
Querying large Collections of Mathematical Publications
- NTCIR10 Math Task -

Moritz Schubotz
Technische Universität Berlin
schubotz@tu-berlin.de

Marcus Leich
Technische Universität Berlin

marcus.leich@tu-
berlin.de

Volker Markl
Technische Universität Berlin

volker.markl@tu-
berlin.de

ABSTRACT
In this paper, we present our approach for searching mathe-
matical formulae. We focus on a batch query approach that
does not rely on specialized indexes, which are usually do-
main dependent and restrict the expressiveness of the query
language. Instead, we use Stratosphere, a distributed data
processing platform for Big Data Analytics that accesses
data in a non-indexed format. This system is very effective
for answering batches of queries that a researcher may wish
to evaluate in bulk on large data sets.

We demonstrate our approach using the NTCIR10 Math
task, which provides a set of formula patterns and a test
data corpus. We showcase a simple data analysis program
for answering the given queries. We interpret the patterns
as regular expressions and assume that matches to these ex-
pressions are also relevant search results to the end-user.
Based on the evaluation of our results by mathematicians
from Zentralblatt Math and mathematics students from Ja-
cobs University, we conclude that our assumption holds prin-
cipally with regard to precision and recall.

Our work is just a first step towards a well-defined query
language and processing system for scientific publications
that allows researchers to specify their information need in
terms of mathematical formulae and their contexts. We en-
vision that our system can be utilized to realize such a vision.

Team Name
FormulaSearchEngine(FSE)

Subtasks
Math Retrieval (English): Formula Search (FS), Full Text
Search (FS)

Keywords
Math Search, MathML, Stratosphere, Query Language

1. INTRODUCTION
As research and development happens globally, fast and

uncoordinated, researchers must have quick access to rel-
evant related topics in order to advance science. In this
context mathematical formulae play an essential role in sci-
entific communication.

A system assisting in literature search should ideally un-
derstand the researchers’ language, including formulae. Here,
the biggest problem is the ambiguity and complex structure
of natural language. We propose to use a query language

with fixed and well-defined semantics that describes infor-
mation need in terms of formulae and text. The main advan-
tage of such a query language in contrast to natural language
is that the query results are well-defined. This separates the
hard research problem of transforming researchers questions
to formal queries from the technical challenge of query exe-
cution.

The NTCIR10 Math pilot task [1] provides a set formula/-
text patterns without fixed semantics and a reference corpus
that consists of 100 000 documents from the Cornell ePrint
arXiv1. These patterns are split into two sub tasks. For the
Formula Search subtask (FS) the patterns are a list formulae
with (back-referencing) wild-cards (table 2). The Full Text
subtask (FT) provides words in addition to such patterns
(table 3). Since there is no meta information on how to
process these queries, we interpret the formula queries very
strictly, i.e. we only return results that match the pattern
without any implicit semantics. Furthermore we treat the
given words as a space separated list of keywords.

Recent approaches to formulae search, e.g. [7], focus on
matching the tree structures of formulae and patterns. A
lot of development effort has been put into the efficient
and distributed execution of such substitution tree-based
queries [6]. These approaches [7, 8, 6] consist of two phases.
In a first step, the content is indexed and in a second step
queries are answered based on the information contained in
the index. Obviously the advantage of this approach is the
short response time, if the query can be answered using the
data stored in the index. One drawback is that the cor-
pus must not change after indexing. Even though if update
operations are possible, they are connected with computa-
tional overhead. Systems based on Lucene [4] for example,
allow for temporary updates that require index re-builds in
the long term.

In our approach, we focus on the quality of the result,
rather than run-time. We choose to improve the quality
of our algorithm iteratively, until the result provide a real
value add for researchers. Following the concept of rapid
prototyping, our approach speeds up the development effort
dramatically, and allows to focus on the core functionality
i.e. to decide if a formula matches a query. The management
of the data volume is done by the Stratosphere platform in
the background. In the context of the NTCIR10-task, we
showcase that our system, which was developed in a less
than two person months, is able to filter and rank formula
that match the query.

Currently, we do not address strategies for optimizing the
run time and the ease of use. For theses optimizations, one

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

667

http://www.formulasearchengine.com
http://www.arxiv.org

can learn from elaborated concepts for query optimization
originating from the database community, which is subject
to future work.

2. SYSTEM DESCRIPTION
We use Stratosphere [2] as a platform for executing the

queries specified in the NTCIR10-Math task. Stratosphere
consists of three layers.

• Meteor [5] the high level scripting language

• The PACT [2] programming model for implementing
operators

• The Nephele [2] execution engine for parallel compu-
tation

To solve the NTCIR10 tasks, we identified following pro-
cessing steps.

1. load the data

2. parse queries and data

3. filter data based on queries

4. calculate individual ranking function

5. evaluate ranking functions based on whole-corpus

6. return top ranked results

7. export the results

In this section, we describe how we execute these steps.
Thereby we outline, which parts are evaluated by Strato-
sphere’s native code, and which parts are performed by
our user defined code. Due to the easy extensibility of the
Stratosphere platform that allows to integrate user code as
well on the Meteor as on the PACT level, very little overhead
is required to extend the core functionality.

