
XML Element Retrieval@1CLICK-2

Atsushi Keyaki
Nara Institute of Science and

Technology, Japan
atsushi-ke@is.naist.jp

Jun Miyazaki
Nara Institute of Science and

Technology, Japan
miyazaki@is.naist.jp

Kenji Hatano
Doshisha University, Japan

khatano@mail.doshisha.ac.jp

Goshiro Yamamoto
Nara Institute of Science and

Technology, Japan
goshiro@is.naist.jp

Takafumi Taketomi
Nara Institute of Science and

Technology, Japan
takafumi-t@is.naist.jp

Hirokazu Kato
Nara Institute of Science and

Technology, Japan
kato@is.naist.jp

ABSTRACT
In this paper, we try to apply an approach of XML element
retrieval to 1CLICK-2. The aim of XML element retrieval is
to identify key points in structured documents, and propose
them to system users. We believe that the aim of XML ele-
ment retrieval is largely the same as that of 1CLICK-2; en-
abling direct and immediate Information Access (DIIA). We
report potentiality of usefulness of XML element retrieval to
DIIA, and some difficulties to apply XML element retrieval
to Web documents.

Team Name
NSTDB

Subtasks
1CLICK-2 (English)

Keywords
XML element retrieval, HTML document, re-structuration,
document structure

1. INTRODUCTION
In this paper, we try to apply an approach of XML ele-

ment retrieval to 1CLICK-2 [8] focused on direct and im-
mediate Information Access (DIIA) [20] because the goals
of DIIA and XML element retrieval are similar; both try to
extract only relevant descriptions from documents beyond
information retrieval.

Our research group participates the Initiative for the Eval-
uation of XML Retrieval (INEX) project1, which is the largest
community working on XML element retrieval. We mainly
focus on the Ad hoc track for accurate search and try to
exploit the experiences in 1CLICK-2.

In the past, availability of Web documents, or HTML doc-
uments, with XML element retrieval were not investigated
in the INEX project though Wikipedia documents and sci-
entific articles by IEEE computer society have been studied
well. It is very important to survey whether the techniques
of XML element retrieval are useful for HTML documents
or not because HTML is a very popular format in struc-
tured documents. In other words, a scope of XML element

1https://inex.mmci.uni-saarland.de/

retrieval is spread drastically if an effectiveness for HTML
documents is proved, .

There are some challenges to apply the techniques of XML
element retrieval to HTML documents. Firstly, strictness
between HTML and XML differs very much in their gram-
mars. HTML documents are lenient on a grammar, while
XML requires a strict grammar. As a result, many of HTML
documents cannot be parsed properly by an XML parser,
which is an essential process for XML element retrieval.
Therefore, we fix HTML documents and transform them
into XHTML documents.

Secondly, most of HTML documents are relatively “shal-
low” in the depth of document structure whereas the average
depth of the Wikipedia documents at INEX 2008 is 6.72 [7].
Techniques of XML element retrieval utilize document struc-
tures to judge which granular element is the most effective
as a search result. An XML element retrieval system cannot
extract appropriate elements if the possible granularity of el-
ements are limited. Thus, we propose a re-struction method
to deepen the document structures since some HTML tags
potentially represent document structures and they can be
extended to define nested structures.

Lastly, expected outputs between DIIA and XML element
retrieval are different as an intimate matter. Intuitively, rel-
evant descriptions for DIIA are data-centric contents, while
those of XML element retrieval are document-centric con-
tents. We should revise our strategy based on their goals.

The latter parts of this paper mainly focus on the first
and second challenges. this is the first study adapting XML
element retrieval techniques to HTML documents, as far as
the authors’ survey.

2. OVERVIEW OF XML ELEMENT RETRIEVAL
In this section, we describe the overview of XML elements

and XML element retrieval techniques.

