Resilience and Intelligence

Katsumi Inoue

National Institute of Informatics, Japan

Systems Resilience – Bridging the Gap Between Social and Mathematical

Shonan Meeting, February 23, 2015

Contents

- 1. Intelligence into Resilience
- 2. Resilience into Intelligence
- 3. Intelligence as Resilience
- 4. Resilience as Intelligence

Contents

- 1. Intelligence into Resilience
- 2. Resilience into Intelligence
- 3. Intelligence as Resilience
- 4. Resilience as Intelligence

1. Intelligence into Resilience

- **1.** Suitable abstraction of problems:
 - Mathematical models *discrete/hybrid (complex) systems*
 - Symbolic representation *dynamic (constraint) networks*
- 2. Logic for systems resilience:
 - Semantics: dynamics in terms of *possible worlds*
 - Inference: verification/prediction *model checking, explainabiliy*
 - Update: *reasoning about change*
- **3.** Computation of resilience:
 - Decision/optimization problems (*multi-objective*) CSP/COP
 - Exact/approximation algorithms robust solutions
- 4. Design of resilient systems:
 - Design of systems with desirable dynamics *machine leaning*
 - Robustness/sensitivity analysis multi-agent simulation

SR-Model (Schwind *et al.,* AAMAS 2013)

- 1. Dynamical systems
- 2. Multi-agent systems
- 3. Constraint-based systems
- 4. Flexible, can add/delete agents/constraints

Shape of a Dynamic System

- At each time step, a decision is made.
- Depending on the environment (uncontrolled event), the specifications of the system may change without any restriction.

Resistance + Recovery

- At each time step, the state of the system is associated with a cost
- Resistance + Recovery:
- The ability to maintain some underlying costs under a certain "threshold", such that the system satisfies certain hard constraints and does not suffer from irreversible damages.
- The ability to recover to a baseline of acceptable quality as quickly and inexpensively as possible.

Functionality + Stabilizability

- Functionality: the ability to provide a guaranteed average degree of quality for a period of time.
- Stabilizability: the ability to avoid undergoing changes that are associated with high transitional costs.
- A dynamic system is *resilient* if one can find a "strategy" (i.e., the "right decisions") and a state trajectory within this strategy that is resistant, recoverable, functional, and stabilizable.

Logical Theory of Unpredictability

- To know if an event is (un)predictable or not
- To identify if there is an unpredictable state

Approach

- A logical account of (un)predictability based on abduction.
- Provide computational methods of configurations of cellular automata in logic programming and Answer Set Programming.

<u>Results</u>

- Investigate Hempel's symmetry: An event E is predictable under <B, H > iff E is explainable under <B, H >.
- A configuration E is a Garden of Eden of a cellular automaton iff E is unpredictable under <B, H >.
- C. Sakama and K. Inoue: "Abduction, Unpredictability and Garden of Eden", Logic Journal of the IGPL, 21(6):980-998, 2013.

Reasoning about Boolean Networks

- Models of biological (gene regulatory and signaling) networks
- Models of complex systems like Cellular Automata and Game of Life
- Analysis of dynamic behavior involving positive and negative feedbacks

[©] K. Inoue: "Logic Programming for Boolean Networks", IJCAI 2011.

 K. Inoue & C. Sakama: "Oscillating Behavior of Logic Programs", Correct Reasoning (Lifschitz Festschrift), LNAI, Vol.7625, pp.345-362, 2012.

Learning Dynamical and Complex Networks

- Dynamic systems involving positive and negative feedbacks
- Learning Boolean networks from state transition diagrams
- Learning Cellular Automata from traces of configuration change

•	c(<i>x,t</i> +1) ←	c(x-1,t) /	∖ c(<i>x,t</i>)	$\land \neg c(x+1,t).$
---	---------------------	------------	-------------------	------------------------

•
$$c(x,t+1) \leftarrow c(x-1,t) \land \neg c(x,t) \land c(x+1,t).$$

- $c(x,t+1) \leftarrow \neg c(x-1,t) \land c(x,t) \land c(x+1,t).$
- $c(x,t+1) \leftarrow \neg c(x-1,t) \land c(x,t) \land \neg c(x+1,t).$
- $c(x,t+1) \leftarrow \neg c(x-1,t) \land \neg c(x,t) \land c(x+1,t).$

current pattern	111	110	101	100	011	010	001	000
new state for center cell	0	1	1	0	1	1	1	0

Wolfram's Rule 110 (Turing-complete)

K. Inoue, T. Ribeiro & C. Sakama: "Learning from Interpretation Transition", Machine Learning, 94(1):51-79, 2014.

Prediction of Gene Knockout Effects of *E.coli* by SAT-Based Minimal Model Generation (Soh, Inoue, Baba, *et al.*: *Int'l J. Adv. Life Science*, 2012)

Source metabolites (M _s): β -D-glucose-6-phosphate, NAD ⁺	G6P NAD ⁺
Target metabolite (M _T): pyruvate	PYR
Four essential genes confirmed by KEIO collection	fbaA gapA pgk eno
Genes predicted by our method	

Biological Robustness: Pathway Completion by Meta-Level Abduction (Inoue, Doncescu & Nabesima: *Machine Learning*, 2013)

Cell cycle with cyclin-dependent kinases (Schneider et al., 2002)

2. Resilience into Intelligence

AI = search problems

weakly constrained: too many possible solutions

Resilient Solutions

Select the models that are robust/diverse/adaptable/etc. Design agent systems that are enforced stabilizabiliation.

