
The MCAT Math Retrieval System for NTCIR-10 Math Track

Goran Topić
National Institute of

Informatics
Tokyo, Japan

goran_topic@nii.ac.jp

Giovanni Yoko Kristianto
The University of Tokyo

Tokyo, Japan
giovanni@nii.ac.jp

Minh-Quoc Nghiem
The Graduate University for

Advanced Studies
Tokyo, Japan

nqminh@nii.ac.jp
Akiko Aizawa

National Institute of
Informatics

Tokyo, Japan
aizawa@nii.ac.jp

ABSTRACT
NTCIR Math Track targets mathematical content access
based on both natural language text and mathematical for-
mulae. This paper describes the participation of MCAT
group in the NTCIR math retrieval subtask and math un-
derstanding subtask. We introduce our mathematical search
system that is capable of formula search, and full-text
search. We also introduce our mathematical description ex-
traction system which was based on a support vector ma-
chine model. Experimental results show that our general-
purpose search engine can work reasonably well with math
queries.

Keywords
Mathematical formula search, Description extraction,
MathML indexing, Support Vector Machine

Team Name
MCAT

Subtasks
Math Retrieval, Math Understanding

1. INTRODUCTION
The NTCIR Math Task aims to explore search meth-

ods tailored to mathematical content through the design
of suitable search tasks and the construction of evaluation
datasets. This task consists of three subtask: the math re-
trieval subtask, the math understanding subtask, and the
math free subtask. The math retrieval subtask seeks to re-
trieve relevant mathematical formulae or documents for a
given query and a document collection. The math under-
standing subtask seeks to extract natural language descrip-
tions of mathematical expressions in a document for their
semantic interpretation. The math free subtask seeks con-
tributions on any topics related to the math search and math
understanding tasks. In this paper, we describe our partici-
pation of MCAT group1 in the NTCIR Math Task.

The participation of MCAT group focuses on math re-
trieval and math understanding subtasks of the NTCIR

1http://mathcat.nii.ac.jp/

Math Task. For the math retrieval subtask, we built a math-
ematical search system that is capable of formula search, and
full-text search. Search is performed as matching between
the factors of the query and the factors in the database,
and the results are ranked according to the number of
matched factors, modified by Lucene’s length normalization
and TF/IDF scoring algorithm. For the math understand-
ing subtask, we built a mathematical description extraction
system to extract natural language descriptions of math-
ematical expressions. We train an SVM model using the
features extracted from pairs of noun phrases and mathe-
matical expressions in the same sentence. In this paper we
describe the submissions for these subtasks and consider how
they might be improved.

The remainder of this paper is organized as follows. Sec-
tions 2 presents provides a brief overview of the background
and related work on math retrieval and math understand-
ing. Section 3 presents our method for the math retrieval
subtask. Section 4 describes our method for the math under-
standing subtask. Section 5 concludes the paper and points
to avenues for future work.

2. RELATED WORK

2.1 Math Search
Current mathematical search systems range from

keyword-based, to structure-based and semantic-based sys-
tems. Examples includes the Wolfram Functions Site2,
Springer LATEX Search3, Uniquation4, MathWebSearch [1],
and MathFind [2]. Yokoi and Aizawa [3] proposed a sim-
ilarity search method for mathematical expressions that
is specifically adapted to the tree structures expressed by
MathML. Adeel et al. [4] proposed a content based math
search system prototype called the MathGO. These systems
offer various math search services using different mathemat-
ical markups.

The Digital Library of Mathematical functions project is
a mathematical database available on the Web5. There are
two different approaches for searching for mathematical for-
mulas. In the first approach, it used TexSN textual lan-

2http://functions.wolfram.com
3http://www.latexsearch.com
4http://uniquation.com/
5http://dlmf.nist.gov

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

680

guage to normalize queries and math content to standard
forms and allow exact searching. In the second approach,
the search system treated mathematical expressions as a
document containing a set of mathematical terms. These
approaches enabled simultaneous searching for normal text
as well as mathematical content.

