
THUSAM at NTCIR-11 IMine Task

Cheng Luo, Xin Li, Alisher Khodzhaev, Fei Chen, Keyang Xu, Yujie Cao, Yiqun Liu,
Min Zhang, Shaoping Ma

State Key Laboratory of Intelligent Technology and Systems
Tsinghua National Laboratory for Information Science and Technology

Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
c-luo12@mails.tsinghua.edu.cn

ABSTRACT
This paper describes our approaches and results in NTCIR-
11 IMine task. In 2014, we participate in subtasks for
Chinese/English Subtopic Mining and Chinese Document
Ranking. In Subtopic Mining subtask, we mine subtopic
candidates from various resources and construct the
subtopic hierarchy with several different strategies. In
Document Ranking subtask, we rerank the result lists with
HITS algorithm and then adopt a pruning exhaustive search
algorithm to generate diversified result lists.

Team Name
THUSAM

Subtasks
Subtopic Mining (Chinese, English),
Document Ranking (Chinese)

Keywords
query intent, subtopic mining, document ranking

1. INTRODUCTION
In NTCIR-11, THUSAM group participated in IMine

task, including subtopic mining subtask (Chinese and
English) and Document Ranking subtask (Chinese).

1.1 Subtopic Mining
For English subtopic mining, we first mine subtopic

candidates from different resources and filter the candidates
with a sequence of filters. Thus, each candidate is
represented as a TF-IDF vector. To mix candidates
from different resources, we propose a normalized ranking
framework to merge candidates into a single ranked
list. Then we cluster the candidates to construct
subtopic hierarchy with two different strategies: Bottom-
Up approach and Top-Down approach. Bottom-Up method
first represents each candidate as a single cluster and then
merges clusters to decrease the number of clusters. Top-
Down method focuses on combining mined candidates into
existing topic hierarchy from Wikipedia.

For Chinese subtopic mining, we propose a 3-step
framework to construct topic hierarchy: (1) we extract
subtopic candidates from query suggestion, Wikipeida
disambiguation items, query facets, similar queries
calculated by ‘Query2vec’ algorithms and some other
resources. A Learning-to-Rank algorithm is adopted to

rank the subtopics from different resources to pick out
the candidates with high quality. (2) We adopt several
different algorithms to construct the subtopic hierarchy.
The algorithms can be classified into 3 categories: the
first approach is called Top-Down algorithm, which means
we first organize the First Level Subtopic (FLS) and then
classify each candidate into FLSs as Second Level Subtopic
(SLS); the second approach is called Bottom-Up algorithm
which indicates that we first cluster candidates into groups
as SLSs and try to name each cluster with different methods;
the third approach called Knowledge Base Aided algorithm
organizes the disambiguation items and index items as FLSs
and classifies all candidates into FLSs using similar method
as Top-Down approach. (3) Moreover, some re-ranking
algorithms are used for different runs. The most important
re-ranking approaches are based on clicked snippets from
search engines. For each topic, we count the frequency of the
terms which appear in the clicked search result snippet, and
promote the subtopics with high-frequency terms. Previous
evaluation results show that our method has improved the
D-nDCG [5] values of topics.

1.2 Document Ranking
Given an ambiguous or underspecified query, search result

diversification aims to produce a Search Engine Result
Page (SERP) that maximizes the probability of satisfying
different users’ information needs (named subtopics or sub-
intents). However, as a maximum coverage problem, search
result diversification proves to be NP-hard by previous
studies. Several greedy search algorithms such as IA-
Select [1] and xQuAD [6] are therefore proposed to find
an approximation of the optimal diversified ranking list.
Meanwhile, to evaluate diversified search performance, we
also need the ideal ranking list as a comparing reference
(e.g. to normalize the scores in α-NDCG). Finding the ideal
list with known true relevance to different subtopics is also
NP-hard in a similar way to search result diversification.
Therefore, most studies in diversified search evaluation also
use greedy search to generate the ideal list. In both cases,
greedy search can generate suboptimal solutions, as it is
known to be able to find local optima only.

