
Oki QA System for QAC-2

FUCHIGAMI Masachika(*1), OHNUMA Hiroyuki(*1), IKENO Atsushi(*2)
(*1) Human Interface Laboratory,

(*2) Ubiquitous System Laboratory,
Corporate R&D Center

Oki Electric Industry Co., Ltd.
(*1)550-5 Higashi-Asakawamachi Hachioji 193-0514, Japan

(*2)2-5-7 Hommachi, Chuo-ku, Osaka 541-0053, Japan
{fuchigami636,ohnuma838,ikeno546}@oki.com

Abstract

This note describes OKI QA system for QAC-2 of
NTCIR4. Our system has three characteristics:
dependency-matching based answer extraction,
run-time tagging, and learning-based query type
analyzer. The result of the experiment implies that
dependency revision technique will occupy an
important position.
Keywords: Dependency based matching, QAC,
Question Answering,, Information Extraction

1. Introduction

Our target in QAC-2 is precise responses however
we pursued the system that returns a swift response in
QAC-1[1].

Before we discuss our new system, we reconsider
the two problems in our QAC-1 system.

The former problem is that IR module and
question analysis module adopts different word unit.
This inconsistency brings a lot of IR failures because
the IR module is not able to find articles for the
keywords given by the question analysis module.
We resolve the inconsistency problem by using
ChaSen[3] for both module and transferring whole
query sentence to article retriever subsystem.

The latter problem is poor scoring algorithm. The
algorithm gives high score to the NEs that happen to
exist close to keywords. We concentrated mainly
on improvements of the answer extractor subsystem
in our QAC-2 system.

We describe our QA System for QAC-2 in the rest
of this paper.

Our system has the following characteristics,
dependency-matching based answer extraction,
run-time tagging and learning-based query type
analyzer.

First, dependency-matching based answer

extraction avoids choosing incorrect answers that
happen to exist close to keywords.

Second, run-time tagging enables our system to
apply open document set, e.g. the Internet web
documents.

Finally, learning-based query type analyzer
liberates us from endless matching pattern authoring.

Section 2 shows overview of our system, and its
subsystems are detailed in section 3 through 6. We
describe the results of exp eriments in section 7, and
evaluate them in section 8. Section 9 is conclusion.

2. System overview

Figure 1 shows block diagram for our system.
Our system consists of the following subsystems:
query analyzer, article retriever, answer extractor,
filter/formatter and NE tagger.

Query analyzer subsystem parses query sentences
and decides answer NE types.

Article retriever subsystem retrieves appropriate
articles. We utilize GETA [2] as article retriever.

Answer extractor subsystem extracts answer
candidates with their scores.

Question

Answer

Query
Analyzer

Article
Retreiver

Answer
Extractor

Filter
/Formatter

ArticlesNE Tagger

Question

Answer

Query
Analyzer

Article
Retreiver

Answer
Extractor

Filter
/Formatter

ArticlesNE Tagger

Figure 1: System diagram

Working Notes of NTCIR-4, Tokyo, 2-4 June 2004

© 2004 National Institute of Informatics

Filter/formatter subsystem consists of two parts:
answer filter and formatter. The former eliminates
candidates of low score and chooses appropriate
candidates on the borderline, and the latter formats
the result in QAC-2 style.

3. Query analyzer subsystem

Our query analyzer subsystem adopts 1 nearest
neighbour(1nn) algorithm in order to simplify the
registration of query-types for sentences.

 Figure 2 shows the structure of the query
analyzer subsystem. The subsystem consists of two
parts: register and searcher.

The former part constructs a DB in advance. The
DB contains the five query factors described later and
the query type. In QAC-2, we construct the DB with
1679 query and its query-type data set. The data set
consists of 50 queries form QAC-1 dry run, 200
queries from QAC-1 formal run subtask1/2, 761
queries from QAC-1 additional subtasks, and original
718 queries.

The latter part searches the most similar query
sentence in the DB and returns its query-type. In
order to retrieve the most similar sentence, similarity
between sentences is required. Similarity is
calculated from five factors: type of wh-NE, words
prepended/appended to wh-NE, verbs, topic
words/phrases and words depended by wh-NE.
'Wh-NE' means a NE whose type is WH, e.g.
" 何 "(what),"どこ"(where).

After the query-type is retrieved, the subsystem
outputs the query-type, tagged NEs and
dependencies.