2.2 Description Extraction
There are few studies performed to extract descriptions

of mathematical expressions automatically. Regardless of
the importance of description extraction of mathematical
expressions, previous studies [5] [6] applied relatively naive
methods for description extraction. These studies [5] [6] use
nouns found in the text around each mathematical formula
as descriptions to disambiguate the corresponding mathe-
matical formula. Recent advances in machine learning tech-
niques has brought a significant improvement on informa-
tion extraction in NLP domain, e.g., in terms of identify-
ing spans in a text given a training data. However, without
readily available annotated corpus for training or evaluation,
these up-to-date methods were not applicable to this prob-
lem. Earlier study [7] applied machine learning method that
perform automatic description extraction from Japanese sci-
entific papers, but it considered only the final compound
nouns in the preceding noun phrases. Another work [8] in-
troduced annotation design and extraction methods for de-
scription. This is an initial work for the improved annotation
design provided in the NTCIR Math Understanding subtask
[9]. The detail explanation of this annotation scheme is ex-
plained by Kristianto et al [10]. This paper contributes to
the improvement of previous works by applying better an-
notation scheme and assuming that descriptions are noun
phrases instead of head nouns.

3. MATH SEARCH: INDEXING AND
SEARCHING

The objective of the math search task was to find relevant
mathematical expressions in 100, 000 documents regarding
three classes of queries: formula search, full-text search and
open information retrieval [9].

In formula search, the query is a mathematical expression.
Full-text search specifies additional keywords that relate to
target expressions. Finally, in open information retrieval,
the queries are human-readable questions. In contrast to
the first two search types, which were to be fully automated,
open information retrieval was to be semi-automated: the
results were to be found through a dialogue of the search
system and a human operator.

3.1 The Problem
MathML defines two different layers: Presentation

MathML and Content MathML. The former expresses the
layout of symbols used to display a mathematical formula,
while the latter encodes its semantics, with no regard to
notation. The reason for this split is the fact that mathe-
matical notation is quite inconsistent, and symbol set lim-
ited: a notation is commonly reused, and there often exist
several different ways of writing down the same core mean-
ing. For example, the derivation of function y = f(x) can

be represented as d
d x

f(x), d f(x)

d x
, d

d x
y, d y

d x
, f ′(x), Dxy, ẏ

and more. Conversely, the notation y(x + 1) could repre-
sent both an application of function y, as well as a multi-

plication of the value y to x + 1; and the meaning of i in
the most common interpretation of ai is very different from
that in 3i + 5. Speaking of the imaginary constant, in fact,
there are at least three ways in common use to represent
it: some journals and writers use the italic i, some the reg-
ular i, while Unicode reserves for it the double-struck i at
code point 0x214F (ⅈ entity in HTML). Thus,
understanding a mathematical equation necessarily involves
context: if it is clear from preceding text or formulae that
y is a function, it is safe to conclude that y(x + 1) refers to
application of this function to x+ 1, and not multiplication.

This semantic ambiguity of the Presentation MathML is
a large problem for a mathematics search engine. Ideally,
one would translate all queries into the content mark-up:
we assume the users will care more about the meaning of
their query rather than a specific notational form. However,
currently there is no method capable of accurately disam-
biguating the presentation form. While there is ongoing re-
search into this very issue, it is still not at the stage where it
could reliably handle any but the simplest mathematical ex-
pressions. This ambiguity problem is especially acute when
looking at a search query, which will not have the benefit of
context.

The inability to reliably extract the meaning of an expres-
sion affected our method significantly. The first realization
was that we will have to create an index based on the Pre-
sentation MathML, which can be obtained, rather than on
much more appropriate Content MathML, which can’t be.
The second realization was that searching for an exact match

is unfeasible. If a query looks for

n∑
i=0

ai, exact matching will

not find
∑n

i=0 ai — even though both are readily understood
to be the same thing by a human reader. Similarly, a query
for the relationship between velocity and acceleration v = at
would not find v = gt, a special case where acceleration of
gravity is written as g instead of the usual a. Ideally, v = gt
would still be found, but would be ranked lower than the
perfect match, v = at.

