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1. Suitable abstraction of problems:  

• Mathematical models – discrete/hybrid (complex) systems 

• Symbolic representation – dynamic (constraint) networks 

2. Logic for systems resilience: 

• Semantics: dynamics in terms of possible worlds  

• Inference: verification/prediction – model checking, explainabiliy 

• Update: reasoning about change 

3. Computation of resilience:  

• Decision/optimization problems – (multi-objective) CSP/COP 

• Exact/approximation algorithms – robust solutions 

4. Design of resilient systems:  

• Design of systems with desirable dynamics – machine leaning 

• Robustness/sensitivity analysis – multi-agent simulation 

1. Intelligence into Resilience 



SR-Model  (Schwind et al., AAMAS 2013) 

 
1. Dynamical systems 
2. Multi-agent systems 
3. Constraint-based systems 
4. Flexible, can add/delete agents/constraints 

Resistance 
+ 

Recoverability 
= 

Resilience 



Shape of a Dynamic System 

• At each time step, a decision is made.   
• Depending on the environment (uncontrolled event), the 

specifications of the system may change without any restriction.  

 



Resistance + Recovery 
• At each time step, the state of the system is associated with a cost 
• Resistance + Recovery:  
 The ability to maintain some underlying costs under a certain 

“threshold”, such that the system satisfies certain hard 
constraints and does not suffer from irreversible damages.  

 The ability to recover to a baseline of acceptable quality as 
quickly and inexpensively as possible.  

 
 



Functionality + Stabilizability 

 Functionality: the ability to provide a guaranteed 
average degree of quality for a period of time.  

 Stabilizability: the ability to avoid undergoing changes 
that are associated with high transitional costs.  

• A dynamic system is resilient if one can find a 
“strategy” (i.e., the “right decisions”) and a state 
trajectory within this strategy that is resistant, 
recoverable, functional, and stabilizable. 

 

 

 



 C. Sakama and K. Inoue:  “Abduction, Unpredictability and Garden of Eden”, 
Logic Journal of the IGPL, 21(6):980-998, 2013.  

• To know if an event is (un)predictable or not 

• To identify if there is an unpredictable state  

Approach 

• A logical account of (un)predictability based on abduction.    

• Provide computational methods of configurations of cellular 
automata in logic programming and Answer Set Programming.  

Results 

• Investigate Hempel’s symmetry: An event E is predictable under 
<B, H > iff E is explainable under <B, H >.  

• A configuration E is a Garden of Eden of a cellular automaton 
iff E  is unpredictable under <B, H >.  

Logical Theory of Unpredictability 



Reasoning about Boolean Networks  
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• Models of biological (gene regulatory and signaling) networks 
• Models of complex systems like Cellular Automata and Game of Life 
• Analysis of dynamic behavior involving positive and negative feedbacks 

Attractor #1:  (p,q,r) =  
     101 ⇒ 010 ⇒ 101 ⇒… 
Attractor #2:  (p,q,r) =  
      001 ⇒ 001 ⇒ … 
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 K. Inoue:  “Logic Programming for Boolean Networks”, IJCAI 2011.   

 K. Inoue & C. Sakama: “Oscillating Behavior of Logic Programs”, Correct 
Reasoning (Lifschitz Festschrift), LNAI, Vol.7625, pp.345-362, 2012.  



Learning Dynamical and Complex Networks  

• Dynamic systems involving positive and negative feedbacks  
• Learning Boolean networks from state transition diagrams 
• Learning Cellular Automata from traces of configuration change  

 K. Inoue, T. Ribeiro & C. Sakama: “Learning from Interpretation Transition”,  
Machine Learning, 94(1):51-79, 2014. 
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• c(x,t+1)  c(x-1,t) ∧ c(x,t) ∧ ￢c(x+1,t). 

• c(x,t+1)  c(x-1,t) ∧ ￢c(x,t) ∧ c(x+1,t). 
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• c(x,t+1)  ￢c(x-1,t) ∧ ￢c(x,t) ∧ c(x+1,t). 
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Wolfram’s Rule 110 (Turing-complete)   



Prediction of Gene Knockout Effects of E.coli by SAT-
Based Minimal Model Generation 

(Soh, Inoue, Baba, et al.: Int’l J. Adv. Life Science, 2012) 
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Cell cycle with cyclin-dependent kinases (Schneider et al., 2002) 

Biological Robustness: Pathway Completion  
by Meta-Level Abduction  

(Inoue, Doncescu & Nabesima: Machine Learning, 2013) 



2. Resilience into Intelligence 

 

AI = search problems  
weakly constrained: too many possible solutions 

  
 

Resilient Solutions 

 
Select the models that are robust/diverse/adaptable/etc.  

Design agent systems that are enforced stabilizabiliation.   



Revising Plans in Adaptive Systems 
(Sykes et al., ICSE 2013) 
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Behavioural model revision through probabilistic rule learning  



Diverse Solutions 

• Structural diversity — diverse genotypes 

• Functional diversity — diverse phenotypes 
• These notions have been incorporated in many optimization 

research, in particular for multi-objective optimization using 
genetic algorithms.   