For example, assume that there are three documents
that are all relevant to two subtopics (which have equal
importance scores) underlying a particular query. Their
relevance scores for the subtopics are shown in Table 1. If we
choose the commonly-used weighted sum of document gains
for subtopics as evaluation metrics, we can see that greedy
search fails to produce optimal results: If the greedy search

Proceedings of the 11th NTCIR Conference, December 9-12, 2014, Tokyo, Japan

55

Figure 1: Framework overview for Chinese Subtopic Mining

algorithm is required to produce a list with exactly two
documents, either {a, b} or {a, c} will be returned because
the diversified gain of a (0.6) is larger than that of b or c (0.5)
at the first ranking position. However, if we list all possible
result lists with an exhaustive search strategy, we can find
better lists b, c and c, b which generate the largest possible
weighted sum of document gains. This example shows that
the greedy strategy cannot always produce an optimal result
list. However, exhaustive search is untractable for online
Web search because of its extremely low efficiency.

Table 1: An example for diversified ranking
problem.

Document Subtopic 1 (0.5) Subtopic 2 (0.5)
a 1 0
b 0 1
c 0.6 0.6

In the Document Ranking subtask, to improve the
performance of diversified ranking/evaluation, we adopt
a novel search algorithm that can produce better lists
than greedy search, while limiting the complexity within a
reasonable range. We observe that the NP-hard problem
in diversified searches is mainly caused by the fact that
a document may be relevant to more than one subtopic.
In practice, a large proportion of relevant documents are
relevant to only one subtopic. Therefore, a large part of
candidate documents can be easily put into several sets of
ordered pairs reflecting their relative orders in the optimal
diversified result list. Rather than performing a diversified
search on all possible ordered lists, a severe pruning will
remove all the lists contradicting the determined ordered
pairs. This is the idea used in our Pruned exhaustive search
algorithm[2]. To further decrease the complexity of the
algorithm, we propose a Key Slots search strategy to limit
the number of candidate documents based on the fact that
most users only focus on the top slots in search result lists.
We also introduce a Search Window strategy to divide a
large search result space into several smaller search windows,
which could be considered as a trade-off between efficiency
and effectiveness.

2. ENGLISH SUBTOPIC MINING

2.1 Candidates Mining

2.1.1 Candidates From Various Resource
To reveal every concept of a query, we use many resources

and develop fusion strategy to combine candidates by
multiplying factor of importance and incorporate different
resources into a ranked list. In our work, we use similar
fusion approach as described in [7].

Most massive set of candidates are obtained from contents
of specific HTML tags: for example,“<title>, <h1>, <h2>,
<h3>, <a>” from top 50 results for each query and its query
suggestions (Bing, Google, Yahoo).

In addition to traditional utilization results of commercial
search engines (Bing, Google, Yahoo), we further involve:

• Query Completion (Bing, Google, Yahoo)

• Query Suggestion (Bing, Google, Yahoo)

• Google Adwords Keyword Planner

• Wikipedia

2.1.2 Candidate’s Filtering
All mined candidates are cleaned by a sequence of filters.

Each filter focuses on a specific aspect of the candidates.
For example, the first filter will remove all the stopwords in
articles, the most common English words, question words
etc. Also, we adopt stemming methods on candidates
to calculate semantic similarity with the help of WordNet
Library [3].

We have removed all candidates that do not contain the
original query and the ones which contain only the original
query. For the term which is shorter than 4 characters in
the original query, the filter is extended to match the regular
expression describing the possible variations of words formed
from letters as abbreviation in case that the stemmed term
has more than one extension form.

2.2 Candidate’s Presentation
After filtering of each candidates, we remove all the

terms which come from the original query. This is based
on the assumption that the terms coming from original
query carry little additional information and would be noisy
when calculating similarity between different candiates.