4. Answer extractor subsystem

Figure 3 shows answer extractor subsystem.
It consists of fo llowing 5 parts: article parser,

query reviser, dependency matcher, scorer, and
candidate merger.

Details of all these parts are described in following
subsections.

4.1 Article parser

Article parser parses the article supplied by the
article retriever subsystem.

The parser extracts NEs and dependencies using
NE tagger. After the extraction, this part revises the
following sequence of NEs and adds corresponding
dependencies in order to adapt to the variation of
expressions.

• verb (or adjective) - noun
• noun-particle "の"(NO)-noun
• noun "ARTIFACT"
The first verb/adjective - noun pattern, e.g. "住ん

で い る 人 "(dwelling person), is revised to
noun-[unspecified]-verb or noun-[が(GA)]-adjective,
for example "人"(person)-[unspecified]-"住んでいる
"(dwell).

In the second pattern, noun-[の(NO)]-verb, the
particle "の"(NO) is considerd to be equivalent to the
particle " が "(GA) when the pattern appears in a
subordinate clause.

For example, "私の言っ(たこと)"((what) I said)
is equivalent to "私が言っ(たこと)". The parser
therefore adds Noun-[の(NO)]-verb pattern.

The last pattern noun "ARTIFACT", e.g. "夏目漱
石「草枕」"(Natsume Souseki "Kusamakura"), is
revised to noun-[の]-ARTIFACT in order to match
with noun-[の]- (noun with wh-flag:described in 4.2),
e.g. "夏目漱石の名作 (は何)"((what is) Natsume
Souseki's masterpieces).

For example, the example shown above is revised
to "夏目漱石"-[の]-"「草枕」"(Natsume Souseki's
"Kusamakura").

All these revisions are applied to the original
dependencies. In other words, the added
dependencies are not revised again in this step.

4.2 Query reviser

Query reviser preprocesses the analyzed query for
the dependency matcher part.

The preprocessing consists of two tasks: flagging
wh-NEs and dependency revising.

In the former task, wh-flags are set on NEs whose

Searcher Register

DB

NE tagger

Analyzed Query

Raw Query Raw Query
Query type

Searcher Register

DB

NE tagger

Analyzed query

Raw query Raw query
Query type

Figure 2: Query analyzer

Article
Parser

Query
Reviser

Dependancy
Matcher Scorer

Candidate
Merger

Articles

Analyzed
Query

Candidates

Article
Parser

Query
Reviser

Dependancy
Matcher Scorer

Candidate
Merger

Articles

Analyzed
Query

Candidates

Figure 3: Answer extractor

NE-type is WH, e.g. "何", "どこ", etc. The wh-flag
means query target NE, therefore NEs matched to
wh-flagged NEs in dependency matcher part(see
section 4.3) become answer candidates.

In the latter task, the subsystem adds extra
dependencies by revising sequences of NEs
containing WH-type NE, in order to deal with the
variation of expressions. The revision is based on
pattern-matching. The subsystem searches
pattern-matched rules and adds corresponding
pseudo-dependencies to the query dependency list.

Table 1 shows some of the revision rules. We
explain revising task using the first rule in table 1.
Assume the input sentence contains "五輪の開催地
は何処ですか"(Where is the site of the Olympics?).
The NEs extracted from the sentence matches the
pattern in the first rule (A="五輪", B="開催1").

Then the subsystem fills in NEs to corresponding
dependencies. The dependencies become " 五
輪 "-[unspecified]->"開催する" and WH-[で]->"開
催する " The subsystem also set wh-flags to
appropriate NEs specified in the rule. In this
example, the subsystem sets wh-flag to the
anonymous NE X in revision rule X2. In this case,
though X is ordinarily represented as “どこ” in
natural Japanese language, we do not need surface
form because the wh-flagged NE X works as a
wildcard NE(see 4.3).

Finally, the subsystem adds the dependencies X1
and X2 to the query dependency list.

Thus the system is now able to retrieve candidates
from sentences in other expressions, for example,
" 五輪を長野で開催する"(take place the Olympics
in Nagano).

Table 1: Revision pattern example

Pattern Revision
X1:A-[unspecified]->B す
る

A の B(さ変名詞)地は
何処

X2:X(wh-flagged)-[で]->B
する

A の Bは誰 A-[の]-WH

4.3 Dependency matcher

Dependency matcher part compares dependencies
in the query and ones in an article.

