Multiple News Articles Summarization based on Event Reference Information Masaharu YOSHIOKA Makoto HARAGUCHI Hokkaido University {yoshioka,makoto}@db-ei.eng.hokudai.ac.jp

Background

- Multiple News Articles Summarization
 - Text: Multiple news articles about particular events
 - Characteristics:Not a single document summarization
 Redundant description
 Important events might be referred several times in
 - different articles

<u>Objective</u>

 Proposal of a method for Multiple News Articles Summarization based on Event Reference Information

Extraction of Events from a Sentence

- We apply Cabocha to obtain dependency analysis tree.
- We select verbs and nouns that have modification words as candidates of "Root" for events.
- We extract "Modifier" information from dependency analysis tree. At this time, we classify types of modifier by using POS tag and postpositional particle.
- When we can extract date information from the sentence, we set this date as "Date" for events that has dependency with date words.
- "ArticleDate" is obtained from article information.
- "Depth" and "Chunks" are calculated by comparing event information with the dependency analysis tree.

Event Reference

- Similar Events
 - Compare "Date" and "ArticleDate"
 - Compare "Root" and Corresponding element of "Root" and "Modifiers"

Important Sentence Extraction by using PageRank Algorithm

PageRank : Calculate importance of pages by using link structure

$$\vec{r}_{i+1} = M \times \vec{r}_i \qquad \vec{r}_{\infty}$$

- Our algorithm
 - Node: a sentence
 - Link: a bidirectional link exists when two nodes shares same events or words

 $=\lim_{i\to\infty}\vec{r_i}$

- Transition matrix is calculated by a combination of event reference information and word reference information
 - •Me: transition probability based on event reference biased with event importance.
 - •Mw: transition probability based on word reference biased with IDF.

$$m_{ii} = \beta \times me_{ii} + (1 - \beta) \times mw_{ii}$$

- Topic-Sensitive PageRank (Calculate importance of pages biased with initial importance vector)
 - Initial importance vector: Sentence position in an article

$$\vec{r}_{i+1} = (1 - \alpha) * M \times \vec{r}_i + \alpha * \vec{v}$$

Link Structure based on Event Reference Information

Evaluation Results of Importance Sentence Extraction

		Short	Long
Event only	Coverage	0.325	0.313
	Precision	0.491	0.540
Event & Word	Coverage	0.323	0.341
	Precision	0.523	0.592
Word only	Coverage	0.313	0.344
	Precision	0.521	0.593

<u>Event</u>

- Information that describes facts and related information on particular date.
 Root is a word that dominates an event (verb that represents action or noun that represents subject or object)
 - Modifier is words that modify root word. Words are categorized into several groups, such as subject and object words for verbs and
 - adjective and adnominal words for nouns.
 Negative represents modality of expression.
 - Negative represents modality of expression.
 Depth is a path length between Root of the event and root of the
 - sentence in dependency analysis tree.
 - Date is a date that characterize the event. This slot is not a required slot to define an event.
 - ArticleDate is a date that the article was published.
 - Chunks represents list of word positions in a sentence.

An Example of Text Compaction

Evaluated Result

- Importance sentence extraction

 Usage of event reference information only is not good compared with usage of word information.

 Abstraction

 Positive
 q00: Our method for removing redundant description works well.
 q08,q02: Our sentence reordering methods works well.
 q04: Our system tends to select most frequent description because of word reference information.

 Negative
 - q01: Removal of redundant information is too naïve. We assume that usage of anaphoric word is necessary to solve this problem.
 q10: Our method of removing words from a sentence is
 - too naive