
Patent Space Visualization for Patent Retrieval

A. W. McLean

Canon Research Centre Europe Ltd, Guildford Research Park, Surrey GU2 7YP, UK

July 14, 2000

Abstract

We present work describing a novel architecture and
user interface for patent queries and visualization of
query results. Existing patent retrieval engines such
as QPAT1allow users to enter text queries, retrieve a
set of results and then re�ne these queries. However
this approach and method of presentation of results
is not necessarily very informative for the user. We
gathered an initial set of requirements from patent en-
gineers at our company and explored techniques that
allow a user to build up a stack of queries which allow
real time updates of any part of the query and display
the results over a 2D map. This allows the user to gain
a better understanding of the patent space (the search
space for this type of data related to his query). The
architecture allows users to develop their own query
sets and di�erent query modules (such as more sophis-
ticated clustering/analysis algorithms) can be easily
plugged-in. A query-part can be a normal retrieval
query (eg, search on keyword/assignee), domain spe-
ci�c (eg search using the International Patent Classi�-
cation (IPC) hierarchy for related information), input
(obtain patents from this site, at this time interval),
processing (analyse this set using this algorithm), or
visualization (use this process/algorithm to display
these results).

1 Introduction

We describe here a software architecture and a pro-
totype patent visualization and retrieval application
that, based on a generic architecture, integrates re-
trieval with interaction. Figure 1 shows the basic no-
tion of interactive information retrieval. In our ar-
chitecture each query module is displayed in a stack
along with its parameters. Reformulation of a query
is achieved by adding a new query module, removing
one or altering the parameters of a module (see �g-

1QPAT, a patent search engine owned by Questel-Orbit

ure 3). The controls to modify the parameters can
be general UI widgets (buttons, sliders, combo-boxes
etc). This integration gives the user a mode of brows-
ing the data by rapidly changing the query and its
parameters and the e�ects of one query-part on the
results from the entire query can be readily examined.

Figure 1: Interactive re�nement in information re-
trieval

The traditional approach to patent retrieval is
based upon database querying. Systems range from
a simple full text retrieval based on an unique patent
identi�cation number to full blown SQL-type query
input. In general, a query is formed by entering query
terms into at least one �eld. Often, systems such as
QPAT (www.qpat.com) allow the user to enter a sin-
gle query within which query terms are assigned to
speci�c �elds using application speci�c codes. As an
example one might enter:

'Philip'/inv and 'Canon'/pan

which says you want to search for \Philip" in the in-
ventor �eld and \Canon" in the assignee �eld. Search
results are returned as a list and are labeled by your

1

current query id. For example, if the above was our
�rst query then the result set would be labeled S1. In
QPAT you can then re�ne you search using previous
search result sets. For example:

(``high definition'') AND S1

will search within the result set from the �rst query
for all patents containing the phrase \high de�nition".
Although this ability to save older result sets is use-

ful, we believe it does not go far enough. We desire a
system that can:

� enable the user to see how his query is performing

� give him an understanding of the patent space
(see below)

� allow him to interactively change the parameters
of his query (including those representing earlier
query sets)

� quickly view di�erent aspects of the result sets.

An interesting system, described in [5][14], allows
users to visualize relationships between tables in a
database. The queries are generated using a visual
query environment and the user can choose how to
represent the relationship (join) between the tables
(views). The operations they allow include colouring
a data object according to an attribute value, chang-
ing its size and �ltering according to value limits. One
very useful feature is the ability to interact with the
data itself and generate input sets from direct inter-
action with the interface (see section 5). The system
is built upon relational database data models and this
is reected in its interface. The user can for example
navigate from the visual representation of a database
object to other related objects and so the system is
tightly integrated with the underlying database and
its schema.
A slightly di�erent application is described in [8]

which proposes a set of techniques that aid the debug-
ging of user interfaces. These lenses are similar to the
lenses described in [2] which operate on application
objects visible in the user interface (e.g.: magnifying
lens, outline lens, drop shadow lens, achromatic lens).
In general these lenses add information to the display,
remove all but the selected information or make arbi-
trary changes to the display. The user places a lens
over an object in the interface to modify the display
of the object by, for example, revealing \hidden" fea-
tures or performing some operation. In the former
the lenses show debugging information and have ad-
ditional controls that the user can interact with. We

believe this is a useful concept which our architecture
incorporates.