4.3.1 Matching algorithm

The subsystem compares dependencies in the
article by each sentence from beginning of the article
to the end of the article. Dependency comparison
between query and the sentence in article consists of
two steps. In the first step, dependencies in the query

1 We regard sahen nouns as a kind of NE here.

sentence are compared to ones in the sentence, and
then in the second step the subsystem searches
preceding sentences in the article for dependencies
that match remaining query dependencies in the first
step, in order to resolve zero anaphora.

The subsystem classifies matchness into one of
five results: fully-matched, particleless-matched,
negative-matched, context -matched and not-matched.

fully-match: dependers and dependents matches

and particles are matched and specified.
particleless-match: dependers and dependents

matches, but one or both particles are unspecified.
For example, "６月"-[unspecified]-"発表する"

particleless-matches to "６月"-[に]-"発表する".
negative -match: dependers differs, and particles

are matched and specified.
context-match: fully-match or particleless-match

in previous sentences in the article. This matchness
substitutes zero anaphora analyzing. See an example
described later.

not-match: otherwise.

Note that wh-flagged NEs matches any NEs e.g.

" 誰 "(Who:wh-flagged)-[が]-" 書 く "(write) fully
matches "シェイクスピア"(Shakespeare)-[が]-"書
く".

4.3.2 Matching example

Examples of matching are shown in figure 4.
Assume query sentence is SQ, sentences in the article
are S1 and S2. They are parsed as the dependencies
DQ1 - DQ3, D11 - D22.

First, S1 and SQ are compared (the upper half of
the figure). Its result in the first step is [fully-match:
DQ1 and D12], and no result in the second step
because S1 has no preceding sentence.

Then S2 and SQ are compared (the lower half of
the figure). In the first step the system finds
[fully-match: DQ2 and D21] and [particleless-match:
DQ3 and D22](shown as solid connectors) and DQ1
remains unmatched. In the second step, the
subsystem searches the preceding sentences (i.e. only
S1 for S2), for the dependencies that fully- or
particleless-match with DQ1. D12 fully -matches
DQ1, therefore the result in the second step becomes
[context -match: DQ1 and D12](shown as dotted
connector).

4.4 Scorer

Scorer part scores each dependency retrieved in
dependency matcher part and sums up the scores.

The scoring consists of 4 steps: dependency
scoring, NE scoring, inner-article scoring,
inter-article scoring.

The first scoring measures the dependencies'
matchness. The subsystem scores dependencies
according to table 2.

The second scoring measures the NE's score.
The score is:

),())(,0max(queryne
sentencen

TTtypeMatchndepScoreneScore ×= ∑
∈

(if the NE matches wh-flagged NE)
neScore = 0 (otherwise)

Tquery: query type calculated in query analyzer
subsystem.

Tne: NE-type of the NE
depScore: dependency score
typeMatch is lookup-table function, whose range is

between 0.0 and 1.0 each ends inclusive. Table 3
shows examples of the table used in typeMatch.

The system adds the NE to answer candidates list
if the NE's score is more than zero.

The third scoring, i.e. inner-article scoring, merges
the scores of the same surface form NEs in the article.
The inner-article score for a candidate is

))(max(nneScore where n is a member of the
same surface form NE set.

The last scoring, i.e. inter-article scoring is simply
the sum of the inner-article score for each candidate.

Table 2: Dependency score

-2.0 negative-match

+1.1 fully-match

+0.5 particleless-match

+0.4 context -match

Table 3: Type matchness table

Tquery Tne value

PS(*1) PS 1.0
PS PS_LASTNAME 0.9
PS PS_FIRSTNAME 0.91

PS PS_WORD(*2) 0.2
PS ARTIFACT 0.01

:

ANIMAL INSECT 0.2
ANIMAL REPTILE 0.8
ANIMAL AMPHIBIA 0.8

PLANT PLANT 1.0
PLANT VEGITABLE 0.9
PLANT FLUIT 0.9

:
(*1) person
(*2) words which indicate person, i.e. “社長”.

4.5 Candidate merger

 Candidate merger part aggregates candidates in
order to avoid longer NEs.

The part merges candidates C1 and C2 into C1
adding C2's score if one of the following conditions
is satisfied:

• C1 is prefix or suffix of C2, and C1 is longer
than four letters.
• C1 is prefix of C2, and post-C1 letter in C2 is
“・”(center dot).
• C1 is suffix of C2, and pre-C1 letter in C2 is
“・”(center dot).
• C1 is infix of C2, and both pre- and post-C1
letters in C2 are “・”(center dot).
For example, C1=“ヴァン・ゴッホ”(score=0.7)
and C2=“ バ ミ ュ ー ダ 島 の ヴ ァ ン ・ ゴ ッ
ホ”(score=0.4) are merged into “ヴァン・ゴッ
ホ”(score=1.1).

