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ABSTRACT

This paper gives an overview of NECLA’s submitted sys-
tems for the De-Identification and Complaint & Diagnosis
subtasks of the Medical Natural Language Processing Pi-
lot Task (MedNLP)[5]. Our systems combine features de-
rived from Part of Speech (POS) tags, a domain-specific
dictionary, the Unified Medical Language System (UMLS)
metathesaurus and semantic network, and a small set of
heuristics based on trigger-words and polarity propagation
through sentence dependency parse trees.
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1. APPROACH
Each sentence was tokenized using MeCab[3] with the

ipadic dictionary, augmented with a small domain-specific
user dictionary to ensure proper segmentation of medical
terms. Tokens were post-processed in order to group digits
separated by dots as single floating point numbers instead
of three distinct tokens. Finally, all numeric tokens were
normalized into one of FLOAT, NUMBER MONTH, NUM-
BER DAY, NUMBER YEAR or NUMBER based on their
range. This rough grouping cut down the dictionary size by
slightly over 800 tokens, and prevented the classifier from
overfitting to specific numbers on age and time mentions.

These normalized tokens formed the basis of the sequences
on which we trained a Conditional Random Field (CRF)[4][2]
to predict the IOBES annotations specific to each task. MeCab’s
primary POS (e.g. noun, particle) and secondary POS (e.g.
appellative vs. proper noun) tags were also included as fea-
tures.

1.1 Domain-specific features
Given the domain-specific nature of this task — espe-

cially the second subtask — we derived features based on
two knowledge bases from the medical domain.

The Life Science Dictionary (LSD)[7] is a collection of
31,382 Japanese words frequently used in MEDLINE. Using

a greedy longest-match algorithm, tokens were tagged as
either outside the dictionary (O) or inside (B-LSD and I-
LSD, following the IOB2 annotation standard).

The second source of domain-specific information is the
UMLS metathesaurus[6]. UMLS is an extensive compilation
of controlled biomedical science vocabularies. The metathe-
saurus is comprised of Concept Unique Identifiers (CUIs),
which uniquely represent a meaning. Each CUI is mapped
to various string representations in the vocabularies included
in UMLS, such as ICD-10, MeSH, SNOMED CT and many
others. Other languages are included as well. A Japanese
translation of Medical Subject Headings (MeSH) and Medi-
cal Dictionary for Regulatory Activities Terminology (MedDRA)
is included as a source, totalling 179881 distinct strings that
map to 58528 distinct concepts. On top of these concepts is a
semantic network which provides a broad categorization, as
well as relationship information such as is-a, broader-than,
etc.

UMLS also provides a sophisticated concept detector MetaMap[1]
which maps text to CUIs. This tool is powerful, but is
specific to the English language. Therefore, we segmented
each sentence into unilingual segments of either Japanese
or English. English segments were fed through MetaMap,
whereas Japanese segments were matched against the strings
in UMLS using the same greedy algorithm as for LSD. From
this, we derived a membership feature (O, B-UMLS, I-UMLS).
We also exploited UMLS’s semantic network to group con-
cepts into one of 11 high-level categories (body part, dis-
ease, medication, etc.) that generalize UMLS’s 133 semantic
types.

1.2 Heuristic features
Because the contest provided very little training data for

some of the mention classes, we found it useful to design
extra features based on our prior knowledge. For the de-
identification tasks, we could enumerate a reasonable set of
known trigger words. Gender identification consisted of a
strict check of the words “male” and “female”, which covered
all four examples in the training set with perfect precision.
One or more numbers followed by a time suffix (“month”,
“year”, “hour”, etc.) triggered a feature indicating a pos-
sible time. Additionally, prefixes (“the same”, “now”, “the
present”, “previous”, “next”) plus a time suffix triggered the
feature. When we found a time expression, we also as-
signed the feature to any adjacent suffix “from,”“until,” or
“around”.

De-identification of hospitals and locations was a bit more
customized to patterns in the training set. Complete hos-
pital expressions (“this institute,” “a nearby doctor”, “the
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same institute”) triggered a hospital feature by themselves.
If the suffixes“hospital”or“clinic”occurred, we would assign
the hospital feature and push the feature back to preceding
words that were probably part of the title, such as “univer-
sity,” “general,” or “of X.” This heuristic did not always
cover the entire span of the hospital expression, but it pro-
vided an indicator that the CRF could learn to push back
to preceding words when necessary.

Items marked as locations in the training set tended to be
anonymized (rewritten as “X”). Therefore, our “location”
heuristic was triggered whenever we encountered X and the
hospital rules were not satisfied.

Heuristics for the condition tags were motivated less by a
lack of training data than by a need to incorporate syntactic
information from faraway words. Assuming that a condi-
tion of some modality was recognized, the task of the con-
dition heuristics was to decide whether the modality should
be “family,”“negation,” or “suspicion.” The family rule was
simply triggered by any occurrence of a family word (son,
daughter, mother, father, younger/older sister/brother, grand-
father, grandmother) in the same sentence. The negation
rule was the result of maintaining a polarity through the de-
pendency parse tree[9][8] of the sentence. Each time a neg-
ative word or suffix (not (-nai and -nu), weak, improved)
was encountered, the polarity of any the current clause and
any dependent clauses was reversed. Suspicion tagging also
followed the dependency parse tree. Whenever a suspicion
trigger word (“doubt,”“think,”“possible”) occurred, depen-
dent clauses were marked as suspicions, except for those
clauses ending in “because” (-kara or -yori) or “in” (-ni or
-de). Those exceptional clauses tended to indicate a rea-
son for the suspicion, in which any condition mentioned was
usually a definite finding, not a suspicion itself.