Therefore, the method needed to be flexible in order to ac-
count for the notational differences, in some ways similar to
full-text search, yet still encode the structural information
necessary to distinguish x y

z
from x

y
z. We also wanted to be

able to search by context, a very important requirement in
the current task, which would require a full-text search en-
gine. The challenge then is how to incorporate mathematical
search with full-text search.

3.2 Our Method
The full-text search requirement was solved easily, by

adopting Apache Solr [11], the most popular open-source
full-text search engine. Starting from this choice, we used
the method described below to index and search the mathe-
matical formulae, and thus provide a flexible, soft-matching,
unified interface for different query types (both formula
search and full-text search).

In our Solr schema, the multi-valued description_XX

fields hold any natural language text associated with a given
expression, where XX is a language identifier. There are three
fields dedicated to encoding the structure and content of a
mathematical expression — opaths, upaths and sisters —
which are described below in detail. Finally, there are also
various other fields serving as keys: the primary key field
gmid, the foreign key gpid identifying the document where

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

681

the expression is found, and the key gumid which identifies
different appearances of the same expression within a single
paper as a single class.

Each expression, both at index time and at query time,
is transformed into a sequence of keywords across several
fields. First, the XML expression tree is cleaned up a lit-
tle, in an attempt at basic normalization: it is run through
SnuggleTeX [12] up-conversion semantic enrichment module,
and then unnecessary mrow and mfenced nodes are removed
(since they provide no semantic information other than hi-
erarchy). Next, vertical paths are gathered into the opaths

(ordered paths) field in such a way that ordering is pre-
served. In some cases (such as looking for b + c and trying
to match a+b+c), ordered paths will not be effective, so we
introduce the upaths (unordered paths) field, with exactly
the same information as in opaths but with ordering infor-
mation removed. This vertical path encoding is performed
not only for the expression’s tree, but for each of its sub-
trees as well, to achieve a hit on a(b+ c) for the query b+ c.
The third and final field carrying the expression structure,
sisters, lists the sister nodes in each subtree.

<math>

<mrow>

<msubsup >

<mo>Σ</mo>

<mrow>

<mi>i</mi>

<mo>=</mo>

<mn>0</mn>

</mrow>

<mi>n</mi>

</msubsup >

</mrow>

<msub>

<mi>a</mi>

<mi>i</mi>

</msub>

</math>

Figure 1: MathML example:
∑n

i=0 ai

Figure 1 presents a simple mathematical formula,∑n
i=0 ai, written in MathML. Figure 2 shows an example of

its representation our index. The first opaths encodes the
whole MathML tree. The root of the whole tree, an <mrow>,
is not shown — as explained above, mrow has no semantic
value, and so do not explicitly list it in the index. The root
has two children: <msubsup> and <msub> elements, which
is reflected in opaths:1#msubsup 2#msub: the first top-level
child being <msubsup>, and the second <msub>. Grandchil-
dren are given similarly, their position at each level being
specified by consecutive numbers, divided by separators. If
the element is one of the leaf elements (<mo>, <mn> or <mi>),
it also has an additional separator and the representation
of its value. Thus, opaths:1#2#3#mn#1 says that the third
child of the second child of the first top-level element is a
number with a value of 1 (i.e. <mn>1</mn>).