2.1 Data preparation
After downloading and extracting the NTCIR10 test col-

lection, we concatenated the included files to a single one
that was transferred to our distributed file system (HDFS).
A single file is more efficient, since the system can read the
data sequentially from disk. The content of this file has the
following structure <ARXIVFILE Filenam=$filename> $file-

content</ARXIVFILE>.
The resulting file was stored in a distributed file system so

that all computers that have been used to process the data
could read the required data block wise from local disk.

2.2 High level program design
After having imported the data to our environment, we

designed the principal data flow of the system. Therefore
we had to specify the inputs and outputs and the type of
each operator. Stratosphere extends the MapReduce [3] con-
cept and introduces new operator types like Cross, Match
and CoGroup [2]. However, for this task the operator types
Map, Reduce, Cross and Match are sufficient. These opera-
tors can be regarded as second order functions that execute

input:
(q,f)

f.TeX

x2Bag:=TeX2Bag x2Bag:=MML2Bag

x2Bag(q)⊆
x2Bag(f) ?

output:
∅

output:
(q,f)

noyes

noyes

Figure 1: Logic of formulafilter operator: Fil-
ters formula that contain all tokens specified in the
query.

arbitrary user code based on the following number of inputs
and outputs record

Map :R →R∗ (1)

Reducek :R∗→R∗ (2)

Cross :R2→R∗ (3)

Matchk,l :R2→R∗ (4)

Here R denotes the space of all possible records and R∗ the
Kleene Closure of R. Each record r ∈ R consists of a finite
number of fields ri.

The Mapoperator gets one record at a time as input and
can output zero or more records for each input record.

In contrast to the original Reduce operator [3], which gets
all records with the same key, the Stratosphere Reduce op-
erator (Reducek) has an additional parameter k that defines
the index of the record field that is used as key. As a conse-
quence the input record set I ⊂ Rl of length l is portioned
into n = | dom Ik| ≤ l lists of records, each having the same
value for field k. Here n is the number of distinct values for
I. Thus, exactly one list will contain a record that has a
particular key-value for field k. For the special case, n = l,
Map and Reduce are equivalent. Furthermore, the Reduce
contract has the option to sort the input list with regard to
a secondary field that we use to get a sorted list of the query
result.

Cross, receives the Cartesian product of the input record
sets and Match is a Cross followed by a filter that only emits
record pairs with matching key attributes rk = rl.

2.3 Implementation of the operators
This section describes the user defined operators that we

developed extending the core functionality of the Strato-

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

668

sphere system in detail. The principal data flow is the fol-
lowing: First the queries (section ??) and the data (section
2.3.2) is loaded. In a subsequent step (section 2.3.4), token
based query filters identify the equations that are match
candidates.

Independent, overall word- and variable frequencies are
obtained (section 2.3.3).

In the following scoring phase (section 2.3.5), we compare
the equation structure of query and match candidate and
calculate a score that takes into account the overall frequen-
cies. Finally, the results are sorted (section 2.3.6) and the
top scored hits are returned.

2.3.1 Query compilation
The query compilation is implemented via a Map operator

(listing 1 [line 5-12]) that gets one record of a single text field
with the NTCIR topic XML subtree, which includes formula
patten and keywords, as input. From that, we derive exactly
one output record with six fields that contains the compiled
query for further processing. To illustrate this process, we
use the query NTCIR10-FT-14 (

∑
?pn?an, convergence) as

running example.
The first field is the query number NTCIR10-FT-14 that is

extracted using an XML library and is used as a Reduce key
for the final ranking.

The second field is the multi set [n x 2, sum, _ x 2],
which is generated by our TEX token filter from the TeX-
Query (\sum \qvar{p} {n} \qvar{a} {n}) based on the build
in Java tokenizer. In the same way the presentation MathML
tokenizer is used to generate the third filed that contains [Σ,

n x 2].
Obviously the TEX token filter contains more information

compared to the MathML filter. The latter extracts vari-
ables, numbers, and operators only, rather than the full fea-
ture set of MathML elements, which would require an unified
MathML representation. Unification of MathML is not yet
solved, or at least not available as a program library. With-
out unification, we face a lot of problems due to degrees of
freedom in the MathML standard. For example the under-
score () in the TEX code could be represented via the msub,
msubsup or mmultiscripts presentation MathML2 element.
Thus, the we use the MathML filter only, if no TEX-code is
available (figure 1).

In order to speed up the execution, we compress the MathML
mark-up. The recursive compression, e.g.,

<qvar name="x">

<d>

f

</d>

<qvar name="x">

→ a[(.*?); d[f]; \1] (5)

is inspired by Mathematica’s full form style with square
brackets. We ignore XML-attributes and replace the qvar

elements (?a and ?p in the running example) by regular ex-
pression. Multiple occurrences of the same name attribute
of the qvar element are treated with back-reference as in
(5). That said, the fourth and fifth field read mrow[mo[Σ];
mrow[msub[(.*); mi[n]]; msub[(.*); mi[n]]]] and apply[
sum; apply[times; apply[csymbol[subscript]; (.*); ci[n]];
apply[csymbol[subscript]; (.*); ci[n]]]]. These regular ex-

pressions take into account the structure of the query, rather
than just counting the features as done in the MathML filter.

