Working Notes of NTCIR-4, Tokyo, 2-4 June 2004

Oki QA System for QAC-2

FUCHIGAMI Masachika(* 1), OHNUMA Hiroyuki(* 1), IKENO Atsushi(*2)
(*1) Human Interface Laboratory,
(*2) Ubiquitous System L aboratory,
Corporate R&D Center
Oki Electric Industry Co., Ltd.
(*1)550-5 Higashi- Asakawamachi Hachioji 193-0514, Japan
(*2)2-5-7 Hommachi, Chuo-ku, Osaka 541-0053, Japan
{ fuchigami636,0hnuma838,ikeno546} @oki.com

Abstract

This note describes OKI QA system for QAC-2 of
NTCIR4. Our system has three characteristics:
dependency-matching based answer extraction,
run-time tagging, and learning-based query type
analyzer. The result of the experiment implies that
dependency revision technique will occupy an
important position.

Keywords. Dependency based matching,
Question Answering,, Information Extraction

04C,

1. Introduction

Our target in QAC-2 is precise responses however
we pursued the system that returns a swift responsein
QAC-1[1].

Before we discuss our new system, we reconsider
the two problemsin our QAG 1 system.

The former problem is that IR module and
question analysis module adopts different word unit.
This inconsistency brings a lot of IR failures because
the IR module is not able to find articles for the
keywords given by the question analysis module.
We resolve the inconsistency problem by using
ChaSen[3] for both module and transferring whole
query sentence to article retriever subsystem.

The latter problem is poor scoring algorithm. The
algorithm gives high score to the NEs that happen to
exist close to keywords. We concentrated mainly
on improvements of the answer extractor subsystem
inour QAC-2 system.

We describe our QA System for QAC-2 in the rest
of this paper.

Our system has the following characteristics,
dependency-matching based answer extraction,
run-time tagging and learning-based query type
analyzer.

First, dependency-matching based answer

© 2004 National Institute of Informatics

extraction avoids choosing incorrect answers that
happen to exist close to keywords.

Second, run-time tagging enables our system to
apply open document set, e.g. the Internet web
documents.

Finaly, learning-based query type analyzer
liberates us from endless matching pattern authoring.

Section 2 shows overview of our system, and its
subsystems are detailed in section 3 through 6. We
describe the results of experiments in section 7, and
evaluatethemin section 8. Section 9 is conclusion.

2. System overview

Figure 1 shows block diagram for our system.
Our system consists of the following subsystems:
query analyzer, article retriever, answer extractor,
filter/formatter and NE tagger.

Query analyzer subsystem parses query sentences
and decides answer NE types.

Article retriever subsystem retrieves appropriate
articles. We utilize GETA [2] as articleretriever.

Answer extractor subsystem extracts answer
candidates with their scores.

Query Article
/ Analyzer Retreiver
\ -
NE Tagger |« Answer eg
Extractor =
v
Filter
[Formatter

Figure 1. System diagram

Filter/formatter subsystem consists of two parts:
answer filter and formatter. The former eliminates
candidates of low score and chooses appropriate
candidates on the borderline, and the latter formats
theresult in QAC-2 style.

3. Query analyzer subsystem

Our query analyzer subsystem adopts 1 nearest
neighbour(1nn) algorithm in order to simplify the
registration of query-types for sentences.

Figure 2 shows the structure of the query
analyzer subsystem. The subsystem consists of two
parts: register and searcher.

The former part constructsaDB in advance. The
DB contains the five query factors described later and
the query type. In QAC-2, we construct the DB with
1679 query and its query-type data set. The data set
consists of 50 queries form QAC-1 dry run, 200
queries from QAG1 forma run subtaskl/2, 761
queries from QAG-1 additional subtasks, and original
718 queries.

The latter part searches the most similar query
sentence in the DB and returns its query-type. In
order to retrieve the most similar sentence, similarity
between sentences is required. Similarity is
calculated from five factors: type of wh-NE, words
prepended/appended to wh-NE, verbs, topic
words/phrases and words depended by wh-NE.
'Wh-NE' means a NE whose type is WH, eg.
" "(what)," "(where).

After the query-type is retrieved, the subsystem
outputs the query-type, tagged NEs and
dependencies.

Raw query

Raw query,
\ / NE tagger \ / Query type

o

Analvzed auerv.

Searcher

Figure 2: Query analyzer

4. Answer extractor subsystem

Figure 3 shows answer extractor subsystem.
It consists of following 5 parts: article parser,

Articles Article Dependancy |
Parser Matcher Scorer
|
Analyzed Query Candidate | [Candidates
Query Reviser Merger
Figure 3: Answer extractor
query reviser, dependency matcher, scorer, and

candidate merger.
Details of all these parts are described in following
subsections.

