Machine Translation System: TSUKU

Motivation

- Utilizing dependency information in large scale
- But also keep the tree structures in phrase level, which are extracted from CFG tree
- High speed decoding

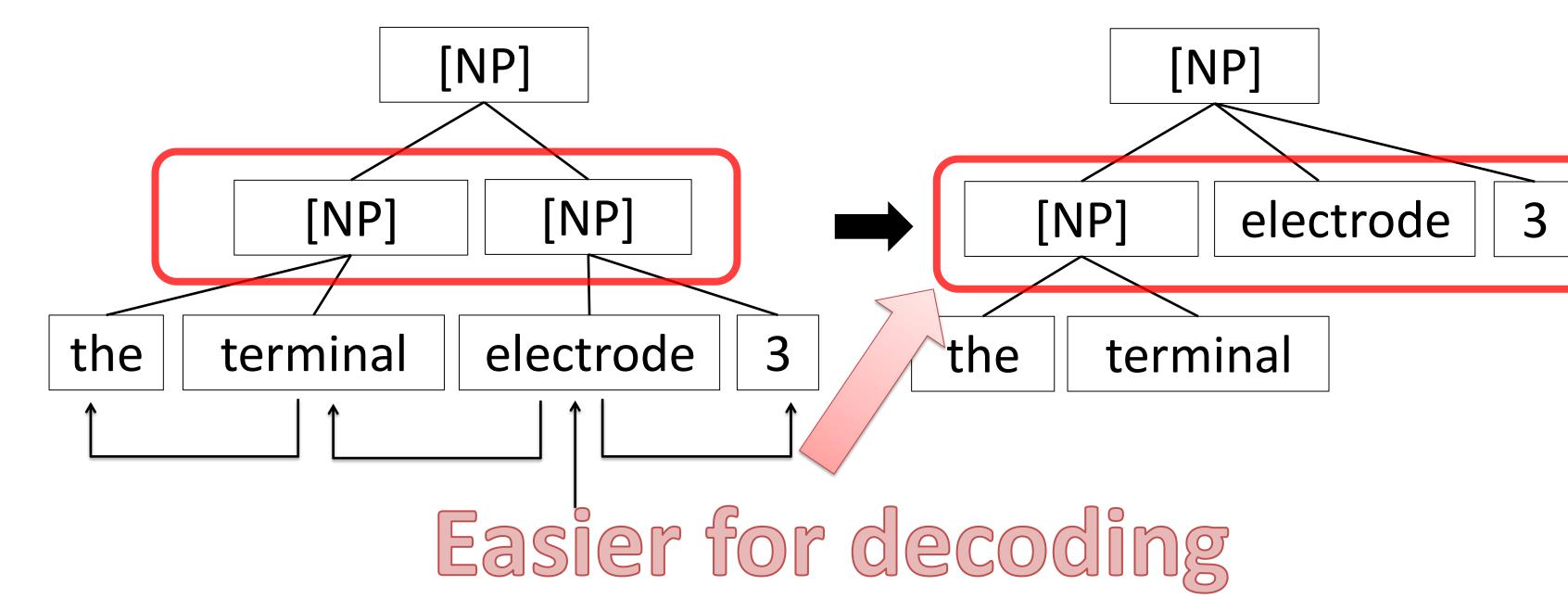
Authors:

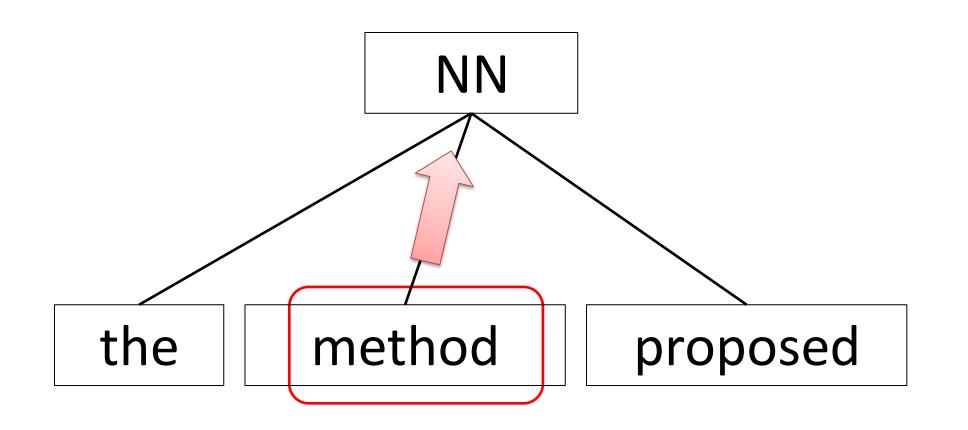
Zhongyuan Zhu, Jun-ya Norimatsu, Toru Tanaka, Takashi Inui, Mikio Yamamoto

University of Tsukuba

Tree Combining

- Currently, we made a bunch of rules to combine dependency and CFG parse tree
- For sibling nodes in CFG parse tree, we
 determine head node according to dependency
 parse tree, and adjust the positions of chunks by
 dependency relationships of head nodes





 Replace the tags in CFG parse tree with tags of dependency heads

Results

Systems / Auto Evaluation Scores	BLEU	NIST	RIBES
TSUKU-ej-int-1 (Proposed Model + Small LM with KenLM)	0.3141	8.126	0.7555
TSUKU-ej-int-2 (Proposed Model + Large LM with LSHLM)	0.319	8.1894	0.7565
TSUKU-ej-int-3 (Proposed Model + Large LM with KenLM)	0.3176	8.1769	0.7566
TSUKU-ej-int-1post (+ Word Penalty)	0.3306	8.0849	0.7242
BASELINE HPBMT	0.3298	8.0837	0.7231
BASELINE PBMT	0.3361	8.1816	0.7042

Conclusion

- This tree-to-string translation model could achieve higher translation accuracy when handling long input sentences
- High decoding speed
- Producing about 1/5 translation rules comparing with Moses HPB

Systems / Subjective Evaluation Scores	Adequacy	Acceptability
TSUKU-ej-int-1	2.7933	0.4088
BASELINE HPBMT	2.69	_
BASELINE PBMT	2.5333	-

LSH language model (LSHLM) is a kind of lossy language model which has a high compression ratio and a low probability of information loss triggered by falsepositives. We used the LSH function to generate a group of similar ngrams(called a "bucket"). The LSH function can map similar ngrams to the same hash value. When a falsepositive occurs, similar ngrams are in same bucket and, therefore, incorrect value should be similar to correct one.

Translation Example

INPUT: specifically, the ff amount is calculated at every second calculation timing based on an average value of fuel injection amounts, as will be described later.

```
[S].→ [XO]。
|--specifically, [NP]→すなわち、 [XO]
|--the ff amount [VP]→ FF 量 [XO]
|--is [NP]→ は、 [XO]
|--calculated at [NP]→ [XO] で 算出 した
|--every second calculation timing [VP]→ [X1] 第 2 の 演算 タイミング 毎 |--based on [NP]→ [X0] に 基づい て
|--an average value of [NP]→ [XO] の 平均 値
|--fuel injection amounts→ 燃料 噴射 量 |--as will [NP]→ [XO] よう に |--be described later→ 後述 する
```

Result of proposed model

すなわち、 FF 量 は、 後述 する ように 燃料 噴射 量 の 平均 値 に 基づいて 第 2 の 演算 タイミング 毎 で 算出 し た 。

Result of Moses HPB

具体的には、FF量を第2 の演算タイミング毎に算出された燃料噴射量の平均値に 基づいて、後述するようにされている。