Another useful insight is described in the work
by McGuinness and Manning (e.g.: [6]) and their
\�ndUR" system. This uses background ontologies to
assist in the search. We also use such an approach in
the \international patent classi�cation" module where
we employ the IPC hierarchy to give the search mod-
ule knowledge about the relationships between the
query IPC and other IPCs in the classi�cation scheme.

InfoCrystal, described in [16], is a tool for visually
creating queries and viewing their results. The em-
phasis here is in displaying all possible combinations
of the boolean query and allowing the user to exam-
ine subsets of the results from such a query. A query
spreadsheet allows users to visualize all the possible
boolean relationships amongN variables and it allows
users to specify boolean queries graphically. The vi-
sualization is based upon Venn diagrams but instead
of using traditional geometric shapes to represent a
set, a range of iconic descriptors are used. Each icon
employs various features to encode information about
the subset it represents such as the actual shape dis-
played, the proximity of one shape to another, the
distance from the centre of the display. Furthermore
colour, texture, orientation and size/brightness can
be used to represent di�erent features of the subset.
As an example, if a query is A and B and C then the
visualization will be a triangle with each vertex rep-
resenting one concept; the results of the actual query
will be displayed by an icon in the centre; results of
other queries such as (A and B) and (not C) will be
displayed by other icons in the appropriate positions.
Each icon can be clicked on to create a new query.
We see this approach as a possible useful extension to
our work where we have concentrated on general in-
teractive queries rather than the visualizations of all
boolean combinations of a single query.

One of the most sophisticated software tools that is
currently available is IBM's Data Explorer [1] which
allows users to visually construct complex data anal-
ysis programs. Once constructed, the program is ex-
ecuted in order to view the results. Application areas
of this tool include oceanography, computational uid
dynamics and meteorology. Again we moved away
from this \program/execute" organisation and con-
centrated on interactive querying. Our architecture
will also accept any data type and each query module
uses reection to determine whether it can operate on
the data coming into it.

We therefore propose a system that allows a user
to build up a query consisting of query-modules each
of which has an interactive user interface, a set of

2

tools that allow a user to visualize the result set as a
whole according to di�erent algorithms and/or the at-
tributes of the result set and the patents themselves.
The framework surrounding the query modules should
allow the user to easily change the query parameters
and the query itself and allow him to save the query
for later use on di�erent data sets. Finally we also
provide navigational tools such as pan and zoom mod-
ules which can also be added into the query. A more
sophisticated module in this set would be something
along the lines of the �sh-eye lens [11].
The structure of the remainder of the paper is as

follows: Section 2 describes our initial requirements
and the architecture of the system and section 3 de-
scribes some query modules speci�c to the problem
of patent retrieval. We then show some results and
�nish with a discussion on future work.

2 Architecture

In designing the system we took design rules from
early user interface designers such as [3] and from the
requirements of the people in our Intellectual Prop-
erty department. We therefore had, briey, the fol-
lowing initial requirements:

� Clear conceptual interface: The user should have
a clear mental model of the system in order to
e�ectively interact with it. It will allow the user
to predict the behaviour of the system, to plan
for novel tasks and to deal with error situations.

� Simple access to task interface: The system is
designed to help users perform large di�cult in-
tellectual tasks as well as simple, routine tasks.
The interface should allow the user to build these
more sophisticated tasks easily and to be able to
return to them.

� Support for browsing, search and reviewing[9]:

{ Browsing allows users to gain an overview
of what is available and how it relates to its
surroundings.

