615354 0.4849771 0.6338205 0
200 0.0930693 0.1398431 0.3435551 0.5354375 0.2
250 0.0653015 0.0886361 0.3124305 0.5255509 0.¢
300 0.1502136 0.094808 04126412 0.4599706 0.2
350 0.0913323 0.090451 0.3764574 04214017 0.5
400 0.1358562 0.1182462 0.5188737 0.5030134 0.¢
450 0.1667014 0.0765614 0.3768678 0.4831358 0.¢
500 0.1170103 0.075504 0.4322347 0.5403027 0.5
550 04708819 0.093721 0.3453156 0.618386 0.
600 0.5545089 0.1443166 04763379 0.6233838 0.
650 0.5717737 0.1580246 0.352766 0.6429242 0.2
700 0.6437458 0.0906398 0.3817925 | 0.7448212 | 0.1
750 0.6988616 0.0959292 0.4025808 0.6477586 0.1
800 0.6002293 0.1251139 0.3520098 0.7884273 0.1
1632 0.1
968 | 0L
306 | 0.
1402 0.1

\/ 2< W\/ =

Discretization of
the expression

0 50 100 150 200 250 300 350 400 450 500
"Time'
"G1" - "G2" nG3" "G4" ¥ "G5" -e "G6

Time series data

Regulatory networks: up to
45.000 genes over 48 time
points for every gene

Max de |a série

Niveau

Min de |a série

Graphe d'un géne

rés discrétisation

~

1 apréy discrétisation

0 aprés discrétisation

400 450 500 550 600 650 700 7%

= ANEL(U, 1)
CLOCK(0,T-1).

CRY1(0,T-1), CR¥2(0,1-1).
CRY1(0,T-1), NRIDI(1,T-1).
CRY1(0,T-1), NRIDI(0,T-1).

iZ CRYI(1)7-1), NRIDI(2,T-1).
$- CRYI(1)T-1), NRIDI(0,T-1).
CRYI(1,7-1), PERI(0,T-1).
CRYI(1,7-1), PERI(2,T-1).
CRY1(1,7-1), PERZ(2,T-1).
CRY1(1,7-1), PERZ(3,T-1).
CRY1(1,7-1), PRARA(2,T-1).
CRY1(1,7-1), PRARA(O,T-1).
CRY1(2,7-1), CRY2(0,T-1), PPARAC1,T-1).
CRY1(2,T-1), NRID1(1,T-1).
CRY1(2,T-1), NRID1(2,T-1).
CRY1(2,T-1), PER1(0,T-1).
CRY1(2,1-1), PER1(2,1-1).
CRY1(2,1-1), PERZ(2,1-1).
CRY1(2,7-1), PER2(3,T-1).
CR¥1(2,T-1), PPARA(2,T-1).
CR¥1(3,T-1), CRY2(2,T-1), PER1(1,T-1), PERZ(0,T-1).
CR¥1(3,T-1), CRY2(2,T-1), PER1(1,T-1), PPARA(1,T-1).
CRY1(3,T-1), NRID1(1,T-1).
CRY1(3,T-1), NRID1(2,T-1).
CRY¥1(3,T-1), PER1(0,T-1).
CRY1(3,T-1), PER2(0,T-1), PPARA(2,T-1).

CRY1(0,T-1), CR¥2(0,T-1).
- CRY1(0,T-1), NRIDI(1,T-1).
CRY1{0,T-1), NRID1{0,T-1).
CRY1{0,T-1), PER1(1,T-1).
CRY1{0,T-1), PER1(2,T-1).

CRY1(0,7-1), PRARA(O,T-1).
CRY1(1,7-1), CR¥2(0,T-1).
= CRY1(1,T-1), NRIDI(Z,T-1).
= CRY1(1,T-1), NRIDI(0,T-1).
= CRY1(1,T-1), PERI(0,T-1).

Logic program

A wide range of possible models and
inference algorithms

e Expression discretization
- Boolean
- Multi-valued
e Time discretization
- Event-driven model
- Discrete-time model
- Dense-time model
e Semantics of discrete transitions
- Synchronous

- Partially synchronous (a set of transitions can be fired
altogether)

- Asynchronous (one at a time)
e Determinism of discrete transitions : yes or no
e Markov property: yes or no

Two main targets

DREAM Challenges data:
ePredict steady states and associated model (without signs):
e DREAM4 (2009): 100 genes over 21 time points [synthetic data]
e DREAMS5 (2010): over 17 time points [real data]
ePredict trajectories and associated model:
DREAMS (2013): 40 genes over 8 times points [real data]

Circadian rhythm (French ANR-funded project): predict trajectories and
associated model (with nature of interactions)