The last field is a list with keywords (convergence in for
the sample query). One attempt is to include the porter
stemming algorithm [9]. Even though this algorithm was
quite successful in standard NLP tasks, it has some draw-
backs for math search. For example the words derivative

and derivation are both transformed to the stemmed term
deriv. Thus, we just use the original lower-case string for
the text search.

2.3.2 Extraction operators
This section describes the extraction of variables and terms

from the test-corpus data. Our four extraction operators are
implemented as Map contracts. The first Map (listing 1 [14-
17]) gets a publication formatted as HTML-document and
shipped in a PACT record with only a single string field as
input. It attaches another field that contains the file identi-
fier, for the later use as key.

The consecutive formula filter operator (listing 1 [19-23])
uses a regular expression to find all math tags. It emits one
record per formula containing the MathML-element and the
document id.

Another regular expression captures TEX-code of the for-
mulae, if available and attaches an additional field to the
record.

The following Map task (listing 1 [25]) tokenizes the TEX
and MathML code respectively, the same way as done with
the query TeX/MathML. Even though these tasks are dif-
ferent operators, they share code for the tokenization.

Another Map task (listing 1 [26]) tokenizes the words of
the article in the same style.

2.3.3 Aggregation operators
As a next step, we calculate the total number of words and

variables via bag union (listing 1 [25-26]). The bag union
operator is implemented as a combinable Reduce contract.
This means, it merges the multi sets containing the words
or variables of a document or formula in two steps. First,
all nodes compute the union of their local all multi sets than
these intermediate multi sets of all nodes are united. We use
the multi set implementation of the guava libraries3, which
turns out to be quite efficient with regard to memory usage
and runtime. As a result there are two records, one for the
variables and one for the words. Each contains one field with
a multi set of the counts.

2.3.4 Filter operators
The crucial part of the execution is the formula filtering

that identifies the match candidates for the queries based
on the formula tokenization. Logically this works as shown
in figure 1. Technically, the formula filter Cross task gets a
tuple of records as input that originates from the Cartesian
product of query and formula records. If the multi set of
the tokens of the formula is a superset of the tokens in the
query than the formula is regarded as hit candidate. In
that case the fields of the query record and the fields of the
formulae record are concatenated and emitted. Otherwise,
other nothing is emitted.

We use a similar Cross task for the filtering of the docu-
ments. Only documents that include the keywords, specified
in the query, pass the filter. For those, we emit a record that
contains the concatenation of the query and document fields.

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

669

http://www.formulasearchengine.com/ntcir10-math/results/FT/NTCIR10-FT-14
http://www.formulasearchengine.com/ntcir10-math/system/tex-tokenizer
http://www.formulasearchengine.com/ntcir10-math/system/presentation-mathml-tokenizer
http://www.formulasearchengine.com/ntcir10-math/system/presentation-mathml-tokenizer
http://www.w3.org/TR/MathML3/chapter3.html
http://www.formulasearchengine.com/ntcir10-math/system/mathml-compression
http://code.google.com/p/guava-libraries/

1 using math , xml ; // load the custom package
2 $d = read from " hdfs :// localhost / NTCIR . xml " s p l i t

at " ARXIVFILE " ;
3 $q = read " hdfs :// localhost / queries . xml " s p l i t at

" topic " ;
4 // map - task for query compilation
5 $q = transform $q in to {
6 num: xGet ($q , " ./ num ") ,
7 t e xF i l t e r : TeX2Bag(xGet ($q , " ./ TeXquery ")) ,
8 mmlFilter : mml2Bag(xGet ($q , " ./ pquery ")) ,
9 pmml : compress xGet ($q , " ./ query / pquery ") ,

10 cmml : compress xGet ($q , " ./ query / cquery ") ,
11 words : s p l i t xGet ($q , " ./ query / words ") ,
12 } ;
13 // map - task for file ID extraction
14 $d= transform $d in to {
15 f i l e ID : xGet ($data , " /. @Filename " , "f (\ d {6}) \.

xhtml " , " $1 ") ,
16 HTML: $d
17 }
18 // map - task for formulae extraction
19 $ f = xtransform " // math " as $m in $d .HTML into {
20 $ f i l e ID : $d . f i l e ID ,
21 $mml = $m,
22 $tex = xGet ($m, " /. @altText ")
23 }
24 // map - task formulae tokenization
25 $ f = addFie lds $ f { vars = $ f .TeX ? TeX2Bag($ f .TeX

