Study on the Combination of Probabilistic and Boolean IR Models for WWW Documents Retrieval

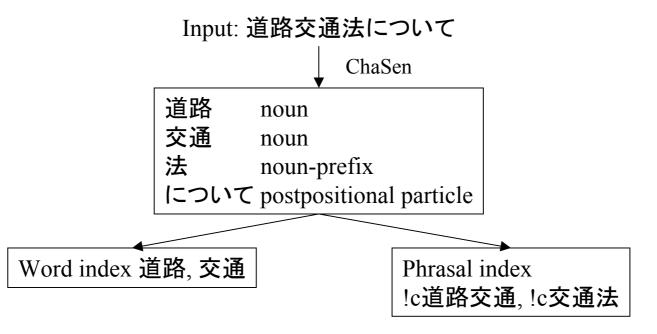
Masaharu YOSHIOKA Hokkaido Univ. Makoto HARAGUCHI

Background and Objectives

- Background
 - Requirement for IR system with large scale text data
 - Different IR models
 - A probabilistic model
 - The user may not select query term appropriately.
 - A Boolean model
 - The user must select query term appropriately.
 - A Boolean query formula is expressive but is very difficult to construct appropriate one.
- Objectives
 - Evaluate following IR systems.
 - our IR system, which is based on the probabilistic IR model.
 - our method for combining probabilistic and Boolean IR models for clarifying queries.

Index for our IR system

- Word and phrasal index
 - Use ChaSen as morphological analyzer and select noun (noun, unknown, symbol) for word index
 - Phrasal index: a pair of adjacent noun terms
 - We use prefixes, postfixes, and numbers in addition to words that are used for word index



Our IR System (a Probabilistic IR Model)

- Modified version of OKAPI
 - Use BM25 formula to calculate each document score

$$\sum_{T \in Q} w^{(1)} \frac{(k_1 + 1)tf}{K + tf} \frac{(k_3 + 1)qtf}{k_3 + qtf}$$

$$K = \frac{document \ length}{average \ document \ length}$$

$$w^{(1)} = \log \frac{(r + 0.5)/(R - r + 0.5)}{(n - r + 0.5)/(N - n - R + r + 0.5)}$$

tf : frequency of *T* in a document *qtf* : frequency of *T* in a query k_1, k_3 : parameter ($k_1=1, k_3=1000$ (initial) or 7 (final)) *N*: :the count of all documents in the database, *n*: the count of all documents containing *T R*: the given number of relevant documents *r* : the count of all relevant documents containing *T*

- Term weighting for phrasal terms
 - Document score may differ according to the dictionary entry

情報処理→ Word 情報処理 情報科学→ Word 情報,科学 Phrase !c情報科学

• Discount score for phrasal terms

 $qtf = c * qtf_c$ qtf_c : frequency of phrase T in a query c: parameter (c≤1;c=0.3)

Relevance Feedback

- Relevance feedback
 - Pseudo-relevance feedback
 - Use top 5 ranked documents of initial retrieval are used as relevant documents.
 - Reject documents with small number of terms in it.
 - Query expansion
 - Use terms in relevant documents as query terms
 - Max: 300 terms
 - Rocchio-type feedback

$$qtf = \alpha * qtf_0 + (1 - \alpha) * \frac{\sum_{i=1}^{R} qtf_i}{R}$$

 qtf_0 : frequency of *T* in a initial query qtf_i : frequency of *T* in a *i*-th relevant documents *R*: the given number of relevant documents α : parameter (α =0.7)

Implementation of Our IR System

- Text normalization
 - Use cooked data
 - Remove tag such as <NWD:img>
 - All alphabet and number are converted with ASCII character
 - Remove "—" at the end of katakana words
- Database Engine
 - Generic Engine for Transposable Association (GETA)
 - Divide texts into 8 database of GETA
 - Merge results after retrieving documents from all databases

Evaluation of Our IR System (a Probabilistic IR Model)

- Retrieval Performance (Debugged-System)
 - Use "S" and "A" documents as relevant one
- Better performance in a submitted system
- Problem of pseudo-relevance feedback
 - Similar template generated page may take similar score
 → Too much biased with relevant page

	AvePrec	RPrec	Prec@10	Prec@20
tt (survey)	0.223	0.254	0.411	0.361
tt (target)	0.218	0.242	0.374	0.330
ds (survey)	0.200	0.234	0.383	0.341
ds (target)	0.220	0.239	0.380	0.337

Characteristics of IR models

- A probabilistic model
 - The user may have difficulties to select appropriate query terms.
 - Documents that do not contain a part of query terms may select as higher relevant ones.
 - The system can represent users' retrieval intention by using a large number of query terms that includes words with higher cooccurrence
 - Difficulties to understand appropriateness of query
- A Boolean model
 - The user can select appropriate query terms.
 - Documents that do not satisfy a Boolean formula is not selected
 - Limited number of required query terms are used
 - Higher readability
 - The user can easily understand why the IR system selects the documents

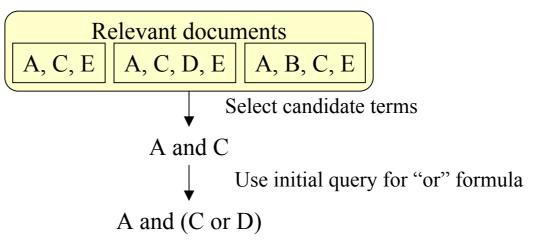
Problem on a Boolean IR model

- Retrieval performance of a Boolean IR model is worse than a probabilistic one
 - A Boolean query formula is expressive but is very difficult to construct appropriate one.
- Requirement for a Boolean query construction support
 - Use relevant documents for clarifying a Boolean query formula
 - Initial document retrieval without using a Boolean IR model
 - Relax a Boolean query formula by using relevant documents