Input: expression data (Delaunay et al.) [real data]
e 45.000 genes
e 4 datasets (1 normal + 3 perturbations)
e 48 time points for every gene

DREAM ﬁ’

CHALLENGES !
« Start: 2006 powered by Sage Bionetworks
 Periodicity: Annual
« DREAM = "Dialogue for Reverse Engineering Assessments and
Methods”: Reverse engineering for regulatory, signaling, and
metabolic networks
« Aim: encourage the design of new efficient computational
models and methods to analyze systems from biology
e URL: http://dreamchallenges.org
A wide range of partners (IBM Research, Sage Bionetworks, ...)
Main competitor: kaggle
Reward: no financial prize, but publications in journals
Main issue: how to rank methods?
Scoring committee for each challenge
« Evaluation criteria: Predictive power with specific metrics:
AUPVR, AUROC

Prediction problems issued in DREAM

Structure of the network

Behavioral prediction with regard to specific conditions (e.g.,
knockouts) or initial states

« Steady states

« Trajectories

Judges are blind to the approach that is used, i.e., only the
prediction results counts... (at least at short-term perspective)

Computational time is not a criterion that is assessed in this kind
of challenge.

e Most methods tend to lie in the range of minutes to hours.
e But some others could take up to 48h per gene.

About DREAM4 data

« Targeted systems (adapted from E. coli and yeast network):
« 5 different systems each composed of 10 genes
« 5 different systems composed of 100 genes

« Datasets available for each system of 10 genes (resp. 100):

« 5 (resp. 10) time series data with 21 time points corresponding
to different perturbations

 Steady state at wild type, i.e. 1 steady state

« Steady state after knocking out each gene, i.e. 10 steady states
(resp. 100)

« Steady state after knocking down each gene (transcription rate at
50%), i.e. 10 steady states (resp. 100)

 Steady states after some random multifactorial perturbations,
i.e. 10 steady states

Learning experiments with LFKT

e Learn independently each series with LFKT

e Evaluate rules on all series (full cross-validation)

Evaluate Rules

Rules

Rules

Rules

Rules

T TR
-
gl
-~
LI

Evaluation on DREAMA4 data

e Goal: Given an initial state and {5 for networks of 10 genes; 20 for
networks with 100 genes} different conditions of dual genes to be
knockout simultaneously, predict point attractors

e Evaluation of precision: mean square error of the difference
between predicted/expected values

Number .
Benchmark Run time | MSE
of genes

insilico_size100_1 100 51h 0.068
insilico_size100_2| 100 4'7h 0.044
insilico_size100_3 100 59h 0.052
insilico_size1004| 100 50h 0.053
insilico_size100_5 100 48h 0.071

Experiments run on a processor Intel Xeon (X5650, 2.67GHz) with 12GB of RAM

A)

Prediction Error [MSE]

0.1

0.075

0.05

0.025

Comparison with other methods

DREAM4: Combining Genetic and Dynamic Information to
|dentify Biological Networks and Dynamical Models
[Greenfield et al., 2010]

Double Knockout Predictions

Performance using initial conditions based on wild type

B initial conditions (wt)
B tICLR-Inf + MCZ (pipeline 3)
B Resampling + MCZ (pipeline 4)

T i T
Tid T |
M (.)
L 1 T T
1 [U
1 M
1) b Y N
o THY | oy
(| g
' %
B ':
1 1
1
T |
-
HTT
| L
h v b
|
P TR 1
T i NN
4 o B
11d 40 44

0.1 0.2 0.3 0.4 0.5 0.6
Median Expression [Removed Genes]

====4
-—-==-4

B)

Prediction Error [MSE]

0.025

0.075 0.1

0.05

Performance using initial conditions based on single gene knockout

M initial conditions (single gene KO)
M {tICLR-Inf + MCZ (pipeline 3)
B Resampling + MCZ (pipeline 4)

b o 5 i
i 5 T I | |
T
 ome L + i
0.2 0.3 0.7

0.1 0.4 0.5 0.6
Median Expression [Removed Genes]

Precision of prediction on the networks of size 100.

Artificial Neural Networks: learning transition
(Ongoing work with Enguerrand Gentet)

* Advantages:

- Continuous variables

- Good generalization

- Inter-variables learning Rules?
- Manage delays efficiently (RNN)

x1(t)—>
* Challenges: ot

- Architecture choice 53—
- Rule extraction xA(t—>

xn(tJ—>

transition

Artificial Neural Networks: ongoing work

Benchmark: fission | act_func: relu arch: [10 100 100 10]