{ Searching is an information retrieval process
where the items of interest are well de�ned
but their location is not.

{ Reviewing occurs when items have been re-
trieved and it is necessary to examine the
results in more detail.

� The ability to examine one's query history and
see the results of modifying earlier query parts is
important.

Figure 2: The architecture of our system.

� The ability to examine di�erent views of the same
data using di�erent attributes of the data.

� The ability to save search queries for later use on
di�erent data.

� The ability to use application speci�c knowledge
to improve the search (such as IPC hierarchy).

� The ability to interactively observe how addi-
tional query parts a�ect the result set.

After consultations with the IP department we de-
signed a system that allowed users to visually build
queries based on a stack metaphor and view the cur-
rent results from the combined query on an adjacent
window. We divide the query modules that can be
used on the stack into three generic types: import,
processing, export. There is one import module, one
or more processing modules and one or more export
modules (see �gure 2) and a set of modules de�ne an
application. Import modules allow the user to bring
data into the system, processing modules allow the
user to apply some function to the data, either to
each element or to the collection as a whole and ex-
port modules allow the user to display, view or save
the resulting data and query stack. In general pro-
cessing modules augment (e.g.: by adding keyword
vectors) or change the data either within each element
(e.g.: its location after being clustered) or to the col-
lection as a whole (e.g.: by adding element-element
similarity information) or they can remove elements
from the collection that do not satisfy the modules
criteria (e.g.: �ltering on an IPC class). Each module
de�nes its own user interface which is exported to the
framework when the user instantiates the module. In-
stantiated modules are placed on the stack (see �gure
3).

This architecture is a generic one and can accept
any type of data. Indeed within the patent applica-
tion itself we accept HTML data (containing patents)

3

Figure 3: The stack.

from remote sites. The modules and system are de-
signed so that every query module can be plugged into
any other query module without giving exceptions or
errors. If the particular module can not operate on
the data coming into it, it simply ignores it and lets
it pass through unchanged. In this way we give the
user maximum exibility in how he puts together his
queries.

Since we develop query modules that can handle
generic data, we need a mechanism to determine the
attributes of the data that is owing into the module.
The module can then work out if it can operate on
it or not. To this end we use Java Reection which
allows us to query the data objects entering the mod-
ule. We can determine their accessor methods and
the types returned. In the keyword search module de-
scribed below this mechanism is used to dynamically
build the user interface for the module. This mod-
ule examines the di�erent �elds that the data object
exposes and which can be searched on using regular
expressions. This list is used to populate a combo box
in the module's user interface. The user can then se-
lect one of the data object's attributes to search on.
This �lter is shown in �gure 3 (second �lter down)
where the user is searching for \canon*" in the as-
signee attribute.

3 Filters for Patent Retrieval

We now describe some of the application speci�c
patent �lters we have written. A requirement for
our system was the ability to automatically down-
load a speci�c set of full text patents into the system.
The particular patents are determined by a monthly
patent watch service from which we obtain a �le con-
taining URLs to the patents at the online US patent
o�ce database. This �le is read by an import �l-
ter which then automatically downloads the patent
(in HTML format) corresponding to each URL. We
convert this HTML document into a patent object
using a series of regular expression queries. The out-
put is then a collection of patent objects. Other im-
port modules include reading data from a �le, from a
URL, and from an object database containing patent
objects.

We wrote a set of processing �lters for the patent
applications, most of which we later generalised so
that they can be used on other data. The only remain-
ing application-speci�c �lter is the IPC �lter. When
used this �rst of all loads in a hierarchy of IPC classes.
Users can search for patents in a speci�c IPC class, or
in that class and any below that class and can gener-
ate a simple boolean expression such as \G06F+ AND
NOT G06F 011/00+" which says give me all patents
in or below class G06F except for all those in or be-
low class G06F 011/00. Figure 4 shows an example
of such a query.