Reconstruction of a Boolean Query Formula

- Relax an initial Boolean query formula to include given relevant documents as relevant one
 - Use terms that exists in all relevant documents and also exists in an initial query as a candidate to construct a relaxed Boolean query formula
 - Use an initial query for "or" formula

Initial query: (A and B and (C or D))



Combination of Probabilistic and Boolean IR Models

- Two approach
 - Use a Boolean IR model first and calculate score of each retrieved document by using a probabilistic model
 - Use a probabilistic IR model first and apply penalty for documents that do not satisfy a Boolean query formula
 - Penalty is calculated by using term importance in BM25

$$\beta \times w^{(1)} \times \frac{(k_3 + 1)qtf}{k_3 + qtf} \qquad \beta$$
: parameter

- Penalty is calculated for each "and" element
- For "or" formula, use penalty of a term that has highest one among them.

Evaluation of the Boolean Reconstruction

- Retrieval Performance
 - Use "S" and "A" documents as relevant one
 - Original boolean query formula is not appropriate one
 - Poorer performance than a probabilistic IR model

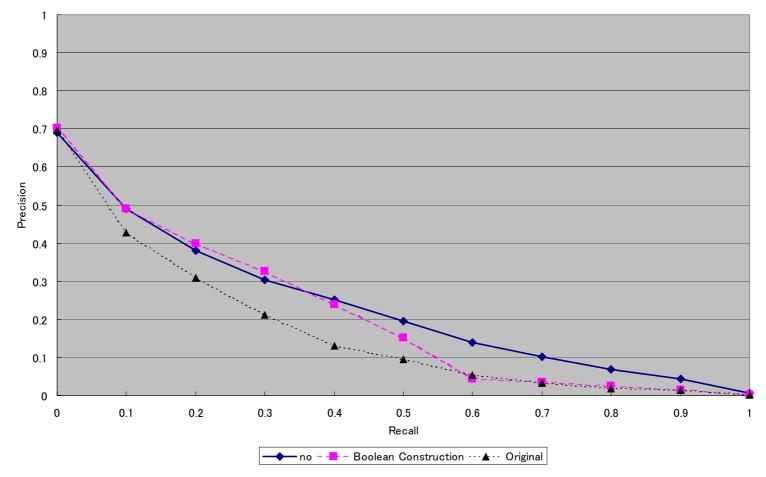
	AvePrec	RPrec	Prec@10	Retrieved
tt-b (survey)	0.200	0.236	0.431	1843
tt-b (target)	0.210	0.247	0.398	3294
tt-o (survey)	0.153	0.184	0.374	1685
tt-o (target)	0.183	0.216	0.381	3075
ds-b (survey)	0.155	0.196	0.370	1327
ds-b (target)	0.192	0.224	0.388	2493

"-b": reconstructed Boolean query formula

"-o": original Boolean query formula

Evaluation of the Boolean Reconstruction

- tt (survey)
 - Improve performance in lower recall



Evaluation of the Boolean Penalty

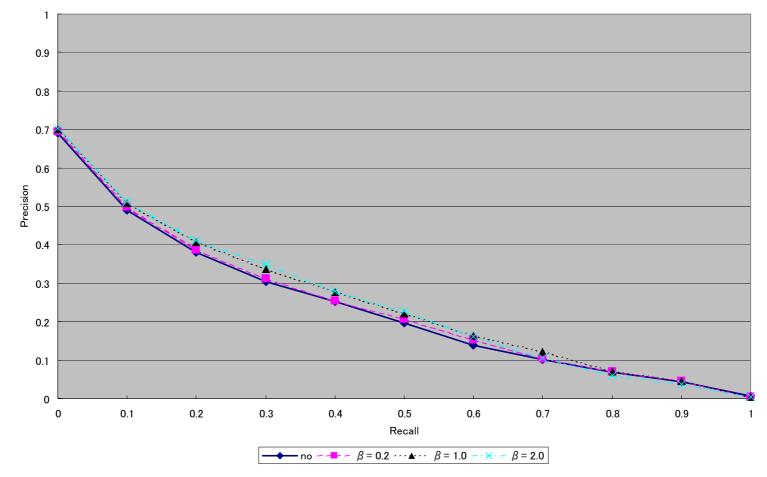
- Use reconstructed Boolean Query formula
- Retrieval Performance

- Use "S" and "A" documents as relevant one

	AvePrec	RPrec	Prec@10	Prec@20	
tt-1.0 (survey)	0.241	0.263	0.431	0.376	"-1.0": $\beta = 1.0$ "-2.0": $\beta = 2.0$
tt-1.0 (target)	0.239	0.259	0.394	0.348	
tt-2.0 (survey)	0.241	0.265	0.429	0.380	
tt-2.0 (target)	0.241	0.260	0.389	0.348	
ds-1.0 (survey)	0.218	0.242	0.389	0.346	
ds-1.0 (target)	0.238	0.251	0.385	0.341	
ds-2.0 (survey)	0.211	0.237	0.394	0.346	
ds-2.0 (target)	0.234	0.251	0.388	0.341	

Evaluation of the Boolean Penalty

- tt (survey)
 - Improve performance almost all recall value



Conclusion

- A proposal of our IR system based on a probabilistic IR model
 - We confirm the system has better performance in NTCIR-4 submission.
 - This system may be good enough to use as a benchmark system.
- A proposal of a combination of two IR models
 - User defined Boolean query is not precise enough to retrieve all relevant documents
 - Relaxing an initial Boolean query formula by using relevant documents improve quality of a Boolean query formula
 - Penalty calculation by using a Boolean query formula improves retrieval performance