4.1 Article parser

Article parser parses the article supplied by the
articleretriever subsystem.

The parser extracts NEs and dependencies using
NEtagger. After the extraction, this part revisesthe
following sequence of NEs and adds corresponding
dependencies in order to adapt to the variation of
expressions.

verb (or adjective) - noun
noun-particle” "(NO)-noun
noun"ARTIFACT"

The first verb/adjective - noun pattern, e.g. "

"(dwelling person), is revised to
noun-[unspecified]-verb or noun-[(GA)]-adjective,
for example" " (person)-[unspecified]-"

"(dwell).

In the second pattern, noun-[(NO)]-verb, the
particle” "(NO) isconsiderd to be equivalent to the
particle * "(GA) when the pattern appears in a
subordinate clause.

For example, " ()"((what) | said)
is equivalent to " ()". The parser
therefore adds Noun-[(NO)]-verb pattern.

The last pattern noun "ARTIFACT", e.g. "

"(Natsume Souseki "Kusamakura'), is
revised to noun-[]-ARTIFACT in order to match
with noun-[]- (noun with wh-flag:described in 4.2),
eg. " ()"((what is) Natsume
Souseki's masterpieces).

For example, the example shown above is revised
to " -l] "(Natsume Souseki's
"Kusamakura").

All these revisions are applied to the original
dependencies. In other words, the added

dependencies are not revised again in this step.
4.2 Query reviser

Query reviser preprocesses the analyzed query for
the dependency matcher part.

The preprocessing consists of two tasks: flagging
wh-NEs and dependency revising.

In the former task, wh-flags are set on NEs whose

NEtype is WH, eg. " ", " ", etc. The wh-flag
means query target NE, therefore NEs matched to
wh-flagged NEs in dependency matcher part(see
section 4.3) become answer candidates.

In the latter task, the subsystem adds extra
dependencies by revising sequences of NEs
containing WH-type NE, in order to deal with the
variation of expressions. The revision is based on
pattern-matching. The subsystem searches
pattern-matched rules and adds corresponding
pseudo-dependencies to the query dependency list.

Table 1 shows some of the revision rules. We
explain revising task using the first rule in table 1
Assume the input sentence contains "

"(Where is the site of the Olympics?).
The NEs extracted from the sentence matches the
pattern inthe first rule(A=" B=" M),

Then the subsystem fills in NEs to corresponding
dependencies. The dependencies become

"-[unspecified]->" " and WH-[]->"

" The subsystem also set wh-flags to
appropriate NEs specified in the rule. In this
example, the subsystem sets wh-flag to the
anonymous NE X in revision rule X2 In this case,
though X is ordinarily represented as “ ”in
natural Japanese language, we do not need surface
form because the wh-flagged NE X works as a
wildcard NE(see 4.3).

Finally, the subsystem adds the dependencies X1
and X2 to the query dependency list.

Thus the system is now able to retrieve candidates
from sentences in other expressions, for example,
" "(take place the Olympics

in Nagano).
Table 1: Revision pattern example
Pattern Revision
A B() X1:A-[unspecified]->B
X2:X(wh-flagged)-[]->B
A B A-[]-WH

4.3 Dependency matcher

Dependency matcher part compares dependencies
inthe query and onesin an article.

4.3.1 Matching algorithm

The subsystem compares dependencies in the
article by each sentence from beginning of the article
to the end of the article. Dependency comparison
between query and the sentence in article consists of
two steps. In the first step, dependencies in the query

! Weregard sahen nouns asakind of NE here.

sentence are compared to ones in the sentence, and
then in the second step the subsystem searches
preceding sentences in the article for dependencies
that match remaining query dependencies in the first
step, in order to resolve zero anaphora.

The subsystem classifies matchness into one of
five results: fully-matched, particleless-matched,
negative-matched, context -matched and not-matched.

fully-match: dependers and dependents matches
and particles are matched and specified.

particleless-match: dependers and dependents
matches, but one or both particles are unspecified.

For example, " "-[unspecified]-"
particleless-matchesto " [1 "

negative-match: dependers differs, and partlcles
are matched and specified.

context-match: fully-match or particleless-match
in previous sentences in the article. This matchness
substitutes zero anaphora analyzing. See an example
described later.

not-match: otherwise.

Note that wh-flagged NEs matches any NEs e.g.
"(Who:wh-flagged)-{]-" "(write) fully
matches " "(Shakespeare)-[]-"

4.3.2 Matching example

Examples of matching are shown in figure 4.
Assume query sentence is SQ, sentencesin the article
are Sl and S2. They are parsed as the dependencies
DQL - DB, D11 - D22.