) :mml2Bag($ f . math) } ;
26 $d = addFie lds $d { words = HTML2Bag($d .HTML) } ;
27 // reducer for counting total number variables
28 $vars= bag union $ f [∗] . vars ;
29 $words = bag union $d [∗] . words ;
30 // cross - task for formulae filtering
31 $fq = f o rmu l a f i l t e r $q in $ f ;
32 $dq = t e x t f i l t e r $q in $d ;
33 // cross - task that assignes scores with a TFIDF -

like method
34 $fq = sco r e $fq use $vars ;
35 $dq = sco r e $dq use $words ;
36 // join - task : increase formula by document score
37 $fq = r a i s e s c o r e $fq use $dq where $fq .num=$dq .num

and $fq . f i l e i d=$dq . f i l e i d ;
38 // reduce - task concatinates results for each query
39 $ r e s u l t s = formulagroup $fq by $fq .num so r t desc

by $formulae . s co r e l im i t 30 ;
40 // reduce - task formats results
41 $ r e s u l t =format r e s u l t s $ r e s u l t s p a r a l l e l 1 ;
42 write $ r e s u l t to " hdfs :// localhost / results . xml "

Listing 1: Meteor pseudocode: Script for answering
the Fulltext search task. For a detailed description
of the operators see section ??

2.3.5 Scoring operators
After the filtering step the result set is still too large and

has to be ordered. Therefore, the scoring task is used. Since
we want to use TFIDF like methods to score the tokens, we
need to know the total number of occurrences of the tokens.

Foreclosing the evaluation, the following statement can
be made: We developed a scoring mechanism that calcu-
lates a score based on the absolute and relative number of
tokens, presentation and content MathML, as well as the
occurrence of the keywords. However, the ranking results
are poor, because free parameters that are used to calculate
a reasonable norm for this score vector were specified with
an ad-hoc-method.

One of future research tasks, is to adjust the free param-
eters in a way that the ranking results correlate better to
the experts relevance ratings. Certainly, during that task
over-fitting must be avoided.

For the scoring of the MathML part, the MathML tags

were compressed in same way as done for the queries. After
that, the regular expressions are applied to the compressed
MathML. Thus, even the instances of the place-holders were
specified, which is valuable for displaying the results in a
future use case.

We demonstrate the scoring function using the sample
query FT-14 and the relevant formula

∑
anbn 190/f075790

.xhtml#id73874 that is ranked best. The final score of 10155
is calculated in the following way:

Since all tokens are found in the TEX-code a score of 100
is assigned. In addition, the score for the content MathML
match (with $1=ci[a] and $1=ci[b]) was scored with 5000.
Additional 5000 points are assigned, because there are no
other expressions in the content MathML representation.
Presentation MathML did not match by accident, because
there is an additional invisible times between an and bn
that is not removed, while compressing the presentation
MathML. The seven occurrences of the word convergence

are rated inspired from the geometric series with 2−7(27+1−
1) wordscore(convergence). Here, the word score is obtained
from corpus wide frequency of convergence in relation to
the sum all relevant word frequencies. In the same way to-
ken scores for n,

∑
, \, are calculated.

2.3.6 Result operators
There are two result operators. The first one groups for-

mula that have the same query number and the second one
summarizes the result of all queries.

The input for the first Reduce operator is sorted according
to the score specified in descending order. We modified the
normal grouping in the way that the operator only collects
the first 30 input records and normalizes them according to
the NTCIR submission guidelines.

In former steps, the results of all tasks are concatenated
to the XML result file that was downloaded from the HDFS
and was sent directly to the NTCIR office without manual
modifications.

2.4 Limitations
We designed our system in a way that it produces de-

terministic and traceable results for the given queries. Our
conservative approach implies that the result set must be ex-
plainable and reproduceable. This allows for easy debugging
and testing of the code. However, verbose justification state-
ments lead to a reasonable amount of development work, and
influence the performance of the system in a negative way.
Especially early selection of the probably best results and
random sampling gets impossible with our approach. Fur-
thermore, no query expansion is performed. For example, if
the query is x2 but no equation that contains x2 exists, the
system would answer with an empty result set, rather than
displaying results for x or y2. For that reason some of the
results that were considered as partial match by the experts
could not be found by our system.

Furthermore, we were not able to discover equations that
involved a line break in the MathML-source code, which is a
corner case. Additionally only equations that contained an
alttext attribute were considered. After fixing these bugs
the performance of our system has slightly improved.

For the full-text search, we interpreted the text input as a
list of keywords. One query contained the word not (parse-

val), which probably means that the word parseval should
be excluded. However in this first version of our system, we

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

670

http://www.formulasearchengine.com/ntcir10-math/results/FT/NTCIR10-FT-14#id73874
http://www.formulasearchengine.com/ntcir10-math/results/FT/NTCIR10-FT-14#id73874

didn’t treat this special case.
Furthermore we ignored the task FT-3 that deals about

searching for LATEX-pseudo-code.

2.5 Optimized execution
Instead of using the Meteor to compile the source from

listing 1 automatically to the Pact layer, we hard code the
pact plan. In this context, we perform some manual per-
formance optimizations and customizations. We just count
the keywords and tokens that occurred in one of the search
queries, for example. Furthermore, we summarize concur-
rent Map task, like for example extraction of the TEX code
and the tokenization of it. In addition, we specified com-
piler hints for output cardinality estimation. Especially, for
choosing Cross and Match strategies these estimates make a
difference. The query list has about 30 entries and is much
smaller than the number of equations with more than 130
million records. Thus a broadcasting the queries and keep-
ing them in memory for the whole time the task runs makes
sense.