In all these cases, the result of the heuristics was not a
final decision, but a feature. This way, the classifier could
learn to use the heuristic suggestions in concert with the
other features, adding more flexibility to the final decision.

1.3 Submitted systems
For the de-identification subtask, our three systems were

all based around the same features — the normalized to-
kens, the corresponding primary and secondary POS, and
the heuristics described in 1.2 — but differ in the combina-
tions given as input to the CRF. The simple system consid-
ers co-occurrences between feature values within a window
of width 5 around the current token. extras considers fur-
ther co-occurrences between the heuristic features. Finally,
extras-b also considers bigrams of output tags.

For the complaint and diagnosis subtask, we submitted
two different architectures. The first, singlestage, consists
in a regular CRF which makes full use of the following fea-
tures and their combinations: normalized tokens, primary
and secondary POS, LSD membership, the detected lan-
guage (English or Japanese), UMLS membership, UMLS
categories, and the heuristics. Our two other systems, 2stage
and 2stage-extras, implement a two stage approach. The
first stage consists in a CRF which has been trained to
detect complaints, regardless of the modality. The second
stage uses the heuristics to decide which modality to assign.
The difference between 2stage and 2stage-extras is that the
latter takes into account co-occurrences between the UMLS
membership features and the normalized tokens.

2. RESULTS
Parameter and feature selection was done through 5-fold

cross-validation on the training set, with a focus on the
global F-1 score. Table 1 shows the average performance
on the training set for task 1. Table 2 shows the final per-
formance on the test set, broken down by class. The corre-
sponding performance information for task 2 is in Tables 3
and 4.

System P R F1

tokens 91.00 79.35 84.74
with pos 90.82 80.96 85.55

with hints (simple) 90.69 87.08 88.78
with hints (extras) 90.56 87.79 89.11
with hints (extras-b) 90.58 87.12 88.77

Table 1: Task 1 average performance on the training
set. Each row includes the features from above it.

Class System P R F1

All
simple 91.67 86.57 89.05
extras 90.82 87.04 88.89
extras-b 90.05 87.96 88.99

A
simple 90.00 84.38 87.10
extras 90.00 84.38 87.10
extras-b 93.33 87.50 90.32

H
simple 97.06 86.84 91.67
extras 91.89 89.47 90.67
extras-b 89.47 89.47 89.47

L
simple 00.00 00.00 00.00
extras 00.00 00.00 00.00
extras-b 00.00 00.00 00.00

T
simple 91.30 89.36 90.32
extras 91.24 88.65 89.93
extras-b 90.65 89.36 90.00

X
simple 100.00 50.00 66.67
extras 100.00 100.00 100.00
extras-b 100.00 100.00 100.00

Table 2: Task 1 performance on the test set, broken
down by class.

3. CONCLUSION
Despite the simplicity of the string matching approach,

the domain-specific features boosted performance. A more
elaborate concept detection algorithm would certainly help
here.

The heuristics which incorporated prior knowledge helped
on both tasks, with the exception of the location mentions.
This is due to the scarcity of training data for the CRF
to generalize over: there were only 2 location mentions in
the training corpus. More generally, one could argue that,
given more training data, the heuristics for task 1 would
become progressively less relevant. However, the ones for
task 2 would remain useful, as they look at longer range
information than a CRF can by itself.

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

726



Stages System P R F1

No modalities
tokens 88.81 66.17 75.82
with pos 87.41 74.20 80.21
with dicts 87.15 79.19 82.97
with hints 87.35 80.60 83.83

with hints+extras 87.25 80.81 83.90

Single stage
tokens 81.31 56.37 66.57
with pos 79.40 63.17 70.33
with dicts 76.41 67.04 71.42
with hints 79.87 70.60 74.93

with hints+extras* 79.65 71.06 75.09

2 stages
tokens 77.35 57.61 66.02
with pos 75.56 64.16 69.36
with dicts 74.44 67.64 70.87
with hints* 74.12 68.38 71.13

with hints+extras* 74.29 68.79 71.43

Table 3: Task 2 average performance on the training
set. Each row includes the features from above it.
The first part focuses on complaint detection with
no modality, i.e. the first part of the 2-stage archi-
tecture. The two other parts show the performance
on the full task. Submitted systems are marked with
a *.

Class System P R F1

No modalities
singlestage 89.76 77.81 83.36

2stage 89.01 78.90 83.65
2stage-extras 89.68 79.98 84.55

All
singlestage 81.15 70.35 75.36

2stage 75.70 67.10 71.14
2stage-extras 75.97 67.75 71.62

Positive
singlestage 80.92 73.28 76.91

2stage 80.61 67.20 73.30
2stage-extras 80.80 68.00 73.85

Family
singlestage 82.35 63.64 71.79

2stage 71.43 68.18 69.77
2stage-extras 65.22 68.18 66.67

Negation
singlestage 84.50 68.42 75.62

2stage 74.32 66.80 70.36
2stage-extras 75.23 67.61 71.22

Suspicion
singlestage 50.00 30.00 37.50

2stage 36.36 66.67 47.06
2stage-extras 35.85 63.33 45.78

Table 4: Task 2 performance on the test set, broken
down by class.
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