First, S1 and SQ are compared (the upper half of
the figure). Its result in the first step is [fully-match:
DQ1 and D12], and no result in the second step
because S1 has no preceding sentence.

Then S2 and SQ are compared (the lower half of
the figure). In the first step the system finds
[fully-match: DQ2 and D21] and [particleless-match:
DQ3 and D22](shown as solid connectors) and DQ1
remains unmatched. In the second step, the
subsystem searches the preceding sentences (i.e. only
S1 for S2), for the dependencies that fully- or
particlelesssmatch with DQ1. D12 fully-matches
DQ1, therefore the result in the second step becomes
[context-match: DQ1l and D12](shown as dotted
connector).

4.4 Scorer

Scorer part scores each dependency retrieved in
dependency matcher part and sums up the scores.

The scoring consists of 4 steps: dependency
scoring, NE scoring, inner-article scoring,
inter-article scoring.

Query Article
sQ " s1 "
. D11
bQ1 L] .\ [unspecified]-"
DQ2 " " (wh-flagged)- pzr Mk
["
DQ3 " 1
Query Article
s1 "
D11
[unspecified]-" "
"912" i "I
sQ " : 2
DoL " - 1'".‘ /. patt M
{DQ]%I " " (yvh-flagged)-J Rﬁzspe;ified]-"
DQ3 " L1 1/

Table 2: Dependency score

Figure 4: Matching example

The first scoring measures the dependencies
matchness. The subsystem scores dependencies
according totable 2.

The second scoring measures the NE's score.
The scoreis:
neScore = max(0, é depScore(n))” typeMatch(T, ., T,...,)

nl sentence

(if the NE matches wh-flagged NE)

neScore = 0 (otherwise)

Touery: Query type calculated in query analyzer
subsystem.

T,.. NE-type of the NE

depScore: dependency score

typeMatch islookup-table function, whose rangeis
between 0.0 and 1.0 each ends inclusive. Table 3
shows examples of the table used in typeMatch.

The system adds the NE to answer candidates list
if the NE's score is more than zero.

The third scoring, i.e. inner-article scoring, merges

the scores of the same surface form NEsin the article.

The inner-article score for a candidate is
max(neScore(n)) where n is a member of the
same surface form NE set.

The last scoring, i.e. inter-article scoring is simply
the sum of the inner-article score for each candidate.

-2.0 negative-match

+1.1 fully-match

+0.5 particleless-match

+0.4 context -match

Table 3: Type matchness table

Tquery The value
PS(*1) PS 1.0
PS PS LASTNAME | 0.9
PS PS FIRSTNAME | 0.91
PS PS WORD(*2) 0.2
PS ARTIFACT 0.01
ANIMAL INSECT 0.2
ANIMAL REPTILE 0.8
ANIMAL AMPHIBIA 0.8
PLANT PLANT 1.0
PLANT VEGITABLE 0.9
PLANT FLUIT 0.9
(*1) person

(*2) words which indicate person, i.e.
4.5 Candidate merger

Candidate merger part aggregates candidates in
order to avoid longer NEs.

The part merges candidates C/ and C2 into CI
adding C2's score if one of the following conditions
issatisfied:

C1 isprefix or suffix of C2, and C1 islonger
than four letters.
C1 isprefix of C2, and post-C/ letter in C2 is
" (center dot).
C1 issuffix of C2, and pre-C1 letter in C2 is
" (center dot).
C1 isinfix of C2, and both pre- and post-C!

lettersin C2 are® " (center dot).
For example, C1=" " (score=0.7)
and C2="

"(score=0.4) are merged into “

" (score=1.1).

5. Filter subsystem

Our filter subsystem has two parts: low-score
candidate eliminator and candidate on border line
chooser.

The low-score candidate eliminator chooses
top-N candidates from all the candidates.

In subtask-1, N is five. In subtask-2 and
subtask-3 we fix N to three in order to avoid loss of
precision.

Then the score of the candidates ranked in M-th
order are compared tothat of the (M -1)-th candidates.
If the score for M-th candidates is less than half the
score of the (M-1)-th candidates, the filter subsystem
removes M -th and succeeding candidates.

The candidate on borderline chooser selects
appropriate candidate among the same-scored
candidatesin the lowest rank. The subsystem orders
the candidates by the following rules applied
sequentially.