3. RESULTS
The formulasearchengine team (FSE) submitted 373 re-

sults in the category formula search (FS) and 244 results in
the category formula search (FT).

In the category FS 290/373 results were judged. 106 of
the evaluated results were regarded as (partially) relevant.
Thus the precision (relevant/submitted) results evaluates to
28.4% for formula search which is rank 2 of 13 submitted
result sets.

For the Full Text search task all 244 submitted results
were judged. 54 of them were regarded as (partially) rele-
vant and the precision evaluate to 22.1%. In this category
only two teams participated. The other team achieved 31%
precision.

Even though we do not perform a detailed performance
analysis, we present some indicators of the system runtime.
For the actual run our system, consisting of two desktop
computers with 8 CPU-cores 1 HDD and 16GB main mem-
ory per machine, reported an overall runtime of about 9
minutes (512 207 ms). As an indicator for the shortest pos-
sible runtime on our system, we read all the data and write
the first 1000 bytes of each file back to disk. This took less
than 4 minutes (226918-228194 ms) and meets our expecta-
tions, since processing the 42GB dataset with a single disk,
and an average effective data transfer rate of 100MB/s leads
to 7 minutes reading time in theory.

For a detailed analysis of the results, we performed an-
other run that ignores all results that were not rated by
the experts, and provides output even if the formula would
have been suppressed by the filter. We published the result
of this analysis at http://www.formulasearchengine.com

in full length and elaborate on some crucial aspects in this
section.

Our score s that was used for ranking is partitioned in
3 areas and relates to the experts ratings relevant (++),
partially relevant (+) and not relevant (o) via

s < 50 → no match ↔o
50 ≤ s < 2000→ token only ↔+

s ≥ 2000→ token + filter ↔+ +.

In table 2 and 3, 9 × 9 matrices (M) for all results show

the relationship between expert rating and the classification
of the system score. The diagonal entries denote that our
system and the reviewers agree, entries in the upper triangle
of the matrix mean that our system rates the result as more
relevant than the reviewers did, and entries in the lower
triangle denote the opposite. They relate to the classical
2 × 2 binary classification matrix(B) by summarizing the
non corner entries via

Bi,j = M2i,2j + αM2i,2j+1 + (1− α)M2i,2j−1

+ βM2i+1,2j + (1− β)M2i−1,2j . (6)

For example summarizing as well relevant(++) as partially
relevant(+) to relevant (α = 1) and regarding all entries
beginning from token only (score > 50) as retrieved entries
(β = 1) leads to B0,1 = M0,2 + M1,2 false positives. The
β parameter is not relevant for the further discussion since,
the calculated score is more fine grained than shown in the
table. Thus, we calculate the average precision 〈P 〉 defined
as 〈Pα〉 ≡

∫
pα(r) dr. For r ∈ Rα, the set recalls of the

ranked result list pα(r) ≡ max{p′α(k) : r = rk} is the max-
imal precision for p′α(k) the precision for rank k with recall
rk. Since, this are only discrete values, 〈Pα〉 is approximated
in upper Riemann sum style by using pα(r) ≡ pα(min{r′ ∈
Rα : r′ > r}) for r /∈ Rα ∧ r < maxRα and pα(r) ≡ 0 for
r > maxRα.

In the tables, we use the more intuitive notation 〈P++〉 =
〈P0〉 and 〈P+〉 = 〈P1〉. Furthermore the mean average preci-
sion 〈〈P 〉〉 was calculated by averaging over all 〈P 〉 for each
subtask. Comparing the result of ∼ 30% for FS and ∼ 15%
for FT shows that especially the combined search needs to
be improved and indicates that keyword search is not suffi-
cient.

3.1 Qualitative evaluation
In the following subsection, we explain the results based

on some examples. Therefore we group our observations into
false negatives and false positives.

3.1.1 False negatives
Regarding our running example query (FT-14). The for-

mula 132/ f052473#idp561824:
∑
α∈F+n

aαZα did not pass

the token-filter (figure 1), since the query contains two n,
whereas the formula has only one. However, it is one of the
seven relevant formulae. This is an argument for lowering
the filter barrier further in the future. One option is, to
use a set rather than a multi set. On the other hand 76 of
the 100 evaluated formulae passed the filter. Thus adjusting
the filter-granularity a meta level might not be the option
of choice. Looking at more examples indicates that it might
be reasonable to improve the filter on a token level. For ex-
ample if the token / could be regarded as a match for the
token frac as well. According to (14) 5 additional entries
were ranked in the intermediate category. Three of them
originate from document 15/f005755 that does not involve
the specified keyword convergence and were down ranked
even though they are a perfect structure match. The other
two use a specified sum (

∑∞
n=1) rather than the unspecified∑

which prevents them from a MathML structure match,
since this would require query expansion.