2.1 Comparison of Document Retrieval and
Element Retrieval

Here, we explain the difference between XML element re-
trieval systems and well-used document retrieval systems.
When many of document retrieval systems propose a list of
relevant documents, the systems additionally provide users
with result snippets [14], which are summaries of each docu-
ment, approximately 50 words in length. Result snippets are
generated by a text extraction technique that extracts the
text that is nearby the query keywords. Search-system users

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

237



<article>

<p>Bill Gates is …</p>

<body>

<sec>Early life …</sec>

<sec>Windows …</sec>

<sec>Books …</sec>

</body>

</article>

<article>

<sec>Steve Jobs …</sec>

<body>

<h2>Business life …</h2>

<sec>Apple computer …</sec>

</body>

</article>

DID:1 DID:2

Figure 1: XML document

p

Bill Gates is ...

body

article

sec

Early life ... Windows ... Books ...

sec sec

sec

Steve Jobs ...

body

article

Business life ... Apple computer...

h2 sec

EID:1

EID:2

EID:3

EID:4 EID:5 EID:6

EID:1

EID:2
EID:3

EID:4 EID:5

DID:1
DID:2

Figure 2: XML tree

utilize the result snippets located around the result when
deciding which documents are worth browsing. Despite the
fact that many search systems rely on result snippets, not all
result snippets help them decide which documents to browse.
This is because result snippets do not consider the context
between the extracted text; as a consequence, some result
snippets do not make sense [16].

On the other hand, the main purpose of an XML element
retrieval is to extract the relevant descriptions (elements)
from a query and propose them in descending order of their
relevancy scores. XML element retrieval systems can pro-
pose a list that contains the relevant descriptions from a
query, while many document retrieval systems propose a
list that contains relevant documents for a query. Hence,
users do not have to spend time seeking out the relevant
parts that satisfy their information needs. This feature saves
users’ time and energy during information retrieval.

There are some other approaches to extract important de-
scriptions in documents like automatic summarization, in-
formation extraction, passage retrieval and so on. Compared
with these approches, one of the advantages of XML element
retrieval is that search results are self-contained, which is
one of the requirements for result snippets [14], because it
considers the context of the sentences by utilizing document
structures.

2.2 XML Element
We show concrete examples in Figures 1, 2, and 3 to ex-

plain the definition of XML elements. Figure 1 illustrates
an example of XML documents. Each document is assigned
a Document ID (DID). Figure 2 depicts trees that are trans-
lated from Figure 1. An XML document can be expressed

DID: 1, EID: 1

PE: /article

DID: 1, EID: 2

PE: /article/p

DID: 1, EID: 3

PE: /article/body

DID: 1, EID: 4

PE: /article/body/sec

Books …

Bill Gates is …

Early life …

Windows …

Books …

Early life …

Windows …

Books …

Bill Gates is …

Early life …

Windows …

DID: 1, EID: 5

PE: /article/body/sec

DID:1, EID: 6

PE: /article/body/sec

DID:2, EID: 1

PE: /article

DID:2, EID: 3

PE: /article/body

DID:2, EID: 2

PE: /article/sec

DID:2, EID: 4

PE: /article/body/h2

Steve Jobs …

Business life …

Apple computer…

Steve Jobs …

Business life …

Apple computer…

Business life …

Apple computer…

DID:2, EID: 5

PE: /article/body/sec

Figure 3: XML element

as a tree structure, which helps to understand the structure
of the document. Each element is assigned an Element ID
(EID), which is assigned in document order. We can identify
an element by its DID and EID.

The author of a document makes structures, e.g., chap-
ters, sections, paragraphs. We utilize these structures to
identify the best description for satisfying users’ informa-
tion needs. In other word, we suppose that texts in an item
are based on the same theme. Then, we try to extract the
item that discusses the theme of users’ interest.

A pair of start and end tags represents an XML element
node in an XML tree, and the nested structure of XML el-
ements represents ancestor-descendant relationships. Each
element in Figure 3 is the text that is composed of a set
of text nodes in the XML tree in Figure 2. This demon-
strates why there are overlapping XML elements in XML
documents.

We also describe the path expression (PE) of each ele-
ment. Suppose a user seeks information about “Early life
. . . ”, “Windows . . . ” and “Books · · · ” of DID 1. XML ele-
ment retrieval systems try to present an element whose EID
is 3 in DID 1 to the user because the element contains all of
the information that the user needs and no further informa-
tion.