The second row does the same for the sub-expression∑n
i=0; the third for the subscript i = 0; and the fourth

for ai. The sub-expressions n, i, 0 and a have no structure
to encode, so they do not have their own opaths.

opaths:
1#msubsup 1#1#mo#Σ 1#2#1#mi#i 1#2#2#mo#=

1#2#3#mn#1 1#3#mi#n 2#msub 2#1#mi#a 2#2#mi#i

opaths:
msubsup 1#mo#Σ 2#1#mi#i 2#2#mo#= 2#3#mn#1

3#mi#n

opaths: 1#mi#i 2#mo#= 3#mn#1

opaths: msub 1#mi#a 2#mi#i

upaths:
#msubsup ##mo#Σ ###mi#i ###mo#= ###mn#1

##mi#n #msub ##mi#a ##mi#i

upaths: msubsup #mo#Σ ##mi#i ##mo#= ##mn#1 #mi#n

upaths: #mi#i #mo#= #mn#1

upaths: msub #mi#a #mi#i

sisters: mi#i mo#= mn#1

sisters: mo#Σ mi#n

sisters: mi#a mi#i

sisters: msubsup msub

Figure 2: Encoding example:
∑n

i=0 ai

As said above, upaths is almost the same, but with or-
dering information removed. Accordingly, upaths:###mn#1
just says that a child of a child of a top-level element is the
number 1.

Because the ordering information is removed for all levels,
not just the lowermost one, in a contrived example of a+b

c+d+e

and c+a
b+e+d

, they will both match equally for the query x
e+c+y

(where the latter is a plausible match, with substitutions
x = a + b, and y = d). This situation comes about because
opaths are not applicable to any element (e is never first in
its subtree, c is never second, and x and y do not match at
all); while upaths won’t differentiate between sub-elements
of the numerator and the denumerator, and thus equally find
both e and c. To solve this, we introduce the field sisters,
whose role is to group sister elements together, and in this
case boost the score of the first expression where both e and
c are found in the same subtree, over the second expression
where they aren’t.

Matching is then performed by a normal Solr disjunctive
query (using default query parser). It considers the factors
in the query as independent, then modifies the score using
TF/IDF and length normalization.

The result is a very flexible, heuristic system that ranks
the search results by similarity to the query expression, and
to a degree avoids the pitfalls of inconsistent representation.
The downside is that it is too flexible: it is difficult to say
where the relevant results stop and random matches begin;
thus we predict higher recall, but lower precision rates than
exact match systems.

3.3 Results
We submitted results for all topics in the two categories we

participated in: formula search and full-text search. We did
so for two runs: one using the original topics as specified by
the task, unchanged (MCAT.org); the other with several mi-
nor edits to topics to fit the syntax and operators of Lucene
full-text search, with no change to content (MCAT.mod).

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

682

Table 1 shows the summary of our submission results for the
second run. By the metric prescribed by the task, where any
topic without a submitted answer scores 0, when compared
with other participants’ scores as listed in [9], our algorithm
came out on top in both categories. Looking at MAP av-
erage, when only accepting fully relevant results, our score
was 0.162 (compared to 0.127 of the second-placed result)
in formula search. In full-text search, we scored 0.297 (with
the other participant scoring 0.020). Our scores were even
better when partially relevant results were accepted: our
score for formula search was 0.379 (next best score being
0.144), and for full-text search we had 0.534 (compared to
0.042 scored by the other participant). We did not submit
any results for the open information retrieval category.

Table 1: Summary results of Math Search subtask
P-10
avg

P-5
avg

MAP
avg

Preci-
sion

Formula Search
Relevant 0.229 0.219 0.162 0.065
Partially
Relevant

0.500 0.476 0.379 0.220

Fulltext Search
Relevant 0.293 0.320 0.297 0.103
Partially
Relevant

0.660 0.680 0.534 0.309

Since we submitted the results for all topics, regardless of
how bad they were, ignoring the unanswered topics brings
the scores of several other participants in the formula search
subtask above ours.

4. DESCRIPTION EXTRACTION
The goal of Math Understanding Subtask is extracting

natural language descriptions of mathematical formulae in
a document [9]. This section explains method applied to
tackle this task.

4.1 Our Method
A baseline method is applied in this subtask by naively

assuming that nouns found in the apposition of mathemat-
ical expressions are descriptions. A descriptions extracted
by this method might be a combination of a determiner, an
adjective, and nouns. For example, let consider a sentence
of “. . . there exists a point y ∈ Fn such that . . . ” from [13].
The baseline method determines text of “a point” as the de-
scription of “y ∈ Fn” because it has POS tags of “DT NN”
and it appears as an apposition of the expression.