Proceedings of the 11th NTCIR Conference, December 9-12, 2014, Tokyo, Japan

56

For example ‘Apple tree’ and ‘apple store’ has a Jaccard
coefficient of 0.33. However, queries ‘apple’, ‘Apple tree’
and ‘apple store’ should belong to different subtopics. All
the candidates are represented as a TF-IDF vector while
calculating similarity.

2.3 Resources Based Ranking
We calculate a normalized score for each candidate to

merge candidates from different resource into a single list,
the normalization strategy is stated as follows:

• For candidates from Google Adwords, we normalize
the score of a specific candidate from Google Adword
Keyword Planner1 within other candidates from the
same query. In our approach, the score R can be
calculated as,

R =
c

2i
(1)

where c is a constant (in our experiment we set c =
1) and i denotes to the ranking in Google Adword
Keyword Planner.

• For candidates from Wikipedia disambiguation page,
the score is calculated as:

R =
1

NS +NH + p
(2)

where NS is the total number of subtopics from a
disambiguation page; NH is the total number of
headers (extracted from html tag <h2>) from the
disambiguation page’s subpages or direct pages; p
denotes the candidate’s ranking in the page.

• For candidates from the search query, the score can be
calculated as following:

R =
1

RSE + Tsource
(3)

where RSE denotes the search engine rank of the
related page, Tresource represents tag’s fine where
Ttitle = 1, Th1 = 2, Th2 = 8 and Ta = 32 in our
experiment.

We gather all the candidates from different resources and
normalize the weight R as the final score of the candidates.
This strategy helps us to rank candidates even if it comes
from different resources.

2.4 Candidate Subtopic Clustering
There are many duplicates among candidates mined from

different resources which carry similar or the same meaning.
For example, although ‘cherry actors’ and ‘cherry cast’ are
different literally, they actually belongs to the same subtopic
‘cherry movie’ for query ‘cherry’. Thus, it is necessary to
cluster candidates into subtopic clusters.

Because the candidates are usually short and vague, the
snippet information provided by search engines helps us
enrich information about the candidates. For each subtopic
candidates, we first submit each one to the search engines
(Google, Bing, Yahoo) and crawl the top 50 results’ snippet
information to form an extended document. Then we

1https://adwords.google.com.sg/KeywordPlanner

calculate the Jaccard similarity coefficient between different
documents:

J(A,B) =
|A ∩B|
|A ∪B| (4)

Where A and B are the two different term frequencies
vectors of the two subtopics to compare. We extend
this coefficient by considering both the words and their
frequencies. (So even if many words retrieve for the two
subtopics are the same, but their frequencies is really
different, then their similarity will be reduced). We
implement this feature because we think that both words
retrieved and their frequencies are important feature to
know if two subtopics have similar intent or not. So when
we calculate the intersection or the union of A and B, we
add the average score of their frequencies:

Jext(A,B) =

∑
i∈A∩B

fAi
+fBi
2∑

i∈A\B fAi +
∑

i∈B\A fBi +
∑

i∈A∩B

fAi
+fBi
2

(5)
Thus, we create a clustering algorithms using this

extended Jaccard Similarity.

2.4.1 Bottom-Up approach
We name it as Bottom-up strategy because we try to

decrease the number of clusters by merging similar clusters
step by step. It is similar with agglomerative clustering, but
we are not going to finish with a single cluster. We propose a
two-step strategy: first we represent each candidate as single
cluster, then we start to merge similar clusters to decrease
the number of clusters and combine candidates definitely
related to one topic.

Algorithm 1 Bottom-up hierarchical clustering algorithm
with extended Jaccard similarity coefficient

1: Select k (define experimentally)
2: Create for every subtopic candidate a cluster
3: for each cluster do
4: for each remaining cluster do
5: if Jext similarity of the the two clusters > k then
6: Merge clusters
7: end if
8: end for
9: end for

10: Repeat 3 while the similarity between two clusters is
above k.