2.3 History of XML Information Retrieval
INEX project launched in 2002, and is the largest ongoing

project for XML element retrieval. Test collections provided
by the INEX project is widely used for evaluating the effec-
tiveness of the XML element retrieval systems. The project
also carries out a competition using XML documents gener-
ated by the scientific articles and the Wikipedia documents.

The INEX project requires search systems to return a non-
overlapped ranked list as a search result in XML element
searches. In addition, search systems extract 1,500 or fewer
XML elements for each query. In the past, some existing
studies do not remove overlapping elements and return a
näıvely ranked list that is sorted in descending order of the
XML elements’ scores. We call such a list a simple ranked
list. On the other hand, most studies have reported damage
to search accuracy because of overlapping search results [9]:
therefore, a ranked list without overlapping XML elements
is also returned from recent XML element search systems.
We call such a ranked list without overlaps a non-overlapped
ranked list2.

2XML element search systems can extract multiple XML

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

238



2.4 Targeted XML Documents
There are two types of XML documents: (1) data-centric

which mainly contain single or compound term in their text
nodes and (2) document-centric which tend to contain one
or more sentences in their text nodes[1].

One of the most typical example of data-centric XML doc-
ument is DBLP3. Studies investigating data-centric XML
documents primarily focus on searching query keywords ef-
ficiently.

In contrast, the scientific articles and the Wikipedia docu-
ments are applicable as document-centric XML documents.
With the documents, existing studies are performed for ef-
fective XML element retrieval. Needless to say, Ad hoc track
of INEX project mainly targets document-centric XML docu-
uments.

In terms of XML type, HTML documents are classified
as document-centric documents. It suggests that the frame-
work of XML element retrieval may be applied to HTML
documents. In this paper, we’d like to survey on it.

3. RELATED STUDIES
For effective XML element retrieval, some studies try to

propose an accurate term-weighting scheme, while others try
to remove unnecessary elements from search results.

3.1 Term-Weighting Schemes for XML Infor-
mation Retrieval

The most important goal of XML element retrieval is
highly accurate searches. The mainstream approach to ex-
tracting relevant elements is as follows: first, calculate a
term weight for each element by using a term-weighting
scheme; next, compute a score for each element using these
term weights.

Term-weighting schemes for XML element retrieval are
often derived from studies on document retrieval. Both of
these are composed of three types of factors: local weights
that are statistics derived from each document (element);
global weights that are statistics derived from all document
in a document set; and constant values (coefficients and pa-
rameters).

The most significant difference between document retrieval
and XML element retrieval is the method for computing
global weights. Term-weighting schemes in document re-
trieval assume that every document has the same attribute
and belongs to the same class. Thus, global weights are
calculated using all documents. However, in XML element
retrieval, elements are assigned to classes. Global weights
are calculated for elements of the same class. There are dif-
ferent ways to classify elements. One approach is to classify
elements by path expression. In Figure 3, since Elements
4, 5, and 6 of Document 1, and Element 4 of Document 2
all have the same path expression /article/body/sec, the
global weights are calculated using these elements.

Alternatively, elements with the same tag can be placed in
the same class. Because Elements 4, 5, and 6 of Document
1 and Elements 2 and 4 of Document 2 all have the sec tag,
the global weights are calculated using these elements, as
depicted in Figure 3. We use classification based on path
expression in our system, because this is reportedly more

elements if these elements do not overlap with each other.
3http://www.informatik.uni-
trier.de/ ley/db/index.html

accurate [19].
There are several kinds of term-weighting schemes for

XML element retrieval; e.g. TF-IPF [11], BM25E [12], and
the query likelihood model for XML element retrieval [18]
(QLMEL). BM25E is regarded as a more effective term-
weighting scheme. Actually, most of the top-ranked search
systems at INEX use BM25E [2]. We therefore utilize BM25E
as a term-weighting schemes in this paper.