Revising Plans in Adaptive Systems (Sykes *et al., ICSE 2013*)

Behavioural model revision through **probabilistic rule learning**

Diverse Solutions

- Structural diversity diverse genotypes
- Functional diversity diverse phenotypes
- These notions have been incorporated in many optimization research, in particular for multi-objective optimization using genetic algorithms.
- Well-balanced diversity (Schwind, et al., 2015): representative solutions — useful for distribution of sensor networks, enhancing robustness

Multi-Objective Distributed Constraint Optimization Problem (MO-DCOP)

• Real-world problems involve multiple criteria that should be considered separately yet optimized simultaneously.

- Computation of resilient systems that have trade-off criteria
- Multiple criteria are considered in *Pareto solutions*

Resilient Solutions for Dynamic Multi-Objective Constraint Optimization (Okimoto, Clement, Schwind & Inoue: *ICAART 2015*)

- Introduce the framework of a Dynamic Multi-Objective Constraint Optimization Problem (DMO- COP)
- Focus on resistance and functionality
- Provide an algorithm called Algorithm for Systems Resilience Applications (ASRA) to compute all resistant and functional solutions for DMO-COPs

Secured AI

- Security research can help make AI more robust 🙂
- Al systems are used in an increasing number of critical roles, including cyber-attack surface area ⊕
- AI and machine learning techniques will themselves be used in cyber-attacks ⁽³⁾
- At a lower level, robustness against exploitation is achieved by verifiability and freedom from bugs.
- At a higher level, AI techniques could be applied to the detection of intrusions, analyzing malware, and detecting potential exploits in other programs through code analysis.

Cyber Security Trade-Off Problem

- "Interception and communications data retention measures, even if the purpose is social security, are under the difficult trade-off between <u>security</u>, <u>privacy</u> and <u>cost</u>."
- How to solve this trade-off and build the societal consensus?

Cyber Security Problem Based on Multi-Objective Distributed Constraint Optimization Techniques (Okimoto, Ikegai, Ribeiro, *et al., WSR 2013*)

• The algorithm utilizes a widely used preprocessing (soft arc consistency) and a Branch-and Bound techniques.

Some other topics in this meeting

Intelligence into Resilience
Resilience into Intelligence

- Observation Books and State and S
- ① Benefits of parametric model-checking to assess the resilience of mammalian circadian rhythm (Morgan Magnin)
- ① Understanding human behaviors through plan recognition (Taisuke Sato)
- ①② On the evolution of beliefs in social networks (Nicolas Schwind)
- Dimiting perturbations in Dynamic DCOP: Model with quality guarantee (Maxime Clement)

Contents

- 1. Intelligence into Resilience
- 2. Resilience into Intelligence
- 3. Intelligence as Resilience
- 4. Resilience as Intelligence

3. Intelligence as Resilience

Are Human Resilient?

Are Memes Resilient?

Human Resilience

- Humans are capable to thrive after extremely aversive events (Bonanno, American Psychologist, 2004):
 - resilience represents a distinct trajectory from the process of recovery
 - resilience in the face of loss or potential trauma is more common than is often believed
 - there are multiple and sometimes unexpected pathways to resilience.
- Human knowledge can be explanatory and can have great reach (Deutsch, *The Beginning of Infinity,* 2011):
 - "Rather than imitating behavior, a human being tries to explain it—to understand the ideas that cause it—which is a special case of the general human objective of explaining the world."
 - "Only progress is sustainable."
- Both are allowed due to human *intelligence*.

4. Resilience as Intelligence

If humans are considered resilient due to their intelligence, future resilient systems should be designed to be intelligent too.

Secured AI (into the future)

- A long-term goal of "strong AI" is to develop systems that can learn from experience with human-like breadth and surpass human performance in most cognitive tasks.
- The use of AI techniques that significantly advance reliability in the low-level makes hardened systems much less vulnerable than today's. The design of anomaly detection systems and automated exploit-checkers could be significantly helpful[©]
- AI systems will become increasingly complex in construction and behavior, and AI-based cyberattacks may be extremely effective is
- It may be useful to create "containers" for AI systems that could have undesirable behaviors and consequences in less controlled environments.

Leakproofing the Singularity (Yampolskiy, J. Consciousness Studies, 2012)

• Levels of communication security for confined Als

levels	Outputs	Inputs	Explanation
0	Unlimited	Unlimited	Unlimited communication (Free AI)
1	Unlimited	Limited	Censored input, uncensored output
2	Unlimited	None	Outputs only with no inputs
3	Limited	Unlimited	Unlimited input and censored output
4	Limited	Limited	Secured communication (proposed protocol)
5	Limited	None	Censored output and no inputs
6	None	Unlimited	Inputs only with no outputs
7	None	Limited	Censored input and no outputs
8	None	None	No communication, fully confined AI

100 Year Study of Articial Intelligence (Horvitz, Stanford University, 2014)

- Privacy and machine intelligence
- Criminal uses of AI intelligent malware

• Loss of control of AI systems

- ...we could one day lose control of AI systems via the rise of superintelligences that do not act in accordance with human wishes... Are such dystopic outcomes possible?
- If so, how might these situations arise?
- What kind of investments in research should be made to better understand and to address the possibility of the rise of a dangerous superintelligence or the occurrence of an "intelligence explosion"?

AI and philosophy of mind

...whether machines that we build might one day be conscious and find themselves "aware" and "experiencing" the inner or subjective world that people experience (?)