This paper proposes a machine learning model to extract
descriptions automatically. The general steps conducted in
this method depicted in Figure 3. There are several prepro-
cessing steps in description extraction process. Sentence-
splitting step is first applied to each scientific paper using
sentence splitter implemented by brat annotation tool [14],
then Stanford sentence parser [15] is used to generate a parse
tree for each sentence, and finally a set of noun phrases
is obtained by analyzing the parse trees. There is an as-
sumption during the extraction process, that descriptions
are noun phrases. Therefore, the noun phrases obtained
from the parse tree are candidates for being descriptions
of the mathematical expressions that appear in the same
sentence. A support vector machine (SVM) model trained

using linear kernel is used to predict which noun phrases are
the descriptions of each particular mathematical expression.
The training and predicting processes are conducted using
libSVM [16] and Weka [17].

Splitting
and

parsing
sentences

Pairing
math

expressio
ns with

NPs

Extracting
attributes

Training
SVM

model

Predicting
using
SVM

model

Figure 3: Steps of experiment

The set of features shown in Table 2 is used by the SVM
model during training and predicting process. For instance,
let consider the sentence of “Let F denote a finite field of q
elements” from [13]. One of the noun phrases found in the
sentence is “a finite field of q elements”. Considering this
phrase to be a description of F , the extracted attributes are
as follows: the noun phrase does not appear as apposition
and there are no colon, comma, and other mathematical ex-
pressions between the noun phrase and target mathematical
expression F , therefore the values of attributes 1-4 are all
false. Moreover, the noun phrase is not enclosed by paren-
theses, so the attribute 5 is also false. Furthermore, the
noun phrase appears after F and there is one word between
them, thus the values of attributes 6 and 7 are 1 and true
(means description candidate appearing after target math-
ematical expressions), respectively. In addition, two tokens
appearing before the noun phrase are“MATH”(MATH) and
“denote” (VBP), and one token appears after it: “.” (.).
This attribute is combined with information about the first
and last word of the noun phrase: “a” (DT) and “elements”
(NNS) Moreover, there is a token appearing before F : “let”,
and three tokens appear after it: “denote”, “a”, and “finite”.
Finally, unigram, bigram, and trigram are applied to these
tokens surrounding the noun phrases and surrounding the
F , and produce features: “denote|a”, “VBP|DT”, “a|finite”,
“DT||JJ”, “denote|a|finite”, “VBP|DT|JJ”, “MATH|denote”,
“MATH|VBP”, “MATH|denote|a”, “MATH|VBP|DT”, “ele-
ments|.”, and “NNS|.”. The last extracted attribute is the
first verb appearing between F and the noun phrase: “de-
note”.

4.2 Experiment
There are 35 papers in the annotated dataset and 10 pa-

pers in the evaluation dataset. There are four SVM models
built for the experiment: two models predicting full descrip-
tions and two models predicting short descriptions. The
result of each model is submitted separately as a different
run. The evaluation of the results is depicted in Table 3.
The MCAT full 1 and MCAT short 1 runs implement all at-
tributes in Table 2 for predicting full descriptions and short
descriptions, respectively. On the other hand, MCAT full 2
and MCAT short 2 implement only attributes 2-12.

Evaluation result depicted by Table 3 shows that SVM
models outperform the baseline method in all evaluation
scenarios. The precision of machine learning method is ob-
viously better than baseline since it examines attributes of
each noun phrase to decide if it is a description, while the
baseline naively assumes all appositive nouns of expressions
to be descriptions. Furthermore, machine learning method
considers the possibility of all noun phrases in sentences
to be descriptions, while the approach taken by baseline

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

683

Table 2: List of Machine Learning Attributes
No. Feature

1 Test if description candidate appears as apposi-
tion of the target mathematical expression

2 Test if there is a colon between description candi-
date and the target mathematical expression

3 Test if there is a comma between description can-
didate and the target mathematical expression

4 Test if there is other mathematical expressions be-
tween description candidate and the target math-
ematical expression