1. If the query contains " ", non-alphabetical
candidate wins; otherwise alphabetical candidate
wins.

2. If the query contains " ", non-katakana
candidate wins;, otherwise katakana candidate
wins.

3. If the length of one candidate is equal to or
more than 4 letters, the candidate wins.

4. If the length of every candidate is less than 4
letters, longer candidate wins.

5. Shorter candidate wins.

6. The candidate listed first wins.

After ordering, the subsystem trims the candidates
until the number of them becomes N.

6. NE tagger

The NE tagger is used in the query analyze
subsystem and the article parser.
Details are described in[4].

7. Experimentsand results

In this section we describe the results and its
evaluation. We run the experiments on a PC Linux
system with 600MHz 1A-32 cpu. We utilize the
QAC2 subtask-1 query set in the experiments.

7.1 Result summary

Table 4 showsthe result for each subsystem.

In this table, precision means the ratio of number
of answer sets that contains correct subsystem answer
/ number of queries. The precisions are calculated as
follows:

Query analyzer: correct query type sets/ all
queries. We mark the answers by oursdves
because no formal answer set is provided.

Article retriever: result article set which
contains correct articles for answer source / al
queries. The correct article sets are taken from the
source articles of correct answers in the answer
data set given by the QA C-2 promoter.

Answer extractor: answer candidates which

contains correct NEs and correct source articles in
top-5 candidates including the sixth or lower one
whose score is equal to the fifth’s one / queries
that both query analyzer and articleretriever return
correct answer. The correct NE and its source data
set is taken from the answer data set given by the
QAC-2 promoter.

Filter: answers which contains correct NEs /
answer candidates which contains correct NEs in
top-5 candidate including sixth or lower one
whose scoreis equal to the fifth’s one.

Table 4: Failure summary

Subsystem Precision time(sec)

Query analyzer 78% | 156/200 483
Article retriever 87% | 173/200 665
(both resultscorrect) | 67% [133/200

Answer extractor 3B% | 50/133 4482
Filter 92% 46/50 159
(Totd) 2% | 53/200* 5789

* includes QAs that the query analyzer returns incorrect
answer type, the answer extractor nevertheless returns
correct answe.

7.2 Query analyzer evaluation

Table 5 shows reasons that the query analyzer fails.
We think that the failures are caused by insufficiency
of the learning data for type decision.

Table 5: Reasons of failure in Query
analyzer

Incorrect type 23
Too many types 13
No applicable type 3
Supertype 4
Other 1
(Totdl) 44

7.3 Answer extractor evaluation

Some of the considerable extraction failure
reasons are shown in table 6.

More than half of the failures are caused in
dependency matching part. We think that improving
more efficient dependency analyzer and introducing
more dependency revision rules reduce these failures.

We notice that the merger part often merges
candidates incorrectly. For example, it merges
" "(1.2 meters) and " "(2
meters).

Table 6: Reasons of fairure in Answer
extractor

NE not recognized

Dependency not match

Scoring

Incorrect merge

Bl w| &| 8| »

Incorrect authority
Other
(Total)

[EEN

8. Remaining problemsand futurework

The experiments described in the above section
make it clear that we should improve the following
points: dependency revision rulesin answer extractor,
learning more queries in query anayzer, and
reconsideration to candidate mergence algorithm.

In addition to these improvements, our future work
comprises:

revision rule learning, in order to avoid too
complex rule authoring.

direct/indirect anaphora analyzing.

robust NEtagging and parsing for broken
sentence, in order to accept generic documents, e.g.
web pages.

9. Conclusion

We described our QA system for QAG-2.

The results of experiments indicate that our
dependency-matching based system is not optimum
for QACs yet. We find that the system leaves much
room for improvement. We believe our system
becomes more effective when we add more learning
data for query analyzer or when we introduce more
dependency revision rules.

References

[1] A.Ikeno, H. Ohnuma,
“Oki QA System for QAC-1"
In working notes of the third NTCIR workshop meeting

[2] A.Takano, S Nishioka, O.Imaichi, M.lwayama,
Y. Niwa, T.Hisamitsu, M.Fujio, T. Tokunaga,
M . Okumura, H. Mochizuki, T. Nomoto
“Development of the generic association engine for
processing large corpora’ (In Japanese)
http://geta.ex.nii.ac.jp/

[3] Y.Matsumoto, A Kitauchi, T Yamashita, Y. Hirano,
H.Matsuda, K. Takaoka, M . Asahara,
“Japanese Morphological Analysis System ChaSen
version 2.2.1"
http://chasen.aist-nara.ac.jp/

[4] H.Ohnuma, A. Ikeno.
“Answer Extraction of Question and Answering System

on HTML Documents’
. In Proceedings of 63rdannual meeting of IPSJ, 341,
2001. (in Japanese)

