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Conclusions

• We experimented a new approach for DQE which learns query aspects by selecting (good) expansion terms from different resources.

• Our best document ranking run in IMine task is ranked No. 2 of all 15 runs in terms of coarse-grain and fine-grain results.

Used  Resources

• Five different resources:  English Wikipedia dumps of July 8th, 2013; 

MSN query logs of 2006; ConceptNet 5; Top 50 feedback documents; 

and query suggestions from Bing, Google and Yahoo!

runs AP RBP nDCG ERR I-rec D#-nDCG

1st run

2nd run

3rd run

0.5479

0.4782

0.2520

0.1655

0.1489

0.1025

0.5108

0.4750

0.3162

0.4236

0.4251

0.2880

0.7899

0.7520

0.5692

0.6511

0.6137

0.4397

runs AP RBP nDCG ERR I-rec D#-nDCG

1st run

2nd run

3rd run

0.5479

0.4782

0.2520

0.1480

0.1340

0.0915

0.4629

0.4301

0.2901

0.2628

0.2602

0.1807

0.6310

0.5874

0.3798

0.5469

0.5089

0.3331

Table 4: Coarse-grain results (first-level subtopic) Table 5: Fine-grain results (second-level subtopic)Table 3: Overall document ranking results

runs Coarse-grain Fine-grain

1st run

2nd run

3rd run

0.6254

0.6001

0.4474

0.5566

0.5309

0.3770

runs Hscore Fscore Sscore H-measure

1st run

2nd run

3rd run

0.2056

0.2064

0.1766

0.1624

0.1624

0.1624

0.0059

0.0059

0.0049

0.0047

0.0049

0.0037

Submitted Runs

Table 2: Overall subtopic mining results

Results

Query class Precision Recall F1

Ambiguous

Broad

Clear

75.00%

44.83%

88.89%

56.30%

76.47%

47.06%

64.30%

56.52%

61.54%

Table 1: Query Classifier Performance

Query Classification

• We used SVM-Light tool for non-linear SVM (with RBF kernel)

• 450 training queries publicly available in  
http://www.ccc.ipt.pt/~ricardo/datasets/GISQC_DS.html

Discussions

• Table 1: Our classifier succeeds to correctly classify about 

60% of the queries

- Failure to distinguish between broad and clear queries

• Table 2: 1st and 2nd run lead to very comparable results

 Query suggestions seems to be not helpful to improve

results!  (need further investigation in the future to confirm…)

• Table 2: 1st and 2nd run vs. 3rd run

 Using multiple resources yields to improved results

compared to using a single one

• Table 3, 4 and 5: Best performance in document ranking

is obtained by our 1st run

 Combining multiple resources yields to a better coverage

of query aspects. 

• 1st run: (UM13-S-E-1A ; UM13-D-E-1A) - five resources

• 2nd run: (UM13-S-E-2A ; UM13-D-E-2A) - four resources (discard query suggestions)

• 3rd run: (UM13-S-E-3A ; UM13-D-E-3A) - one single resources (query logs)

• For Wikipedia, ConceptNet, query logs and documents 

feedback: same definitions as in Bouchoucha et al. †

• For query suggestions: 

𝑠𝑖𝑚𝑄𝑆 𝑒𝑖 , 𝑒𝑗  =  
2 .𝑛 𝑒𝑖 , 𝑒𝑗  

𝑛 𝑒𝑖 +  𝑛 𝑒𝑗  
 

 

where            (resp.           )𝑛(𝑒𝑖) 𝑛(𝑒𝑗 ) 

is the number of times term      (resp.    ) appears in query 

suggestions, and                is the number of times when both 

expansion terms      and      appear in the suggestions of the 

same query.
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Objective Function

Maximal Marginal Relevance-based Expansion (MMRE) †

where 𝑠𝑖𝑚 𝑒𝑖    , 𝑒𝑗    =  𝑒𝑖    . 𝑒𝑗   =  𝑒𝑖
𝑘

𝑘=1,…,𝑁

. 𝑒𝑗
𝑘  for any two vectors      

and𝑒𝑖     𝑒𝑗    

| 𝑒  |2
2 ≤ 1, 𝑒𝑘 ≥ 0,𝑘 = 1,2,… ,𝑁,∀𝑒 ∈ 𝐸 

Subtask 1: Subtopic Mining (English)

Subtask 2: Document Ranking  (English)

• Selective diversification (depending on the class of the query) 

- Clear query: No need for diversification (results of the baseline)

- Broad query: Search results of the expanded query (expansion 

terms are those obtained by the embedding framework)

- Ambiguous query: Greed selection of documents from different sets

- Query Classification:

• 33 features derived from the resources

Eg. NumTerms, ClarityScore, WikiLength, ClickEntropy, AvgCommonNodes, etc.

- Query Disambiguation and Predicting Subtopic Importance:

• Disambiguate each ambiguous query to generate the first-level subtopics 

(query interpretations or sub-queries) using Wikipedia + query logs

𝑑∗ = arg maxd∈∪D i−S  
𝑟𝑒𝑙 𝑑 . 𝑠𝑐𝑜𝑟𝑒𝑞 𝑖 

𝑟𝑎𝑛𝑘 𝑑 
  where       is the set of document 

corresponding to the ith sub-query

𝑠𝑐𝑜𝑟𝑒𝑞 𝑖 =  
𝑛𝑞 𝑖 

 𝐸𝑞  
 is the score of the ith sub-query of q, where       is the set of 

terms added to reformulate q, and            is the number of 

terms from       that appear in the ith Wikipedia page of q.
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