A slightly more sophisticated IPC �lter allows the
user to broaden his search using relationships between
IPC classes discovered in a data set. We used the 1998
MicroPatent US Full Text data set and generated a
set of correlations between IPC classes (from patents
�led under more than one class). We can then recur-
sively broaden our search by including classes related
to the input class and limit the search by a maxi-
mum search depth and a relavence threshold (related
to co-occurrance of the IPC classes). We demonstrate
this in �gure 5 where we have used a polar plot and
colouring describe the relationship. The polar plot
shows how each patent is related to the initial input
term where the radial parameter corresponds to the
number of IPC classes that patent is �led under and
the angular parameter corresponds to the closeness
(in edit-distance terms) to the input IPC class. Thus
we can see di�erent trails corresponding to patents
�led under 1,2,3 or 4 IPC classes. The patents at the
anti-clockwise end of each trail are closer to the input
class which is highlighted using the colour shading.
We can combine the IPC module with a term search-
ing module. In �gure 6 we have added a module to

4

Figure 4: An example of searching for patents under
speci�c IPC classes

search for the word \machine" in the assignee �eld.
We thus end up with only those patents that Canon
have �led in the above IPC classes. Remember that
every module is active: the user can easily modify the
IPC term and view the new results. [ht]

4 Results

This section demonstrates some of the queries and re-
sults that we typically use in the patent retrieval ap-
plication. As shown above we can search on keywords
and IPC classes and we have also implemented sev-
eral �lters for determining and visualizing document
similarity. In order to compute document similarity
we need to do some more processing on the data set.
The basic keyword generation module creates a key-
word vector for each patent based on term frequency
and inverse document frequency[7]. We can then com-
pute document similarity using this vector accord-
ing to traditional vector cosine algorithms. We im-
plemented a multi-dimensional scaling algorithm[10],
[15] which uses these vectors to display on a 2D map
the document similarity. A more sophisticated key-
word generation module uses wordnet to compute the
keyword vector. This time we determine the synset of
each term and use the information value of that term
to determine its discriminatory power. Our vector is
composed of the top N synsets { a more useful set
as we can now combine words with similar senses (eg:
house, dwelling) into one element.
Another clustering module uses a statistical ap-

proach based on tri-grams. We compute a vector
based on the frequency of occurance of tri-grams
in the full text of a document. We input the re-

Figure 5: Example showing IPC broadening and polar
plot.

quired number of clusters and iteratively minimize the
\global distortion". Each cluster is associated with a
centroid which is simply the mass center of the clus-
ter. We iteratively move points from one cluster to
another until the decrease in distortion per interac-
tion falls below some tolerance. The global distortion
is D =

P
j mini(kxj = cik

2). Figure 7 displays the
results of this �lter. We also show in �gure 8 all the
patents �led by Canon in the last month. We have
clustered them using the tri-gram approach on their
full text and then coloured them by IPC class. This
shows an interesting feature of the data set for we have
discovered patents �led under the same IPC can have
suprisingly di�erent content. In the �gure, the single
patent in its own cluster is about user interfaces and
layout but has the same IPC class as one other patent
in the main cluster that is about operating system ex-
tensions. Another example is shown in �gure 9. Here
the user has been looking for the �ling history of a
particular person and has been interested in the com-
panies he �led those patents for. In the query stack
we have asked for all patents �led by inventor \Kim"
(note: in this example we are using surname only2).
We then colour the results using the assignee attribute
and ask for this set to be displayed in a time line. We
can see that the inventor has �led three patents at
\Daewoo" in the area of image processing. He (or

2We have not yet implemented a search on full names which

would clearly improve this search.