11: Select j (j < k gap between is defined experimentally)
12: for each cluster do
13: for each remaining cluster do
14: if Jext similarity of the two clusters ≥ k then
15: Merge cluster
16: end if
17: end for
18: end for

2.4.2 Up-Bottom approach
In Up-bottom approach, the main idea that to combine

with already existing topics tree (for example, semantic
structure from Wikipedia) with mined candidates. If there
is a new candidate which does not appear in the existing

Proceedings of the 11th NTCIR Conference, December 9-12, 2014, Tokyo, Japan

57

topic hierarchy, we can add it as first level subtopic on the
topics tree. The algorithm are formalized in Algorithm 2.

In experiment, we crawl and parse the disambiguation
pages from Wikipedia and then merge existing hierarchical
structure with the subtopic mined from different resources.

Algorithm 2 Up-bottom hierarchical mixed-classification-
clustering algorithm with extended Jaccard similarity
coefficient
1: Select k (learnt from training set)
2: Create for hierarchy cluster based on Wikipedia data
3: for each cluster do
4: if Jext similarity of the the two clusters > k then
5: combine with cluster
6: end if
7: get best Jext similarity among all clusters
8: if best Jext < k then
9: create new clusters for this candidate on first level

10: else
11: combine with cluster
12: end if
13: end for

2.5 Submitted Runs
We apply methods described above to produce these runs

for the English subtopic mining:

• THUSAM-
S-E-1A: Extraction from multiple resources (all) +
tuned bottom-up hierarchical clustering

• THUSAM-S-E-2A: Extraction from multiple
resources + up-bottom approach

To evaluate our techniques, we make and submit 2 runs.
The H-score, F-score, S-score and H-measure D values of the
results are shown in Table 2. We can see that THUSAM-S-
E-1A performs better in terms of H-score.

We do not expect THUSAM-S-E-1A to perform better.
Instead, we have expected THUSAM-S-E-2A, because in
our assumption was what hierarchical structure which
came from Wikipedia should be better than the hierarchy
built by clustering. The official overview shows that
the differences among these submitted runs are statistical
significantly. This might because that there is a gap
between disambiguation items and user intents of a specific
query. For example, in Wikipedia, ‘cherry’ also means a
geographical name in Illinois, however, few people search
‘cherry’ for information of that place, most of them search
‘cherry’ for information about keyboard or the fruit.

Table 2: Evaluation results for Subtopic Mining
English

H-score F-score S-score H-measure
THUSAM-S-E-1A 0.8065 0.5179 0.4835 0.4380
THUSAM-S-E-2A 0.2634 0.4361 0.4732 0.1203

3. CHINESE SUBTOPIC MINING

3.1 Candidates From Various Resources
We observed that over the internet, there are many

services that we can use to help us to disambiguate a query.
Indeed, from these resources, we can extract sub-intents
of an ambiguous query as well as, for some, interesting
information about the sub-intents popularity. The resources
we used include: (1) similar queries calculated by random
walk algorithm on Query-URL bipartite graph; (2) query
recommendation from search engines; (2) similar queries
calculated by ‘Query2vec’ algorithm; (4) query facets offered
by NTCIR official, which are extracted from Webpages
based on some templates; (5) Wikipedia Indexes and Dis-
ambiguous items.

Among all these resources, the query recommendations
supplied by search engines are usually of high quality, which
means the candidates are relevant to the original. However,
the candidates generated by random-walk, ‘Query2vec’, and
query facets usually contains a lot of noise. We need to
choose the high-quality candidates via a ranking or filtering
process.

3.2 Candidate Ranking with Learning to
Rank

We have collected enough subtopic candidates for each
query from different external resources, but some of them
are of low quality. For example, because the click-through
bipartite is highly connected, random walks may result
in irrelevant queries: there may exist paths between two
completely unrelated queries or URLs. As a result, we need
to rank the subtopic candidates for each query according
to their correlation and only reserve the candidates with
high quality. We adopt learning to rank algorithm to rank
the candidates. We use the evaluation results of NTCIR-10
Intent-2 task as training set. In the evaluation results, the
subtopics are sorted according to their relevance with the
query. So we use the subtopics and their rankings to train
the learning to rank models. We use two types of features
as below, which represent the similarity between the query
and the candidates:

• Text Similarity: length difference, Jaccard similarity,
edit distance between the query and the candidate...