BM25E [12] is a probabilistic model. In a term calcula-
tion of the classic term-weighting scheme TF-IPF, statistics
on the occurrence frequencies of terms are utilized. Con-
versely, BM25E utilizes not only the statistics but also ele-
ment length (the number of terms in an element). The term
weight w(p, e, t) of term t in element e with path expression
p is calculated as follows:

w(p, e, t) = (1)

(k1 + 1)tfe,t

k1((1 − b) + b ele
avelp

) + tfe,t
· log

Np − pfp,t + 0.5

pfp,t + 0.5

where tfe,t is the term frequency of term t in element e, pfp,t
is the element frequency of term t in the elements with p,
Np is the number of elements with p, ele is the length of
element e, and avelp is the average length of the elements
with p. The parameters k1 and b are set as 2.5 and 0.85
respectively based on the past experiments. Moreover, s(e)
is the score of e and is calculated as follows:

s(e) =
∑
ti∈T

w(p, e, ti) (2)

where T is a set of query keywords.

3.2 Data Cleansing Techniques
Document structures are useful to reveal the best descrip-

tion for users’ information need. However, some structures
are meaningless and elements defined by these structures are
inappropriate as search results, and some existing studies try
to eliminate them [6], [4].

In fact, removing useless or low-scored elements is effec-
tive for accurate XML retrieval. Although every granular-
ity of XML elements should be treated as search targets,
the effectiveness of the results decreases sharply if a search
system returns non-informative XML elements. Extremely
small XML elements are often not suitable for search results;
Hatano et al. noted that when such meaningless XML ele-
ments are removed, the search accuracy improves [5]. Fur-
thermore, our previous study suggests that large XML ele-
ments are also inappropriate for search results [10].

Those studies led to the fact that moderate granules are
the most appropriate as search results, because extremely
large granules (e.g. whole documents) tend to contain ir-
relevant descriptions and extremely small granules cannot
satisfy the information need by themselves.

4. APPLYING XML ELEMENT RETRIEVAL
TO HTML DOCUMENTS

Based on the discussion above, we work on adapting XML
element retrieval techniques to HTML documents proveded
by 1CLICK-2 organisers.

To achieve the end, we firstly re-structuration the HTML
documents into well-formed XML documents to apply XML
element retrieval techniques. Concretely, we complement

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

239



tags to maintain the integrity of corresponding tags. Sec-
ondary, we re-structure the XML documents to deepen the
document structures to utilize granularity of the documents
maximally. Lastly, we also propose a method to eliminate
unnecessary elements.

4.1 Pre-Processing for HTML Documents
Before the re-structuruction, we go through the following

processes with the provided HTML documents.

1. removing attributes, comments, and special characters
of HTML,

2. removing the stop words by SMART stop list4, and

3. applying stemming step by Porter [15].

4.2 Validating Corresponding Relations in Tags
HTML documents need to be transformed into XML for-

mat because only a few original HTML documents can be
parsed properly by an XML parser. To correct the cor-
responding relations in tags, we utilize CyberNeko HTML
Parser5. The parser automatically complements the incom-
plete tags.

4.3 Re-Structuration of Document Structures
HTML tags, as well as XML tags, are categorized into

two groups [21]. One represents structural classifications like
HTML, BODY, P tags. The other indicates garnish of characters,
specific contents, and meta-information like B, TABLE, and A

tags, respectively. In terms of granularity, only structural
tags are helpful.

Since XML tags are flexible, an automation classification
method of the tags is required. Meanwhile, information of
HTML tags is given and behavior of these tags is unique.
Therefore, we manually classify the tags into the two groups.
We list the structural tags as follows: HTML, HEAD, TITLE,
BODY, H1, H2, H3, H4, H5, H6, P.

Heading tags (H1–H6) represent the granularity of con-
tents, however, heading tags only contain not the contents
but the topic name of the contents. We focus on the disagree
between the potential granularity and document structures
to deepen the document structures.

We explain the strategy of the re-struction with Figure
4. Basically, when a heading tag is discovered, a container
heading tag (CHX6, 1≤X≤6) is inserted before the heading
tag. As a concrete example, Figure 4 depicts that the start
tag for CH2 is inserted before the start tag for H2 colored
red. From the second insertion of container heading tags,
the behavior of the insertion bases on the magnitude rela-
tionship of heading tags’ level. Supposed that the heading
tag inserted earlier is HX and the heading tag inserted later
is HY (1≤Y≤6).

