NTCIR-11 IMine Task

Université de Montréal at the NTCIR-11 IMine task

Arbi BOUCHOUCHA, Jian-Yun NIE and Xiaohua LIU

Dept. of Computer Science and Operations Research - December 2014 -

Our Participation

- We participate in two sub-tasks:

- Subtopic Mining (English)
- Document Ranking (English)

Proposed Approach (1/2)

- Embedding framework for learning latent aspect vectors of the query
- Each aspect vector is mapped by an expansion term
- Candidate expansion terms are selected from different resources (E.g. ConceptNet, Wikipedia, query logs, etc)
- Our Goal: Make two known similar terms similar whatever the resource used to recognize the similarity between them
 - E.g. 'program' and 'algorithm' for the query "java"

Proposed Approach (2/2)

- Objective function:

$$\min \sum_{r \in R} \sum_{e_i, e_j \in E, i \neq j} \frac{1}{2} . w_r . \left(sim \left(\overrightarrow{e_i}, \overrightarrow{e_j} \right) - sim_r \left(e_i, e_j \right) \right)^2$$

4

de Montr

subject to $||\vec{e}||_2^2 \le 1, e^k \ge 0, k = 1, 2, ..., N, \forall e \in E$

- Maximal Marginal Relevance-based Expansion (MMRE): (Bouchoucha et al. 2014)[‡]

$$\vec{e^*} = argmax_{e \in E-ES} \left(\beta . sim(\vec{e}, \vec{q}) - (1 - \beta) . max_{\vec{e^*} \in ES} sim(\vec{e}, \vec{e^*})\right)$$

where $sim(\vec{e_i}, \vec{e_j}) = \vec{e_i} . \vec{e_j} = \sum_{k=1,...,N} e_i^k . e_j^k$

[†] A. Bouchoucha, X. Liu, and J.-Y. Nie. "Integrating Multiple Resources for Diversified Query Expansion". In *Proceedings of ECIR*, pp. 437-442, Amsterdam, Netherlands, 2014.

Resource-based Similarity Functions

5

- Wikipedia, ConceptNet, query logs and documents feedback: same definitions as in (Bouchoucha et al. 2014)[‡]

- Query suggestions:
$$sim_{QS}(e_i, e_j) = \frac{2 \cdot n(e_i, e_j)}{n(e_i) + n(e_j)}$$

 $n(e_i)$ (resp. $n(e_j)$): number of times term e_i (resp. e_j) appears in query suggestions, and $n(e_i, e_j)$ is the number of times when both expansion terms appear in the suggestions of the same query.

[†] A. Bouchoucha, X. Liu, and J.-Y. Nie. "Integrating Multiple Resources for Diversified Query Expansion".
 In *Proceedings of ECIR*, pp. 437-442, Amsterdam, Netherlands, 2014.

Subtask 1: Subtopic Mining (1/2)

- Query Classification: 33 features derived from the resources
- 3 target classes:
 - Ambiguous
 - Broad
 - Clear

Subtask 1: Subtopic Mining (1/2)

Feature	Description	Total
** Query-dependent:		
NumTerms	Number of terms of q after removing stopwords	1
Quest	Whether q is a question?	1
** Query-independent:		
* Feedback documents-based:		
SongEtAl	The set of 11 features described in [19] (excepting the feature about the number	11
	of terms in q)	
AvgPMI	Average mutual information score between the terms of q and the top 10 terms	1
	that co-occur a lot with the terms of q in D	
ClarityScore	Clarity score of q computed on D and the whole collection [9]	1
* Wikipedia-based:		
NumInterp	Number of (possible) interpretations of q in the Wikipedia disambiguation page of q	1
WikiLength	Wikipedia page length (number of <i>different</i> words) that matches with q	1
* Query logs-based:		
NumClicks	Max, Min and average number of clicked URLs for q in all the sessions	3
PercentageClicks	Percentage of shared clicked URLs between different users who issued q	1
ClickEntropy	Click entropy of the query q [11]	1
NumSessions	Total number of sessions with q	1
SessionLength	Max, Min and average session duration (in seconds) with q	3
NumTermsReform	Total number of different terms added by users to reformulate q in all the sessions	1
ReformLength	Max, Min and average number of terms added by users to reformulate q	3
	in all the sessions	
* ConceptNet-based:		
NumDiffNodes	Number of different adjacent nodes that are related to the nodes of the graph of q	1
AvgCommonNodes	Average number of common nodes shared between the nodes of the graph of q	1
	(i.e. nodes that are connected to at least two edges)	
NumDiffRelations	Number of different relation types defined between the adjacent nodes in the graph of \boldsymbol{q}	1

Grand Total

33

Subtask 1: Subtopic Mining (2/2)

- Query Disambiguation and Predicting Subtopic Importance:
 - Disambiguate each ambiguous query → generate the first-level subtopics (sub-queries or query interpretations)
 - Use Wikipedia disambiguation page + query logs (query reformulations, user sessions)
 - Importance of ith sub-query: $score_q(i) = \frac{n_q(i)}{|E_q|}$

where E_q is the set of terms added to reformulate q, and $n_q(i)$ is the number of terms from E_q that appear in the Wikipedia disambiguation page of q.