3.1.2 False positives
The two best ranked false positives (

∑
λnQn,

∑
εnxn) for

the running example originate from documents that contain

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

671

http://www.formulasearchengine.com
http://formulasearchengine.com/ntcir10-math/results/FT/NTCIR10-FT-1#idp23210528

Table 1: Overview of the top 10 result: The queries
that had less than 10 relevant results are not dis-
played. The symbol ++ denotes relevance, + par-
tially relevant and o not relevant.

formula search (FS) fulltext search (FT)
5 8 16 18 20 21 1 8 9 15

1 ++ ++ ++ ++ ++ ++ ++ + + ++
2 ++ ++ ++ ++ + ++ ++ + + ++
3 ++ ++ ++ ++ ++ ++ o + + +
4 ++ ++ ++ ++ ++ ++ ++ ++ + o
5 ++ ++ ++ ++ + ++ ++ ++ o ++
6 ++ + ++ ++ + ++ ++ + o ++
7 ++ ++ ++ ++ + ++ ++ + o ++
8 ++ ++ o ++ o ++ ++ o o o
9 ++ ++ ++ ++ o ++ ++ o o o

10 + ++ ++ ++ o ++ ++ + o ++

all required keywords. However, the hit were considered
as not relevant by the experts. The reason for that can
not be determined without considering the context of the
equation. Therefore, it will be important to consider the
context of the hits in the future. The same argument holds
for the second best ranked hit

∑
anbn that was classified

as partially relevant. Due to the fact that the TEX-filter
contains only two symbols (section 2.3.1) the relative large
number of 63 false positives for the filter is obvious.

3.2 Ranking
Even though we do not focus on ranking, the results are

reasonable, especially for cases were more than 10 relevant
results were found by the experts. In table 1, we list those
queries and print out the experts ratings compared to the
ranking position. According to this measure most results are
quite relevant. However since only 6 of 22 (for FS) queries
lead to ten or more relevant results, it has to be remarked
that this good ranking holds for the ”easy” queries. In a
further step of investigation we investigated the impact of
the fine ranking. For the detailed evaluation in tables (2
and 3) we calculated the mean average precision based on a
numeric score with two internal decimal places. Rounding
to natural numbers has a large effect on the overall result.
Our evaluation shows that just improving the inner decimal
digit score can lead to an increase in mean average precision
for almost 50% (〈〈P++〉〉 increased from 31.5% to 46.6% and
〈〈P++〉〉 increased from 28.5% to 44.4%). This indicates that
TFIDF methods have to be checked carefully in the future.

4. CONCLUSION
In this paper we present a batch oriented approach to for-

mula search that is characterized by its short development /
test cycles. We achieved rank 2 of 13 in the formula search
subtask with regard to precision of partially relevant hits.
However, the achieved precision of our system is not sat-
isfying, yet. In general our two phase approach of token
filtering and structure matching seems to be viable and will
be investigated further.

Our main focus for future work will be query expansion.
Given a pattern that includes the identifier i it would be
beneficial to consider formulae that include the identifier j,
if j is known to be the imaginary unit. The first require-
ment for this kind of query expansion is the integration of

variable definition detection in the surrounding text which
requires deep parsing of the text and analysis of the equa-
tion. This way our approach can incorporate valuable infor-
mation that would be lost, if only equations are considered.
Due to the absence of precomputed structures, such as in-
dexes, this extension is comparatively easy to implement in
the next iteration of our system.

The second requirement for query expansion is a clear def-
inition of the actual semantics of the query patterns which
was not available for this competition. Additionally, we be-
lieve that query patterns should provides means to tag iden-
tifiers with meta information, such as “i is the imaginary
unit,” so the identifiers in the pattern can be matched bet-
ter to the identifiers in the corpus.

Acknowledgements. Thanks to Alan Akbik, Holmer Hem-
sen and Michael Kohlhase for the fruitful discussions and
Jochen Adamek for proofreading this paper. This work is
funded by the European Commission under FP7 Project No.
296448 – “Data Supply Chains for Pools, Services and Ana-
lytics in Economics and Finance.”

5. REFERENCES
[1] A. Aizawa, M. Kohlhase, and I. Ounis. Ntcir-10 math

pilot task overview.

[2] D. Battré, S. Ewen, F. Hueske, O. Kao, V. Markl, and
D. Warneke. Nephele/PACTs: A programming model
and execution framework for web-scale analytical
processing. In Proceedings of the 1st ACM symposium
on Cloud computing, SoCC ’10, pages 119–130, New
York, NY, USA, 2010. ACM.

[3] J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters. Commun. ACM,
51(1):107–113, Jan. 2008.

[4] B. Goetz. The lucene search engine: Powerful, flexible,
and free. JavaWorld. Available http://www. javaworld.
com/javaworld/jw-09-2000/jw-0915-lucene. html, 2000.

[5] A. Heise, A. Rheinländer, M. Leich, U. Leser, and
F. Naumann. Meteor/Sopremo: An Extensible Query
Language and Operator Model. stratosphere.eu.

[6] M. Kohlhase and C. C. Prodescu. Scaling an Open
Formula Search Engine. Challenge, pages 1–15, 2012.