There are three situations when the container heading tag
is inserted as follows:

X < Y When the level of the inserting heading tag is smaller
than that of the inserted heading tag (the value Y
is larger than X), a container heading tag is simply

4http://jmlr.csail.mit.edu/papers/volume5/lewis04a/a11-
smart-stop-list/english.stop
5http://nekohtml.sourceforge.net/
6The value of X is the same value as the heading tag.

<HTML>

<HEAD>

<TITLE>aaa</TITLE>

<body>

<H2>bbb</H2>

<P>ccc</P>

<P>ddd</P>

<H3>eee</H3>

<P>fff</P>

<H3>ggg</H3>

<P>hhh</P>

<H1>iii</H1>

<P>jjj</P>

</body>

</HTML>

<HTML>

<HEAD>

<TITLE>aaa</TITLE>

<body>

<CH2>

<H2>bbb</H2>

<P>ccc</P>

<P>ddd</P>

<CH3>

<H3>eee</H3>

<P>fff</P>

</CH3>

<CH3>

<H3>ggg</H3>

<P>hhh</P>

</CH3>

</CH2>

<CH1>

<H1>iii</H1>

<P>jjj</P>

</CH1>

</body>

</HTML>

original HTML doc transformed HTML doc

Figure 4: Re-structuring HTML documents

inserted just before the inserting heading tag. Con-
cretely, in Figure 4, the level of the H3 tag colored blue
is smaller than that of the H2. Thus, the start tag for
CH3 is inserted before the start tag for H3.

X = Y In case the values X and Y are equal, before insert-
ing the container heading tag, the previous container
heading tag is closed. Because the levels of the H3

tag colored blue and the H3 tag colored orange is the
same, the end tag for CH3 is inserted followed by the
start tags for CH3 and H3 in Figure 4.

X > Y If the level of the inserting handling tag is larger
than that of the inserted heading tag, the inserted con-
tainer heading tags are closed while the level of the
inserting heading tag is the same or smaller compared
with that of the inserted container heading tag. When
the H1 tag colored green is to be inserted in Figure 4,
the CH2 tag and CH3 tag have been inserted. Since the
level of H1 is larger than that of these two tags, the
end tags for CH3 and CH2 are inserted before the start
tag for CH1 is inserted.

With the re-struction method, the depth of the docu-
ments can be deepened. To investigate the effectiveness of
the method, we apply the method to provided HTML doc-
uments. Table 1 indicates the number of the max depth
of original documents and documents. The deeper the max
depth, the larger the number of the transformed documents.
As a result, the average depth of the document set is in-
creased from 3.02 to 5.18.

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

240



Table 1: Depth of the document structure
max depth original transformed

1 217 217
2 102 102
3 25647 3110
4 890 4126
5 53 7461
6 7 8051
7 1 3359
8 6 462
9 3 38

average 3.02 5.18

Table 2: Accuracy rates of the main body check

threshold τ re-structuration
näıve 0.1 0.3 0.5 0.7 0.9 näıve τ (0.7)
.53 .80 .73 .80 .80 .73 .27 .60

Some other tags like UL, OL, DL, TABLE, FORM, DIV are also
regarded as structural tags. Managing these tags is one of
our future works though these tags can by noise when these
tags are used as they are.

Furthermore, BR and HR separate contents, which may be
a clue of re-struction. This is also a part of our future works.

4.4 Eliminating Noise Elements
As we remarked earlier, extremely small elements are not

appropriate as search results. Structured documents includ-
ing XML documents are composed of some components, i.e.,
main body, table-of-contents, references and so on. The
other contents except the main body are basically consists
not of sentences but of keywords. These descriptions do not
tend to satisfy an information need directly, even though
they can serve as navigational information. Therefore, we
can remove outside of the main body for effective retrieval,
of which idea is adaptable to HTML documents. In XML
documents, outside of the main body are removed with the
limitation of the element length of the number of distinct
terms, whereas, HTML documents are difficult to elimi-
nate all “noises” because HTML documents are dirtier and
contain more complex noises. Consequently, we propose a
method to remove the noises from HTML documents.

Suppose that outside of the main body contains many
hyperlinks. Based on this hypothesis, we compute the ratio
of the text size in the tag for A divided by the total text size
of the elements. If the ratio exceeds the threshold value τ ,
the element is eliminated as a noise.