5. Filter subsystem

Our filter subsystem has two parts: low-score
candidate eliminator and candidate on border line
chooser.

 The low-score candidate eliminator chooses
top-N candidates from all the candidates.

SQ "９１年５月に何処で列車
事故が発生しましたか "

S1 "事故は９１年５月に発
生した。"

S2 "信楽で発生した列車事
故は……"

DQ1 "９１年５月 "-[に]-"
発生する"

DQ2 "何処 " (wh-flagged)-
[で]-"発生する"

DQ3 "列車事故 "-[が]-"発
生する"

D11 " 事 故 " -
[unspecified]-"発生する"

D12 "９１年５月"-[に]-
"発生する"

D21 "信楽"-[で]-"発生す
る"

D22 " 列 車 事 故 " -
[unspecified]-"発生する"

Query Article

Query Article

SQ "９１年５月に何処で列車
事故が発生しましたか "

S1 "事故は９１年５月に発
生した。"

DQ1 "９１年５月 "-[に]-"
発生する"

DQ2 "何処 " (wh-flagged)-
[で]-"発生する"

DQ3 "列車事故 "-[が]-"発
生する"

D11 " 事 故 " -
[unspecified]-"発生する"

D12 "９１年５月"-[に]-
"発生する"

SQ "９１年５月に何処で列車
事故が発生しましたか "
SQ "９１年５月に何処で列車
事故が発生しましたか "

S1 "事故は９１年５月に発
生した。"
S1 "事故は９１年５月に発
生した。"

S2 "信楽で発生した列車事
故は……"
S2 "信楽で発生した列車事
故は……"

DQ1 "９１年５月 "-[に]-"
発生する"
DQ1 "９１年５月 "-[に]-"
発生する"

DQ2 "何処 " (wh-flagged)-
[で]-"発生する"
DQ2 "何処 " (wh-flagged)-
[で]-"発生する"

DQ3 "列車事故 "-[が]-"発
生する"
DQ3 "列車事故 "-[が]-"発
生する"

D11 " 事 故 " -
[unspecified]-"発生する"
D11 " 事 故 " -
[unspecified]-"発生する"

D12 "９１年５月"-[に]-
"発生する"
D12 "９１年５月"-[に]-
"発生する"

D21 "信楽"-[で]-"発生す
る"
D21 "信楽"-[で]-"発生す
る"

D22 " 列 車 事 故 " -
[unspecified]-"発生する"
D22 " 列 車 事 故 " -
[unspecified]-"発生する"

Query Article

Query Article

SQ "９１年５月に何処で列車
事故が発生しましたか "
SQ "９１年５月に何処で列車
事故が発生しましたか "

S1 "事故は９１年５月に発
生した。"
S1 "事故は９１年５月に発
生した。"

DQ1 "９１年５月 "-[に]-"
発生する"
DQ1 "９１年５月 "-[に]-"
発生する"

DQ2 "何処 " (wh-flagged)-
[で]-"発生する"
DQ2 "何処 " (wh-flagged)-
[で]-"発生する"

DQ3 "列車事故 "-[が]-"発
生する"
DQ3 "列車事故 "-[が]-"発
生する"

D11 " 事 故 " -
[unspecified]-"発生する"
D11 " 事 故 " -
[unspecified]-"発生する"

D12 "９１年５月"-[に]-
"発生する"
D12 "９１年５月"-[に]-
"発生する"

Figure 4: Matching example

In subtask-1, N is five. In subtask-2 and
subtask-3 we fix N to three in order to avoid loss of
precision.

Then the score of the candidates ranked in M-th
order are compared to that of the (M-1)-th candidates.
If the score for M-th candidates is less than half the
score of the (M-1)-th candidates, the filter subsystem
removes M-th and succeeding candidates.

 The candidate on borderline chooser selects
appropriate candidate among the same-scored
candidates in the lowest rank. The subsystem orders
the candidates by the following rules applied
sequentially.

1. If the query contains "日本", non-alphabetical

candidate wins; otherwise alphabetical candidate
wins.

2. If the query contains "日本", non-katakana
candidate wins; otherwise katakana candidate
wins.

3. If the length of one candidate is equal to or
more than 4 letters, the candidate wins.

4. If the length of every candidate is less than 4
letters, longer candidate wins.

5. Shorter candidate wins.
6. The candidate listed first wins.

After ordering, the subsystem trims the candidates
until the number of them becomes N.