[7] M. Kohlhase and I. Sucan. A Search Engine for
Mathematical Formulae. In T. Ida, J. Calmet, and
D. Wang, editors, Proceedings of Artificial Intelligence
and Symbolic Computation, AISC’2006, number 4120
in LNAI, pages 241–253. Springer Verlag, 2006.

[8] M. Ĺı̌ska, P. Sojka, M. Růžička, and P. Mravec. Web
Interface and Collection for Mathematical Retrieval :
WebMIaS and MREC. In P. Sojka and T. Bouche,
editors, DML 2011: Towards a Digital Mathematics
Library, pages 77–84, Brno, 2011. Masaryk University.

[9] P. Willett. The porter stemming algorithm: then and
now. Program: electronic library and information
systems, 40(3):219–223, 2006.

Links
1http://www.arxiv.org
2http://www.w3.org/TR/MathML3/chapter3.html
3http://code.google.com/p/guava-libraries/

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

672

http://www.arxiv.org
http://www.w3.org/TR/MathML3/chapter3.html
http://code.google.com/p/guava-libraries/

Table 2: Statistics for NTCIR10-FS
(1)

∫∞
0

dx
∫∞
x
F (x, y)dy =∫∞

0
dy
∫ y
0
F (x, y)dx

++ + o
∑

>2k 0 0 0 0
5000-2k 0 1 1 2
<5000 1 30 68 99∑

1 31 69 101
〈P 〉 in % 0.0 3.1

(2) X(iω)

++ + o
∑

>2k 0 0 16 16
5000-2k 0 0 33 33
<5000 0 2 53 55∑

0 2 102 104
〈P 〉 in % - 0.0

(3) xn + yn = zn

++ + o
∑

>2k 7 2 0 9
5000-2k 2 8 24 34
<5000 4 12 42 58∑

13 22 66 101
〈P 〉 in % 59.6 41.2

(4)
∫∞
−∞ e

−x2 dx

++ + o
∑

>2k 3 0 0 3
5000-2k 6 21 21 48
<5000 5 15 31 51∑

14 36 52 102
〈P 〉 in % 27.7 35.8

(5) f(x+h)−f(x)
h

++ + o
∑

>2k 13 4 0 17
5000-2k 2 3 24 29
<5000 23 18 14 55∑

38 25 38 101
〈P 〉 in % 28.0 30.7

(6)
√

2 = 1 + 1
3

+ x−y

++ + o
∑

>2k 0 0 0 0
5000-2k 0 8 36 44
<5000 0 17 41 58∑

0 25 77 102
〈P 〉 in % - 5.0

(7) sin(x)/x

++ + o
∑

>2k 5 11 0 16
5000-2k 0 6 9 15
<5000 5 10 59 74∑

10 27 68 105
〈P 〉 in % 23.5 55.0

(8) ax2 + bx+ c

++ + o
∑

>2k 19 3 3 25
5000-2k 1 0 18 19
<5000 25 3 29 57∑

45 6 50 101
〈P 〉 in % 36.8 42.5

(9) ex+y
z

++ + o
∑

>2k 0 28 13 41
5000-2k 0 2 5 7
<5000 0 10 45 55∑

0 40 63 103
〈P 〉 in % - 46.3

(10) fn(z)f (k)(az) 6= c

++ + o
∑

>2k 0 0 0 0
5000-2k 0 1 44 45
<5000 0 12 43 55∑

0 13 87 100
〈P 〉 in % - 0.3

(11)
∫
g 6=0
|∇f |qdx ≤ c

∫
g 6=0
|∇(f +

g)|qdx

++ + o
∑

>2k 0 0 0 0
5000-2k 0 9 4 13
<5000 0 33 54 87∑

0 42 58 100
〈P 〉 in % - 16.2

(12) qn|an − a| ∼n→+∞ qn| pnqn − a|

++ + o
∑

>2k 0 0 0 0
5000-2k 0 8 0 8
<5000 0 18 74 92∑

0 26 74 100
〈P 〉 in % - 30.8

(13) Nk)(r,
1

f−a)

++ + o
∑

>2k 0 0 0 0
5000-2k 0 0 46 46
<5000 2 0 52 54∑

2 0 98 100
〈P 〉 in % 0.0 0.0

(14) ü(x, t) = u′′(x, t)

++ + o
∑

>2k 0 0 0 0
5000-2k 1 29 0 30
<5000 0 5 65 70∑

1 34 65 100
〈P 〉 in % 4.3 85.7

(15) ℘(z; Λ)

++ + o
∑

>2k 0 0 0 0
5000-2k 2 0 24 26
<5000 1 0 74 75∑

3 0 98 101
〈P 〉 in % 55.6 55.6

(16) ℘(z;ω1, ω2)

++ + o
∑

>2k 0 0 0 0
5000-2k 11 1 15 27
<5000 8 1 66 75∑

19 2 81 102
〈P 〉 in % 48.1 45.8

(18) O(n logn)