5 Test if description candidate is inside parenthe-
ses and target mathematical expression is outside
parentheses

6 Word-distance of description candidate from tar-
get mathematical expression

7 Position of description candidate relative from
target mathematical expression (after or before)

8 Surface text and POS tag of two previous and next
tokens around description candidate

9 Surface text and POS tag of the first and last
tokens of description candidate

10 Surface text and POS tag of three previous and
next tokens around target mathematical expres-
sion

11 Unigram, bigram, and trigram of attributes 10
and 8 that is combined with 9

12 Surface text of the first verb that appears be-
tween description candidate and target mathe-
matical expression

method overlook this possibility. Therefore, the recall per-
formance of machine learning method is better than the
baseline.

Performance comparison of the first SVM model
(MCAT full 1 and MCAT short 1) with the second one
(MCAT full 2 and MCAT short 2) indicates that the fea-
ture of apposition slightly improve the performance of the
extraction of short descriptions. On the other hand, this
feature slightly decrease the performance of full descriptions
extraction. These two findings demonstrate that apposi-
tion feature is good for predicting short descriptions, but
not for full descriptions. From analysis result, it is found
that textual information appearing as apposition in most
cases can be considered as both a complete short descrip-
tion and a part of full description. For instance, let consider
text of “. . . there exists a homogeneous degree d polynomial
g ∈ F [x1, . . . , xn] such that g is not the zero polynomial and
∀x ∈ K, g(x) = 0” from [13]. The apposition information
of mathematical expression g ∈ F [x1, . . . , xn] is “a homoge-
neous degree d polynomial”. This apposition is annotated
as a short description and as a part of full description “a
homogeneous degree d polynomial such that g is not the
zero polynomial and ∀x ∈ K, g(x) = 0”. Therefore, this ap-
position information is considered as correct short descrip-
tion, but incorrect full description during training process.
Hence, the apposition information tends to be rejected dur-
ing full description prediction, but be accepted during short
description prediction. This explains why the existence of
apposition feature increasing the prediction performance of
short descriptions, but not in the case of full descriptions.

Table 3: Evaluation Result of Baseline and Machine
Learning Methods

Run ID
Preci-
sion

Re-
call

F-1

Strict Matching Evaluation
baseline full 44.10 23.85 30.96
full (all noun phrases) 2.70 64.17 5.18
MCAT full 1 61.94 37.03 46.35
MCAT full 2 61.92 37.33 46.58
baseline short 55.35 29.94 38.86
short (all noun phrases) 3.18 75.35 6.10
MCAT short 1 68.24 40.42 50.77
MCAT short 2 67.67 40.22 50.45

Soft Matching Evaluation
baseline full 64.21 34.73 45.08
full (all noun phrases) 7.30 89.12 13.49
MCAT full 1 86.48 47.41 61.24
MCAT full 2 87.25 48.30 62.18
baseline short 64.21 34.73 45.08
short (all noun phrases) 5.82 87.33 10.91
MCAT short 1 81.68 42.81 56.18
MCAT short 2 81.24 42.61 55.90

In addition, further analysis shows that by considering all
noun phrases as descriptions, there are 64-75% and 87-89%
of total descriptions can be obtained by strict matching and
soft matching scenarios, respectively. These values indicates
the possible highest recall performance for the experiments.
Therefore, the recall performances from four runs are in the
range of 48.79-57.71%. The low recall performance indicates
that current SVM model is not accurate enough to do the
prediction. Extraction of more advanced features is required
to reduce the bias of the current model. Information from
dependency trees that is generated during sentence parsing
process can be considered as possible features.