• Search Result Similarity: number of shared results in
the SERPs of the query and the candidate...

Since we need to submit 5 first level subtopics for each
query and 10 second level subtopics for each first level
subtopic, so we choose NDCG@50 as the metric to optimize
when training. We use 5-fold cross validation and compare
the performance of different learning to rank algorithms.
The results are shown in Table 3.

From the table we can see that RankBoost performs the
best on the testing set, so we choose RankBoost algorithm to
train the model and use it to predict the relevance between
the candidates and the queries of IMine. We set a threshold
θ and reserve the candidates with a score higher than θ.
Filtering out candidates of low quality contributes to both
classification and clustering, which benefits the construction
of two-level subtopic hierarchy.

3.3 Bottom-Up FLS Construction
The main idea of bottom-up FLS construction is to cluster

the candidates first and extract n-grams from the titles of

Proceedings of the 11th NTCIR Conference, December 9-12, 2014, Tokyo, Japan

58

Table 3: Learning to rank results for candidate
ranking

Method
NDCG@50 on

training set
NDCG@50 on

testing set
MART 0.8012 0.6951

RankNet 0.683 0.6675
RankBoost 0.743 0.7303

AdaRank 0.7049 0.7034
Coordinate Ascent 0.7037 0.676

LambdaMART 0.8274 0.688
ListNet 0.6912 0.6959

Random Forests 0.7896 0.6981

SERPs of the candidates in each cluster. Then we name
each cluster with the following two methods. 1. Choose
the shortest n-gram that matches a candidate in the cluster.
2. Rank the n-grams with learning to rank and choose the
n-gram with the highest weight for each cluster.

3.3.1 Clustering Candidates
First we build feature vector for each candidate. We

extract the SERPs of all the candidates from a Chinese
commercial search engine and split the titles and snippets of
the search results into words. We use TF-IDF of words as
the features of the candidates. Since there are about 8000-
10000 unique words in the SERPs of the candidates for each
query, so the dimension number of feature vectors is about
8000-10000. We try different ways to compute the features.
For TF, we try boolean frequency, logarithmically scaled
frequency and augmented frequency.2 For attenuation of
the search results in SERP, we try linear attenuation (from
1 down to 0.5 evenly) and 1/r attenuation (divided by the
ranking of the result). After computing the feature vectors
for the candidates, we cluster the candidates with k-means.
Since we need to submit 5 FLS, we choose k as 6 because we
believe that some of the candidates cannot be assigned to
any clusters and we can group them together and filter them
out. We use the evaluation results of Intent-2 as training set.
We define the precision of clustering as the ratio between
the number of correctly clustered SLS pairs and all the SLS
pairs. The highest precision of our methods is 81.6%.

3.3.2 Naming Clusters
We name clusters through extracting n-grams from the

titles of SERPs of the candidates in the cluster. We believe
that a subtopic is a refinement and complement of the query
and its length should be larger than that of the query,
so we range n from query.length + 1 to query.length +
10. We reserve the n-gram with the highest frequency
for each length so we obtain 10 FLS candidates for each
cluster. We adopt two methods to choose FLS from the n-
grams. In the first method, we choose the shortest n-gram
that matches a candidate in the cluster in the assumption
that it can represent the cluster. The advantage of this
method is that since the chosen FLS is also a SLS, it is
definitely readable. While the disadvantage is that in a
cluster, there is not necessarily a SLS that can represent
the cluster. In the second method, we use learning to rank
to obtain FLS. We use the ground truth of Intent-2 as
training set. In the evaluation results, we use all the FLS
as positive set and all the SLS not chosen to be FLS as

2http://en.wikipedia.org/wiki/Tf-idf

negative set. The features we use are text similarity and
search result similarity between the subtopic and the query
as before. Since we need to select 5 FLS, so we choose P@5
as the metric to optimize. We try different learning to rank
algorithms and the results are shown in Table 4.