6. NE tagger

The NE tagger is used in the query analyze
subsystem and the article parser.

Details are described in [4].

7. Experiments and results

In this section we describe the results and its
evaluation. We run the experiments on a PC Linux
system with 600MHz IA-32 cpu. We utilize the
QAC2 subtask-1 query set in the experiments.

7.1 Result summary

Table 4 shows the result for each subsystem.
In this table, precision means the ratio of number

of answer sets that contains correct subsystem answer
/ number of queries. The precisions are calculated as
follows:

• Query analyzer: correct query type sets / all
queries. We mark the answers by ourselves
because no formal answer set is provided.
• Article retriever: result article set which
contains correct articles for answer source / all
queries. The correct article sets are taken from the
source articles of correct answers in the answer
data set given by the QAC-2 promoter.
• Answer extractor: answer candidates which

contains correct NEs and correct source articles in
top-5 candidates including the sixth or lower one
whose score is equal to the fifth’s one / queries
that both query analyzer and article retriever return
correct answer. The correct NE and its source data
set is taken from the answer data set given by the
QAC-2 promoter.
• Filter: answers which contains correct NEs /
answer candidates which contains correct NEs in
top-5 candidate including sixth or lower one
whose score is equal to the fifth’s one.

Table 4: Failure summary

Subsystem Precision time(sec)
Query analyzer 78% 156/200 483
Article retriever 87% 173/200 665
(both results correct) 67% 133/200
Answer extractor 38% 50/133 4482
Filter 92% 46/50 159
(Total) 27% 53/200* 5789

* includes QAs that the query analyzer returns incorrect
answer type, the answer extractor nevertheless returns
correct answer.

7.2 Query analyzer evaluation

Table 5 shows reasons that the query analyzer fails.
We think that the failures are caused by insufficiency
of the learning data for type decision.

Table 5: Reasons of failure in Query
analyzer

Incorrect type 23
Too many types 13
No applicable type 3
Supertype 4
Other 1
(Total) 44

7.3 Answer extractor evaluation

Some of the considerable extraction failure
reasons are shown in table 6.

More than half of the failures are caused in
dependency matching part. We think that improving
more efficient dependency analyzer and introducing
more dependency revision rules reduce these failures.

We notice that the merger part often merges
candidates incorrectly. For example, it merges
" １・２メートル "(1.2 meters) and "２メートル"(2
meters).

Table 6: Reasons of fairure in Answer
extractor

NE not recognized 4

Dependency not match 50

Scoring 15

Incorrect merge 3

Incorrect authority 10

Other 1

(Total) 83

8. Remaining problems and future work

The experiments described in the above section
make it clear that we should improve the following
points: dependency revision rules in answer extractor,
learning more queries in query analyzer, and
reconsideration to candidate mergence algorithm.

In addition to these improvements, our future work
comprises:
• revision rule learning, in order to avoid too
complex rule authoring.
• direct/indirect anaphora analyzing.
• robust NE-tagging and parsing for broken
sentence, in order to accept generic documents, e.g.
web pages.

9. Conclusion

We described our QA system for QAC-2.
The results of experiments indicate that our

dependency-matching based system is not optimum
for QACs yet. We find that the system leaves much
room for improvement. We believe our system
becomes more effective when we add more learning
data for query analyzer or when we introduce more
dependency revision rules.

References

[1] A. Ikeno, H. Ohnuma,
“Oki QA System for QAC-1”
In working notes of the third NTCIR workshop meeting

[2] A. Takano, S. Nishioka, O. Imaichi, M. Iwayama,
Y. Niwa, T. Hisamitsu, M. Fujio, T. Tokunaga,
M. Okumura, H. Mochizuki, T. Nomoto
“Development of the generic association engine for
processing large corpora” (In Japanese)
http://geta.ex.nii.ac.jp/

[3] Y. Matsumoto, A. Kitauchi, T. Yamashita, Y. Hirano,
H. Matsuda, K. Takaoka, M. Asahara,
“Japanese Morphological Analysis System ChaSen
version 2.2.1”
http://chasen.aist-nara.ac.jp/

[4] H. Ohnuma, A. Ikeno.
“Answer Extraction of Question and Answering System

on HTML Documents”
. In Proceedings of 63rd annual meeting of IPSJ, 3-41,
2001. (in Japanese)