We performed a preliminary experiments to investigate
the validity of the noise classification method. We manually
judge elements in the top 15 for a query ”michael jackson
death” whether each element is the main body or not, with
changing τ . Table 2 depicts the accuracy rates. As we can
see from the table, the accuracy rates improved when we set
the threshold τ compared with the näıve method. Note that
the accuracy rates mean not precision but the correctness of
the main body.

We also surveyed the effects on the re-structuration of
the document structures discussed in Section 4.3. The re-

structuration cause dropping the accuracy rate drastically,
however, it can recover the accuracy rate with the noise
classification method.

4.5 Generating Search Results
There are two purposes for this study. One is to take a

challenge whether XML element retrieval techniques can be
properly adapted to HTML documents or not. The other is
to investigate whether XML element retrieval is applicable
to DIIA task or not. Thus, we introduce the way of INEX
to generate search results, or nuggets.

There are three types of tasks in the Ad hoc track at INEX
2008 [7] as follows:

• Focused Task,

• Relevant in Context Task, and

• Best in Context Task.

For the Focused Task, a ranked-elements-list of non-overlapping
results must be returned. It is evaluated at early preci-
sion relative to the highlighted (or believed relevant) text
retrieved.

For the Relevant in Context Task non-overlapping results
(elements or passages) must be returned, these are grouped
by document. It is evaluated by mean average generalized
precision where the generalized score per article is based on
the retrieved highlighted text.

For the Best in Context Task a single starting point (el-
ement’s starting tag or passage offset) per article must be
returned. It is also evaluated by mean average generalized
precision but with the generalized score (per article) based
on the distance to the assessor’s best-entry point.

We submitted following six runs for 1CLICK-2.

EF Output is generated in the same manner as the Focused
Task.

ER Output is generated grouped by document based on
element score (the same manner as the Relevant in
Context Task).

DR Output is generated grouped by document based on
document score (the same manner as the Relevant in
Context Task).

EB Only one element with the highest score is retrieved
based on element score (the same manner as the Best
in Context Task).

DB Only one element with the highest score is retrieved
based on document score (the same manner as the Best
in Context Task).

mobileEF A way of generating the result is the same as
EF though text size can be retrieved is limited.

4.6 Outputs and Discussions
Unfortunately, the results of our formal runs at 1CLICK-

2 are very poor. This results indicates that it is difficult to
succeed in the DIIA task by simply adapted XML element
retrieval approach. In next step, we consider an appropriate
method to generate nuggets from elements with high score.
Studies from other team at 1CLICK [13], [3], [17] may be
helpful.

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

241



5. CONCLUSION
This is the first study applying XML element retrieval

to Web documents, or HTML documents. We found some
problems above it; HTML documents are too dirty in their
grammars to parse properly, and their heights are relatively
low to utilize granularity of XML elements fully. In addi-
tion, noises in HTML documents are more complex com-
pared with well-formatted XML documents.

To solve these problems, we propose the re-struction method
to deepen document structures and the noise classification
method leverage hyperlink in HTML documents. Though
the scale of the preliminary experiments are extremely small
and limited, we found the potential power of these methods.
We are going to operate exhaustive experiments with larger
setting.

As a result of our formal runs at 1CLICK-2, it turns out
that our approach, XML element retrieval, is not appropri-
ate to generate nuggets from a ranked-element-list. This
remains for one of future works.

As another future works above applying XML element re-
trieval to HTML documents, we consider another approach
to re-stcuture HTML document and the evaluation method
for our challenge.

6. ACKNOWLEDGMENT
This work was partly supported by Grant-in-Aid for JSPS

Fellows and JSPS KAKENHI Grant #22240005, #23500121,
and #22700248.

7. REFERENCES
[1] H. Blanken, T. Grabs, H.-J. Schek, R. Schenkel, and

G. Weikum. Intelligent Search on XML Data:
Applications, Languages, Models, Implementations,
and Benchmarks, volume 2818 of LNCS.
Springer-Verlag, 2003.

[2] S. Geva, J. Kamps, and A. Trotman. Advances in
Focused Retrieval. Springer Berlin, 2009.