5

Figure 6: Here the user has �rst searched for all
patents in class G06F and below and then re�ned the
search using a keyword search in the assignee �eld.

other Kim's) have �led patents at a later date at sev-
eral other companies, two more of which are related
to image processing. From this result set it would be
easy to determine if the \Kim" at Daewoo moved to
another company and continued his work there. An-
other way of viewing time data is through the date
�lter. In �gure 10, we show a di�erent example where
we use the sliders on the date �lter to examine when
patents were �led by Canon. We have also coloured
the data with the IPC attribute. As we move the
date �lter through time we see that their two patents
in class G06F were �led last and were �led within 6
months of each other.

5 Future Work

In order to further this prototype, the most important
aspect that we now need to do is obtain feedback from
the IP engineers. We would hope to gain knowledge
of particular sets of queries that are the most used
for the type of searches they perform. Short-cuts or
\macro-modules" could be used to improve search ef-
�ciency. Another important aspect we would like to
test is the usability of the system in terms of its exi-
bility. Users can plug any module into any other even
if this makes no sense. There are no errors, the mod-
ule that does not understand the data coming into it
simply lets it pass through. This has the obvious dis-
advantage of confusing the user but we don't want to
build in connection constraints as this may prevent a
user from using the system in a novel way. However,
it will be necessary to provide some sort of help more
sophisticated in nature than our basic help module.

Figure 7: The tri-gram clustering algorithm. It is
interesting to note that the cluster with one member
is a patent on chromosones and the cluster with 3
members relate to electronic communication (mail or
notes). There are no other patents of this nature in
the dataset.

A starting point may be [12] who describe a method
of building up a query based on goals, decision nodes
and retrieval nodes. Background knowledge sources
enable the system to perform some inference and de-
termine what to retrieve. We have several sources of
knowledge particular to the patent retrieval applica-
tion, such as IPC hierarchy, examiner decisions, and
company information that we could employ to extend
our system for more intelligent retrieval.

One assumption that we have made is that the ini-
tial patent data set is relatively small (of the order of
a few thousand patents). We assume that an initial
general query to a traditional database will provide
the context (or initial patent search space) in which
this system will operate. We have used the example
of our monthly patent search results; others include
an assignee (e.g. searching for all Microsoft patents
on QPAT returns 1303 patents), searching for (high
ADJ de�nition OR hd) and (television OR TV) in
the abstract returns 292 and 5250 in all �elds. If this
turns out not to be su�cient for general use then it
will be necessary to work on the scalability of our
solution. This shouldn't be a huge problem as the
modular nature and data-ow pipeline lends itself to
parallel processing techniques.

We would also like to increase our library of docu-
ment analysis modules. As an example a Latent Se-
mantic Indexing module such as that presented in [4]
would be a useful addition. In it a method for visu-
alizing document spaces and co-citation networks is

6

Figure 8: The results of the examination of Canon
patents �led in the last month.

presented and LSI is used as a way of reducing the
dimensionality of the document space. A path�nder
network algorithm is applied, originally developed for
the analysis of proximity data in psychology, to re-
duce the complex network of proximity data to a sim-
ple network where only the most important links in
the network are preserved.

An area of improvement is to introduce a cluster
description so that upon viewing the result of a clus-
tering algorithm the user can browse cluster proper-
ties which are determined by that cluster's elements.
In [13], Pirolli describes his \scatter/gather" browser
where documents are clustered according to their sim-
ilarity (here, normalized correlation of their word-
frequency vectors) and these clusters of documents
are represented by \meta-documents" which contain
pro�les of topical words and the most typical titles.
This system does not improve the retrieval itself but
gives users a greater understanding of the structure of
an information database. We could use patent speci�c
information to improve the description.

6 Conclusions

We have presented work describing a novel architec-
ture and user interface for patent queries and visual-
ization of query results. We have built a prototype

Figure 9: A search for patents �led by a particular in-
ventor over time showing the company he was working
for at the time of invention.

for patent retrieval and visualization, based on the
notion of integrating fully retrieval with interaction,
that extends the functionality of existing patent re-
trieval systems by enabling interactive querying and
browsing of the patent space. It is a simple matter to
obtain di�erent views of your search results.