5. CONCLUSION
In this paper, we have presented MCAT’s submissions to

the NTCIR Math Task. For the math retrieval subtask, we
have introduced opaths, upaths for indexing and a modi-
fied TF/IDF score for ranking. For the math understand-
ing subtask, we have proposed an SVM classification to de-
tect descriptions of mathematical expressions. Although our
work is still at a preliminary stage, the results showed that
a general-purpose search engine can work reasonably well
with math queries. Meanwhile, our work in the math under-
standing subtask demonstrates that the SVM classification
models outperform baseline method.

This research has raised many questions in need of fur-
ther investigation. We plan to extend our method using
the current system as a baseline. Potential improvements
include the following: (1) Normalization of commonly inter-
changeable MathML elements. (2) Implementation of com-
mon subexpression unification rules, which would addition-
ally penalize the results where the instances of the same
subexpression are replaced by different subexpressions. (3)
Restriction of the number of disjunct factors, since their
number adversely impacts search times. (4) Extraction of
more advanced features for the math understanding subtask,
such as information from dependency trees.

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

684

Acknowledgments
Work partially supported by Kakenhi, MEXT Japan
[24300062].

6. REFERENCES
[1] M. Kohlhase and I. Sucan. A search engine for

mathematical formulae. Artificial Intelligence and
Symbolic Computation Lecture Notes in Computer
Science Vol. 4120, pages 241–253, 2006.

[2] R. Munavalli and R. Miner. MathFind: a math-aware
search engine. In ACM SIGIR conference on Research
and development in IR, pages 735–735, 2006.

[3] K. Yokoi and A. Aizawa. An approach to similarity
search for mathematical expressions using MathML.
In 2nd Workshop Towards a Digital Mathematics
Library, pages 27–35. DML 2009, 2009.

[4] M. Adeel, H.S. Cheung, and S.H. Khiyal. Math GO!
Prototype of a content based mathematical formula
search engine. Journal of Theoretical and Applied
Information Technology Vol. 4, No. 10, pages
1002–1012, 2008.

[5] M. Grigore, M. Wolskam, and M. Kohlhase. Towards
context-based disambiguation of mathematical
expressions. 2009.

[6] M. Wolska, M. Grigore, and M. Kohlhase. Using
discourse context to interpret object-denoting
mathematical expressions. pages 85–101, 2011.

[7] K. Yokoi, M-Q. Nghiem, Y. Matsubayashi, and
A. Aizawa. Contextual analysis of mathematical
expressions for advanced mathematical search. In
CICLing, 2011.

[8] G.Y. Kristianto, M-Q. Nghiem, Y. Matsubayashi, and
A. Aizawa. Extracting definitions of mathematical
expressions in scientific papers. In JSAI, 2012.

[9] A. Aizawa, M. Kohlhase, and I. Ounis. Overview of
The NTCIR 10 MATH pilot task. In The NTCIR 10,
2013.

[10] G.Y. Kristianto, M-Q. Nghiem, N. Inui, G. Topić, and
A. Aizawa. Annotating mathematical expression
definitions for automatic detection. In Mathematics
Information Retrieval 2012 Workshop, 2012.

[11] Apache Software Foundation. Apache Solr v4.1, 2013.
http://lucene.apache.org/solr/.

[12] D. McKain. SnuggleTeX, 2011.
http://www2.ph.ed.ac.uk/snuggletex/.

[13] Z. Dvir. On the size of Kakeya sets in finite fields.
2008.

[14] P. Stenetorp, S. Pyysalo, G. Topić, T. Ohta,
S. Ananiadou, and J. Tsujii. brat: a web-based tool
for NLP-assisted text annotation. In Proceedings of
the Demonstrations Session at EACL 2012, 2012.

[15] D. Klein and C.D. Manning. Accurate unlexicalized
parsing. In Proceedings of the 41st Meeting of the
ACL, pages 423–430, 2003.

[16] C-C. Chang and C-J. Lin. LIBSVM: A library for
support vector machines. ACM Transactions on
Intelligent Systems and Technology, 2:1–27, 2011.

[17] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I.H. Witten. The WEKA data

mining software: An update. In SIGKDD
Explorations, volume 11, 2009.

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

685