0.6
Ongoing: NN-LFIT |
- Learning Boolean networks g o
. ot
- 4-layer NN (2 hidden layers) 9
2103 — il
- No delays : —
0.2
| “l
;i
Results: "'J'L'.'ﬂ”.llllllul
S f | | . *% 00 150 200 250
- rnin epoch
uccesstutied g Training on the whole set of transition:
- Good generalization all the transitions are successfully learned
N trainigg (60.0% transitions) | Benchmark: fission | Architecture: [10 100 100 N trainigg (30.0% transitions) | Bencyhr‘nzlark: fission |‘Architectulre: [10100 100
A T | Plans:
- continuous values
' - rule extraction

0.10} 1 0.10+

- delays

0.05+ R 0.05}

0.00 - - -
0 0.00

100 200 300 400 500 600 0 50 100 150 200 250 300 350
epoch epoch
Training on 60% of transitions: Training on 30% of transitions:

0% error on the remaining 40% 0.5% error on the remaining 70%

LFIT: Summary

Motivation: Modeling in Dynamic Environments

Principles: LF1T (Learning from 1-Step Transitions)

— Bottom-Up Algorithm (generalization)

— BDD Optimization

— Top-Down Algorithm (specialization)

Extensions: LFKT (Learning Markov(k) Systems),
Multi-Valued/Asynchronous/Probabilistic Extensions
Applications: Biology, Robotics, AGI, etc.

Ongoing Work: DREAM Challenges, NN-LFIT

Publication (1/2)

Katsumi Inoue: Logic Programming for Boolean Networks, in: Proceedings of the 22nd
International Joint Conference on Artificial Intelligence (1JCAI-11), pp.924-930, AAAI (2011)

Katsumi Inoue, Chiaki Sakama: Oscillating Behavior of Logic Programs, in: Correct
Reasoning—Essays on Logic-Based Al in Honour of Vladimir Lifschitz, LNAI, Vol.7625, pp.
345-362, Springer (2012)

Daniel Sykes, Domenico Corapi, Jeff Magee, Jeff Kramer, Alessandra Russo, Katsumi Inoue:

Learning Revised Models for Planning in Adaptive Systems, in: Proceedings of the 35th
International Conference on Software Engineering (ICSE ’'13), pp.63-71, IEEE/ACM (2013)

Chiaki Sakama, Katsumi Inoue: Abduction, Unpredictability and Garden of Eden, Logic
Journal of the IGPL, 21(6):980-998 (2013)

Katsumi Inoue, Tony Ribeiro, Chiaki Sakama: Learning from Interpretation Transition,
Machine Learning, 94(1):51-79 (2014)

Tony Ribeiro, Katsumi Inoue, Chiaki Sakama:

A BDD-Based Algorithm for Learning from Interpretation Transition, in: Post-Proceedings
of ILP 2013, LNAI, Vol.8812, pp.47-63, Springer (2014)

Tony Ribeiro, Katsumi Inoue:

Learning Prime Implicant Conditions from Interpretation Transition, in Post-Proceedings of
ILP 2014, LNAI, Vol.9046, pp.108-125, Springer (2015)

Tony Ribeiro, Morgan Magnin, Katsumi Inoue, Chiaki Sakama:
Learning Delayed Influences of Biological Systems, Frontiers in Bioengineering and
Biotechnology, 2:81 (2015)

Publication (2/2)

Tony Ribeiro, Morgan Magnin, Katsumi Inoue, Chiaki Sakama:

Learning Multi-Valued Biological Models with Delayed Influence from Time-Series
Observations, in: Proceedings of the IEEE 14th International Conference on Machine
Learning and Applications (ICMLA 2015), pp.25-31, IEEE (2015)

Marcus Volker, Katsumi Inoue: Logic Programming for Cellular Automata, in: Technical
Communications of the 31st International Conference on Logic Programming (ICLP 2015),
CEUR Workshop Proceedings, Vol.1433 (2015)

David Martinez, Tony Ribeiro, Katsumi Inoue, Guillem Alenya, Carme Torras:

Learning Probabilistic Action Models from Interpretation Transitions, in: Technical
Communications of the 31st International Conference on Logic Programming (ICLP 2015),
CEUR Workshop Proceedings, Vol.1433 (2015)

David Martinez, Tony Ribeiro, Katsumi Inoue, Guillem Alenya, Carme Torras: Learning
Relational Dynamics of Stochastic Domains for Planning, in: Proceedings of the 26th
International Conference on Automated Planning and Scheduling (ICAPS ’16), to appear,
AAAI (2016)

Chiaki Sakama, Katsumi Inoue: Can Machines Learn Logics? in: Proceedings of the 8th
International Conference on Artifiicial General Intelligence (AGI 2015), LNAI, Vol.9205, pp.
341-351, Springer (2015)

Chiaki Sakama, Tony Ribeiro, Katsumi Inoue: Learning Inference by Induction, in: Post-
Proceedings of ILP 2015, LNAI, Vol.9575, to appear, Springer (2016)