++ + o
∑

>2k 25 1 2 28
5000-2k 0 13 7 20
<5000 19 18 19 56∑

44 32 28 104
〈P 〉 in % 54.6 49.2

(19) Rf(L) =
∫
L
f(x) |dx|

++ + o
∑

>2k 0 4 14 18
5000-2k 0 0 0 0
<5000 0 20 62 82∑

0 24 76 100
〈P 〉 in % - 11.0

(20) |G : H| = |G|
|H|

++ + o
∑

>2k 0 0 0 0
5000-2k 4 5 9 18
<5000 28 22 32 82∑

32 27 41 100
〈P 〉 in % 4.8 11.4

(21) Hn(X) = Zn(X)/Bn(X)

++ + o
∑

>2k 0 0 0 0
5000-2k 6 0 0 6
<5000 21 12 61 94∑

27 12 61 100
〈P 〉 in % 22.2 15.4

(22) An = 1
π

∫ π
−π F (x) cos(nx)dx

++ + o
∑

>2k 0 0 0 0
5000-2k 0 13 0 13
<5000 0 59 29 88∑

0 72 29 101
〈P 〉 in % - 18.1

〈〈P++〉〉 = 31.5%, MAP+ = 28.5%

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

673

Table 3: Statistics for NTCIR10-FT

(1) ℘ Points derivative vanishes

++ + o
∑

>2k 28 2 26 56
5000-2k 4 0 0 4
<5000 18 2 20 40∑

50 4 46 100
〈P 〉 in % 39.9 39.4

(2)
∫ a
b
f2(x)dx NOT(Parseval)

++ + o
∑

>2k 0 0 0 0
5000-2k 1 12 45 58
<5000 1 14 27 42∑

2 26 72 100
〈P 〉 in % 0.9 16.5

(4)
∏∞
N=1(1 + Z/N) diverges diverge

++ + o
∑

>2k 0 0 0 0
5000-2k 0 13 12 25
<5000 0 27 48 75∑

0 40 60 100
〈P 〉 in % - 22.7

(5)
∑

n!xn

nn radius of convergence

++ + o
∑

>2k 0 0 0 0
5000-2k 0 18 30 48
<5000 0 38 14 52∑

0 56 44 100
〈P 〉 in % - 18.8

(6)
∑∞
n=1

sin(n)
n

infinite series condi-
tionally convergent

++ + o
∑

>2k 0 2 2 4
5000-2k 0 16 26 42
<5000 0 21 33 54∑

0 39 61 100
〈P 〉 in % - 14.8

(7) 8x3 + 4x2 − 4x− 1 root

++ + o
∑

>2k 0 0 0 0
5000-2k 0 12 36 48
<5000 5 18 29 52∑

5 30 65 100
〈P 〉 in % 0.0 6.8

(8) y2 = x3 + ax+ b mod modulo

++ + o
∑

>2k 0 0 0 0
5000-2k 5 10 4 19
<5000 17 21 43 81∑

22 31 47 100
〈P 〉 in % 6.0 24.4

(9) p -adic diophantine equation

++ + o
∑

>2k 5 7 31 43
5000-2k 0 0 0 0
<5000 16 30 11 57∑

21 37 42 100
〈P 〉 in % 2.2 11.0

(10) rk(C4) estimated multicolor
Ramsey number

++ + o
∑

>2k 0 0 0 0
5000-2k 2 0 32 34
<5000 8 1 57 66∑

10 1 89 100
〈P 〉 in % 20.0 18.2

(11) x′(t)+
∑N
j=1Bj(t)x

(
t−τj(t)

)
=

F (t) conditions boundedness

++ + o
∑

>2k 0 0 0 0
5000-2k 0 0 2 2
<5000 0 7 91 98∑

0 7 93 100
〈P 〉 in % - 0.0

(12) ∂u
∂t
− 4u + 〈D2uDu,Du〉

1+|Du|2 = 0

uniqueness of solutions

++ + o
∑

>2k 0 0 0 0
5000-2k 0 3 7 10
<5000 0 17 73 90∑

0 20 80 100
〈P 〉 in % - 6.7

(13) xk+1 = A1

x
p1
k

+ A2

x
p2
k−1

+ · · ·+ An

x
pn
k−n+1

stability

++ + o
∑

>2k 0 0 0 0
5000-2k 0 2 20 22
<5000 0 9 69 78∑

0 11 89 100
〈P 〉 in % - 1.6

(14)
∑
pnan convergence

++ + o
∑

>2k 1 1 2 4
5000-2k 5 4 63 72
<5000 1 5 18 24∑

7 10 83 100
〈P 〉 in % 19.6 19.7

(15) dXt = b(t,Xt)dt + σ(t,Xt)dW t

solution

++ + o
∑

>2k 0 0 0 0
5000-2k 12 4 12 28
<5000 21 22 29 72∑

33 26 41 100
〈P 〉 in % 16.2 16.6

〈〈P++〉〉 = 16.7%, MAP+ = 15.5%

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

674

	Introduction
	system description
	Data preparation
	High level program design
	Implementation of the operators
	Query compilation
	Extraction operators
	Aggregation operators
	Filter operators
	Scoring operators
	Result operators

	Limitations
	Optimized execution

	results
	Qualitative evaluation
	False negatives
	False positives

	Ranking

	conclusion
	References