The architecture is very general, will accept any
data type, allows arbitrary controls for a query part
and allows users to develop their own query sets and
di�erent query modules (such as more sophisticated
clustering/analysis algorithms). It is simple, for ex-
ample, to write a module that analyses a dataset using
a Kohonen network to display the contents of a doc-
ument space. The (software engineering) interface of
this module is simply one function \�lterData" that
accepts a collection of generic data objects and re-
turns a new collection of generic data objects. The
user must also write the GUI for his module.

7 Acknowledgments

I would like to thank Dr. Martin Portman for his ideas
and work on the �lters architecture, Alex Dodge and
Bill Imlah for their help de�ning the patent applica-
tion.

7

Figure 10: The date �lter showing when patents were
�led.

References

[1] In Proceedings of the 1996 IBM Visualization Data

Explorer Symposium, October 1996.

[2] E. Bier, M. Stone, W. Buxton, and T. DeRose. Tool-
glass and magic lenses: The see-through interface. In
SIG-GRAPH, pages 73{80, August 1993.

[3] S. Card and T. Moran. User technology: From point-
ing to pondering. In A. Goldberg, editor, A History

of Personal Workstations. ACM Press, 1988.

[4] C. Chen. Visualising semantic spaces and author
co-citation networks in digital libraries. Information
Processing and Management, 35:401{420, 1999.

[5] M. Derthick, J. Kolojejchick, and S. F. Roth. An in-
teractive visual query environment for exploring data.
In Int. Conference on User Interface Software and

Technology, pages 179{187, October 1997.

[6] D.McGuinness, H. Manning, and T. Beattie. Knowl-
edge assisted search. In Int. Joint Conf. Arti�cial

Intelligence, August 1997.

[7] W. Frakes and R. Baeza-Yates. Information Re-

trieval: Data Structures and Algorithms. Prentice
Hall, 1992.

[8] S. Hudson, R. Rodenstein, and I. Smith. Debugging
lenses: A new class of transparent tools for user in-
terface debugging. In Int. Conference on User Inter-

face Software and Technology, pages 189{198, Octo-
ber 1997.

[9] G. Jorna, M. Wouters, P. Gardien, H. Kemp,
J. Mama, I. Mavromati, I. McClelland, and L. V.
Matzen. The multimedia library: The centre of an
information rich community. In Human Factors in

Computing Systems Design Brie�ngs, March 1997.

[10] J. B. Kruskal. Multi-dimensional scaling by optimiz-
ing goodness-of-�t to a nonmetric hypothesis. Psy-

chometrika, 29:1{27, 1964.

[11] J. Lamping, R. Rao, and P. Pirolli. A focus+context
technique based on hyperbolic geometry for visualiz-
ing large hierarchies. In Int. Conference on Human

Factors in Computing Systems, pages 401{408, May
1995.

[12] C. Lee and Y.-T. Chen. Distributed visual reason-
ing for intelligent information retrieval on the web.
Interacting with Computers, 12:445{467, 2000.

[13] P. Pirolli. Computational models of information
scent-following in a very large browsable text collec-
tion. In Int. Conference on Human Factors in Com-

puting Systems, pages 3{10, March 1997.

[14] Steven Roth, John Kolojejchick, and Jade Goldstein.
Interactive graphic design using automatic presenta-
tion knowledge. In Mark T. Maybury and Wolfgang
Wahlster, editors, Intelligent User Interfaces, pages
237{242. Morgan kaufmann, 1998.

[15] R.N. Shepard. The analysis of proximities: Multi-
dimensional scaling with an unknown distance func-
tion, i and ii. Psychometrika, 27:125{140, 219{246,
1962.

[16] A. Spoerri. Infocrystal: a visual tool for information
retrieval management. In Proceedings of the Second

Int'l conference on Information and Knowledge Man-

agement, November 1993.

8

