

Université de Montréal at the NTCIR-11 IMine Task

de Montréal

Dept. of Computer Science and Operations Research RALI, Université de Montréal Québec, Canada {bouchoar, nie and liuxiao}@iro.umontreal.ca

Embedding Framework: Proposed Approach

Objective Function

$$\min \sum_{r \in R} \sum_{e_i, e_j \in E, i \neq j} \frac{1}{2} . w_r . \left(sim \left(\overrightarrow{e_i}, \overrightarrow{e_j} \right) - sim_r \left(e_i, e_j \right) \right)^2$$

subject to
$$||\vec{e}||_2^2 \le 1, e^k \ge 0, k = 1, 2, ..., N, \forall e \in E$$

Maximal Marginal Relevance-based Expansion (MMRE)[†] $\vec{\rho^*} = aramar_{\vec{\rho}} \left[\beta \sin(\vec{\rho} \cdot \vec{a}) - (1 - \beta) max_{\vec{\rho}} \sin(\vec{\rho} \cdot \vec{\rho}) \right]$

Our Participation: Subtopic Mining & Document Ranking subtasks

Subtask 1: Subtopic Mining (English)

- Query Classification:
- 33 features derived from the resources

Eg. NumTerms, ClarityScore, WikiLength, ClickEntropy, AvgCommonNodes, etc.

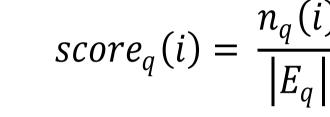
- Query Disambiguation and Predicting Subtopic Importance:
- Disambiguate each ambiguous query to generate the first-level subtopics (query interpretations or sub-queries) using Wikipedia + query logs

<u>Subtask 2</u>: Document Ranking (English)

- Selective diversification (depending on the class of the query)
 - **Clear query**: No need for diversification (results of the baseline)

where
$$sim(\vec{e_i}, \vec{e_j}) = \vec{e_i} \cdot \vec{e_j} = \sum_{k=1,...,N} e_i^k \cdot e_j^k$$
 for any two vectors $\vec{e_i}$ and $\vec{e_j}$

Resource-based Similarity Functions


- For Wikipedia, ConceptNet, query logs and documents feedback: same definitions as in Bouchoucha et al. [†]
- For query suggestions:

$$sim_{QS}(e_i, e_j) = \frac{2 \cdot n(e_i, e_j)}{n(e_i) + n(e_j)} \quad \text{where } n(e_i) \text{ (resp. } n(e_j))$$

is the number of times term e_i (resp. e_j) appears in query suggestions, and $n(e_i, e_j)$ is the number of times when both expansion terms e_i and e_j appear in the suggestions of the same query.

- Broad query: Search results of the expanded query (expansion terms are those obtained by the embedding framework)
- Ambiguous query: Greed selection of documents from different sets

$$d^* = \arg \max_{d \in \cup D_i - S} \left(\frac{rel(d).score_q(i)}{rank(d)} \right)$$
 where D_i is the set of document corresponding to the ith sub-query

 $score_q(i) = \frac{n_q(i)}{|E_q|}$ is the score of the ith sub-query of q, where E_q is the set of terms added to reformulate q, and $n_q(i)$ is the number of terms from E_q that appear in the ith Wikipedia page of q.

Submitted Runs

- **1st run**: (UM13-S-E-1A; UM13-D-E-1A) five resources
- **2nd run**: (UM13-S-E-2A; UM13-D-E-2A) four resources (discard query suggestions) ullet
- **3rd run**: (UM13-S-E-3A; UM13-D-E-3A) one single resources (query logs)

Experiments and Results

Used Resources

• Five different resources: English Wikipedia dumps of July 8th, 2013;

Discussions

• **Table 1**: Our classifier succeeds to correctly classify about

MSN query logs of 2006; ConceptNet 5; Top 50 feedback documents; and query suggestions from Bing, Google and Yahoo!

Query Classification

- We used SVM-Light tool for non-linear SVM (with RBF kernel)
- 450 training queries publicly available in http://www.ccc.ipt.pt/~ricardo/datasets/GISQC DS.html

Results

Table 1: Query Classifier Performance

Query class	Precision	Recall	<i>F1</i>
Ambiguous	75.00%	56.30%	64.30%
Broad	44.83%	76.47%	56.52%
Clear	88.89%	47.06%	61.54%

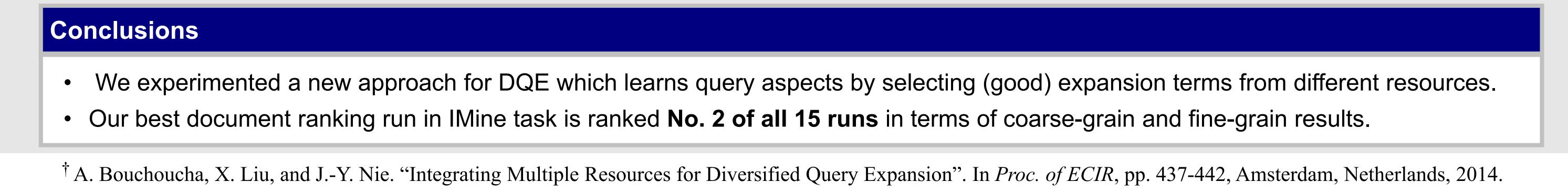
Table 2: Overall subtopic mining results

runs	Hscore	Fscore	Sscore	H-measure
1 st run	0.2056	0.1624	0.0059	0.0047
2 nd run	0.2064	0.1624	0.0059	0.0049
3 rd run	0.1766	0.1624	0.0049	0.0037

Table 3: Overall document ranking results

runs	Coarse-grain	Fine-grain
1 st run	0.6254	0.5566
2 nd run	0.6001	0.5309
3 rd run	0.4474	0.3770

Table 4: Coarse-grain results (first-level subtopic)


runs	AP	RBP	nDCG	ERR	I-rec	D#-nDCG
1 st run	0.5479	0.1655	0.5108	0.4236	0.7899	0.6511
2 nd run	0.4782	0.1489	0.4750	0.4251	0.7520	0.6137
3 rd run	0.2520	0.1025	0.3162	0.2880	0.5692	0.4397

60% of the queries

- Failure to distinguish between broad and clear queries
- Table 2: 1st and 2nd run lead to very comparable results
- \rightarrow Query suggestions seems to be not helpful to improve results! (need further investigation in the future to confirm...)
- Table 2: 1st and 2nd run vs. 3rd run
- → Using multiple resources yields to improved results compared to using a single one
- **Table 3**, **4** and **5**: Best performance in document ranking is obtained by our 1st run
- Combining multiple resources yields to a better coverage of query aspects.

Table 5: Fine-grain results (second-level subtopic)

runs	AP	RBP	nDCG	ERR	I-rec	D#-nDCG
1 st run	0.5479	0.1480	0.4629	0.2628	0.6310	0.5469
2 nd run	0.4782	0.1340	0.4301	0.2602	0.5874	0.5089
3 rd run	0.2520	0.0915	0.2901	0.1807	0.3798	0.3331