[3] T. S. H. T. Hajime Morita, Takuya Makino and
M. Okumura. TTOKU Summarization Based Systems
at NTCIR-9 1CLICK task. In Proc. of the 9th NTCIR
Conference, 2011.

[4] K. Hatano, H. Kinutani, T. Amagasa, Y. Mori,
M. Yoshikawa, and S. Uemura. Analyzing the
Properties of XML Fragments Decomposed from the
INEX Document Collection . In Advances in XML
Information Retrieval, volume 3493 of LNCS, pages
168–182. Springer Berlin, 2005.

[5] K. Hatano, H. Kinutani, M. Watanabe, Y. Mori,
M. Yoshikawa, and S. Uemura. Keyword-based XML
Portion Retrieval: Experimental Evaluation based on
INEX 2003 Relevance Assessments. In Proc. of INEX
2003 Workshop, 2004.

[6] F. Huang, S. Watt, D. Harper, and M. Clark. Compact
Representations in XML Retrieval. In Formal Proc. of
INEX 2006 Workshop, volume 5631 of LNCS, 2007.

[7] J. Kamps, S. Geva, A. Trotman, A. Woodley, and
M. Koolen. Overview of the INEX 2008 Ad Hoc
Track. In Formal Proc. of INEX 2008 Workshop,
volume 5631 of LNCS, 2009.

[8] M. P. Kato, M. Ekstrand-Abueg, V. Pavlu, T. Sakai,
T. Yamamoto, and M. Iwata. Overview of the

NTCIR-10 1CLICK-2 Task. In Proc. of the 10th
NTCIR Conference, 2013.

[9] G. Kazai, M. Lalmas, and A. P. de Vries. The Overlap
Problem in Content-Oriented XML Retrieval
Evaluation. In Proc. of the 27th ACM SIGIR, 2004.

[10] A. Keyaki, J. Miyazaki, and K. Hatano. A Method of
Generating Answer XML Fragment from Ranked
Results. In INEX 2009 Workshop Pre-Proceedings,
2009.

[11] F. Liu, C. Yu, W. Meng, and A. Chowdhury. Effective
Keyword search in Relational Databases. In Proc. of
ACM SIGMOD, 2006.

[12] W. Liu, S. Robertson, and A. Macfarlane.
Field-Weighted XML Retrieval Based on BM25. In
Formal Proc. of INEX 2005 Workshop, volume 3977
of LNCS, 2006.

[13] K. T. Y. S. T. Y. H. O. Makoto P. Kato, Meng Zhao
and K. Tanaka. Information Extraction based
Approach for the NTCIR-9 1CLICK Task . In Proc. of
the 9th NTCIR Conference, 2011.

[14] C. D. Manning, P. Raghavan, and H. Schutze.
Introduction to Information Retrieval, pages 157–159.
Cambridge University Press, 2008.

[15] M.F.Porter. An Algorithm for Suffix Stripping. In
Computer Laboratory, Cambridge, 1980.

[16] S. Nakamura. Trustworthiness Analysis of Web
Search. Journal of Japanese Society for Artificial
Intelligence, 23(6):767–774, 2008.

[17] Y.-I. S. Naoki Orii and T. Sakai. Microsoft Research
Asia at the NTCIR-9 1CLICK Task. In Proc. of the
9th NTCIR Conference, 2011.

[18] P. Ogilvie and J. Callan. Parameter Estimation for a
Simple Hierarchical Generative Model for XML
Retrieval. In Formal Proc. of INEX 2005 Workshop,
volume 3977 of LNCS, 2006.

[19] B. Piwowarski and P. Gallinari. A Bayesian
Framework for XML Information Retrieval: Searching
and Learning with the INEX Collection. Journal of
Information Retrieval, 8(4):655–681, 2005.

[20] T. Sakai, M. P. Kato, and Y.-I. Song. Click the Search
Button and Be Happy: Evaluating Direct and
Immediate Information Access. In Proc. of the 16th
ACM CIKM, 2011.

[21] T. Tokuda and K. Tajima. Classification of XML Tags
according to Their Roles in Document Structure.
DBSJ Journal, 8(1):1–6, 2009.

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

242