Université de Montréal

Subtask 2: Document Ranking

- **Selective diversification:** Different queries (ambiguous/broad/clear) require different diversification strategies
- Clear queries: No need for diversification (results of the baseline)
- Broad queries: Search results of the expanded query (expansion terms are those obtained by the embedding framework)
- Ambiguous queries: Greed selection of documents from different sets

$$d^* = \arg\max_{d \in \cup D_i - S} \left(\frac{rel(d). score_q(i)}{rank(d)} \right)$$

where D_i is the search results of the ith sub-query of q and S is the set of documents already selected.

Submitted Runs

- Three runs: (for each subtask)
 - Embedding Framework with an explicit modeling of query aspects
- 1st run: (UM13-S-E-1A; UM13-D-E-1A) five resources: Wikipedia,
 ConceptNet, query logs, feedback documents, and query suggestions.
 - 2nd **run**: (UM13-S-E-2A; UM13-D-E-2A) four resources: Wikipedia, ConceptNet, query logs, and feedback documents.
 - **3**rd **run**: (UM13-S-E-3A; UM13-D-E-3A) one resource: Query logs.

Experimental Setting

- Used resources:

- English Wikipedia dumps of July 8th, 2013
- MSN query logs of 2006
- ConceptNet 5
- Top 50 feedback documents
- Query suggestions from Bing, Google and Yahoo!

- Query classification:

• Use SVM-Light tool for non-linear SVM (with RBF kernel): http://svmlight.joachims.org

• 450 training queries publicly available in http://www.ccc.ipt.pt/~ricardo/datasets/GISQC_DS.html

Results: Query Classification

Query class	Precision	Recall	F1-measure	
Ambiguous (a)	75.00%	56.30%	64.30%	
Broad (b)	44.83%	76.47%	56.52%	
Clear (c)	88.89%	47.06%	61.54%	

- Average classification success: 60% of the queries
- Failure to distinguish between broad and clear queries
 - <u>Possible reason</u>: Aspects of a broad query tend to overlap and most of the intents tend to be almost similar
- ➔ Similar behaviour as clear queries

Results: Subtopic Mining

runs	Hscore	Fscore	Sscore	H-measure
1 ^{s†} run	0.2056	0.1624	0.0059	0.0047
2 nd run	0.2064	0.1624	0.0059	0.0049
3 rd run	0.1766	0.1624	0.0049	0.0037

 1st and 2nd run lead to very comparable results
 → Query suggestions seems to be not helpful to improve search results! (need further investigation in the future to confirm ...)

• 1st and 2nd run vs. 3rd run

→ Using multiple resources yields to improved results than using a single one.

Results: Subtopic Mining

<topic number="61" type="ambiguous"> windows software;1;0.64;0;update;1;0.96; windows software;1;0.64;0;installer;2;0.91; windows software;1;0.64;0;8;3;0.89; windows software;1;0.64;0;versions;4;0.82; windows software;1;0.64;0;license;5;0.75; windows software;1;0.64;0;defender;6;0.63; windows software;1;0.64;0;replacement;7;0.61; windows software;1;0.64;0;recovery;8;0.54; windows software;1;0.64;0;vista;9;0.41; windows software;1;0.64;0;live;10;0.29; windows house;2;0.35;0;catalog;1;0.90; windows house;2;0.35;0;treatment;2;0.82; windows house;2;0.35;0;glass;3;0.81; windows house;2;0.35;0;paint;4;0.78; windows house;2;0.35;0;pictures;5;0.77; windows house;2;0.35;0;construction;6;0.63; windows house;2;0.35;0;sizes;7;0.55; windows house;2;0.35;0;tinting;8;0.49; windows house;2;0.35;0;manufacturer;9;0.31; windows house;2;0.35;0;pulls;10;0.27; </topic>

14

Université de Montréal

Results: Document Ranking

runs	Coarse-grain	Fine-grain
1 st run	0.6254	0.5566
2 nd run	0.6001	0.5309
3 rd run	0.4474	0.3770

Coarse-grain (1st level subtopic) results

runs	AP	RBP	nDCG	ERR	I-rec	D#-nDCG
1 st run	0.5479	0.1655	0.5108	0.4236	0.7899	0.6511
2 nd run	0.4782	0.1489	0.4750	0.4251	0.7520	0.6137
3 rd run	0.2520	0.1025	0.3162	0.2880	0.5692	0.4397

Fine-grain (2nd level subtopic) results

runs	AP	RBP	nDCG	ERR	I-rec	D#-nDCG
1 st run	0.5479	0.1480	0.4629	0.2628	0.6310	0.5469
2 nd run	0.4782	0.1340	0.4301	0.2602	0.5874	0.5089
3 rd run	0.2520	0.0915	0.2901	0.1807	0.3798	0.3331

 Combining multiple resources yields to a better coverage of query aspects.

Conclusions

- We experimented a new approach for diversified query expansion based on embedding

- Our approach learns query aspects by selecting (good) expansion terms that cover the query aspects

- Several different resources are used
- Promising results!

- Our best document ranking run is ranked **No. 2 of all 15 runs** in terms of coarse-grain and fine-grain results