 

• Well-balanced diversity (Schwind, et al., 2015): 
representative solutions — useful for distribution of 
sensor networks, enhancing robustness 



Multi-Objective Distributed Constraint 
Optimization Problem (MO-DCOP) 

• Computation of resilient systems that have trade-off criteria 
• Multiple criteria are considered in Pareto solutions 

 Real-world problems involve multiple criteria that should be 
considered separately yet optimized simultaneously. 



 

• Introduce the framework of a Dynamic Multi-Objective 
Constraint Optimization Problem (DMO- COP) 

• Focus on resistance and functionality  

• Provide an algorithm called Algorithm for Systems 
Resilience Applications (ASRA) to compute all resistant 
and functional solutions for DMO-COPs 

Resilient Solutions for Dynamic Multi-
Objective Constraint Optimization 

(Okimoto, Clement, Schwind & Inoue: ICAART 2015) 



Secured AI 

• Security research can help make AI more robust  

• AI systems are used in an increasing number of critical roles, 
including cyber-attack surface area  

• AI and machine learning techniques will themselves be used in 
cyber-attacks  

• At a lower level, robustness against exploitation is achieved by  
verifiability and freedom from bugs.  

• At a higher level, AI techniques could be applied to the 
detection of intrusions, analyzing malware, and detecting 
potential exploits in other programs through code analysis.   



Cyber Security Trade-Off Problem 

• “Interception and communications data retention 
measures, even if the purpose is social security, are under 
the difficult trade-off between security, privacy and cost.” 

• How to solve this trade-off and build the societal 
consensus? 

PRIVACY 

SECURITY COST 



• The algorithm utilizes a widely used preprocessing (soft 
arc consistency) and a Branch-and Bound techniques. 

 

Cyber Security Problem Based on Multi-
Objective Distributed Constraint 

Optimization Techniques  
(Okimoto, Ikegai, Ribeiro, et al., WSR 2013) 
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Some other topics in this meeting 
❶ Intelligence into Resilience 
❷ Resilience into Intelligence 

• ❷ Robust multi-team formation and its application to robot 
rescue simulation (Tony Ribeiro) 

• ❶ Benefits of parametric model-checking to assess the 
resilience of mammalian circadian rhythm (Morgan Magnin) 

• ❶ Understanding human behaviors through plan 
recognition (Taisuke Sato) 

• ❶❷ On the evolution of beliefs in social networks (Nicolas 
Schwind) 

• ❷ Limiting perturbations in Dynamic DCOP: Model with 
quality guarantee (Maxime Clement) 
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Are Human Resilient? 

 

Are Memes Resilient? 

3. Intelligence as Resilience 



Human Resilience 
• Humans are capable to thrive after extremely aversive 

events (Bonanno, American Psychologist,  2004):  

– resilience represents a distinct trajectory from the process of recovery   

– resilience in the face of loss or potential trauma is more common than is 
often believed 

– there are multiple and sometimes unexpected pathways to resilience. 

• Human knowledge can be explanatory and can have 
great reach (Deutsch, The Beginning of Infinity, 2011):  

– “Rather than imitating behavior, a human being tries to explain it—to 
understand the ideas that cause it—which is a special case of the general 
human objective of explaining the world.”  

– “Only progress is sustainable.”   

• Both are allowed due to human intelligence.   

 
 



If humans are considered resilient due to 
their intelligence, future resilient systems 
should be designed to be intelligent too.     

4. Resilience as Intelligence 



Secured AI (into the future) 

• A long-term goal of “strong AI” is to develop systems that can learn 
from experience with human-like breadth and surpass human 
performance in most cognitive tasks.   

• The use of AI techniques that significantly advance reliability in the 
low-level makes hardened systems much less vulnerable than 
today's.  The design of anomaly detection systems and automated 
exploit-checkers could be significantly helpful 

• AI systems will become increasingly complex in construction and 
behavior, and AI-based cyberattacks may be extremely effective  

• It may be useful to create “containers" for AI systems that could 
have undesirable behaviors and consequences in less controlled 
environments.   



Leakproofing the Singularity 
(Yampolskiy, J. Consciousness Studies, 2012) 

• Levels of communication security for confined AIs 

levels Outputs Inputs Explanation 

0 Unlimited Unlimited Unlimited communication (Free AI) 

1 Unlimited Limited Censored input, uncensored output 

2 Unlimited None Outputs only with no inputs 

3 Limited  Unlimited Unlimited input and censored output 

4 Limited  Limited Secured communication (proposed protocol) 

5 Limited None Censored output and no inputs 

6 None Unlimited Inputs only with no outputs 

7 None Limited Censored input and no outputs 

8 None None No communication, fully confined AI 



100 Year Study of Articial Intelligence 
(Horvitz, Stanford University, 2014) 

• Privacy and machine intelligence 

• Criminal uses of AI —intelligent malware 

• Loss of control of AI systems 
 ...we could one day lose control of AI systems via the rise of 

superintelligences that do not act in accordance with human wishes… 
Are such dystopic outcomes possible?  

 If so, how might these situations arise?  

 What kind of investments in research should be made to better 
understand and to address the possibility of the rise of a dangerous 
superintelligence or the occurrence of an “intelligence explosion“?  

• AI and philosophy of mind  
 ...whether machines that we build might one day be conscious and 

find themselves “aware” and “experiencing” the inner or subjective 
world that people experience (?)  