Table 4: Learning to rank results for naming clusters

Method
P@5 on

training set
P@5 on

testing set
MART 0.872 0.4758

RankNet 0.3855 0.388
RankBoost 0.4995 0.4593
AdaRank 0.4745 0.453

Coordinate Ascent 0.5277 0.4868
LambdaMART 0.9317 0.5196

ListNet 0.3886 0.3935
Random Forests 0.8062 0.5144

From the table we can see that LambdaMART performs
the best on the testing set, so we choose it to train the
model and use it to predict the n-grams of IMine. We choose
the n-gram with the highest score as FLS for each cluster.
The advantage of this method is that the chosen n-gram is
representative for the cluster. But since the chosen n-gram
may not match a SLS in the cluster, it is not necessarily
readable.

3.4 Top-Down FLS Construction
We can construct FLS via Bottom-Up methods as stated

before, however, one of the key challenges in Bottom-Up
construction is to name the clusters. Sometimes the n-
gram naming method make mistakes, which means that the
name is not readable. To solve the readability problem, we
proposed a Top-Down FLS construction method. The main
idea is to select representative query candidates as FLSs
based on both quality and diversity.

During the selecting process, we have to consider two
factors when choosing a query. The first factor is that the
query should be a high-quality candidate and representative
for the other candidates which indicates the same subtopic.
The second factor is the novelty compared with the queries
which are already chosen, which depends on the previous
decisions. Thus, the chosen problem can be reduced to max-
cover problem, which is NP-hard.

We design a heuristic greedy select algorithm considering
both the relevance and novelty. The training process can be
presented as follows.

The performance is evaluated by pairwise error rate on
INTENT-2. Thus, we can get a group of parameters which
get best performance,which is a = 0.54, b = 0.28, c =
0.18, d = 0.0 and the pairwise error rate is as low as 0.144.
The application process can be described as follows:

By adopting this process on IMine data, we can get
FLSs for each query. The major limitation of Top-
Down construction method is that sometimes, the most
representative queries may not in our candidate. For
example, for query ‘samsung projector’, ‘epson projector’,
‘sanyo projector’ etc, the most representative subtopic is
‘projector band’, but it is very possible that it is in none of
our candidate resource.

3.5 Knowledge Base Aided FLS Constuction
We find that among all the 50 Chinese queries, there are

37 queries which has a corresponding page on Wikipedia

Proceedings of the 11th NTCIR Conference, December 9-12, 2014, Tokyo, Japan

59

Algorithm 3 select train(n,Cand,Chosen)

Require: The number of candidates going to choose n;
The list of candidates which are not chosen yet, C;
The set of candidates which are already

chosen,Chosen;
Parameters a, b, c, d ∈ [0, 1], and a+ b+ c+ d = 1

Ensure: Parameters a,b,c,d with best performance on
Training Set (INTENT-2)

1: while n > 0 do
2: for all item ∈ C do
3: Scoreitem = a ∗ (1−AvgSimilarityitem,chosen)−
b ∗ (item.length/query.length) + c ∗Rel(item, query) +
d ∗ log(item.frequency)

4: end for
5: itembest = item with highest score
6: Cand.remove (itembest)
7: Chosen.remove (itembest)
8: select train(n− 1, Cand,Chosen)
9: end while

Algorithm 4 select application(n,Cand,Chosen)

Require: The number of candidates going to choose n; The
list of candidates which are not chosen yet, Cand; The
set of candidates which are already chosen, Chosen,
initially, Chosen is empty;

Ensure: Chosen with n candidates in it.
1: while n > 0 do
2: for all item ∈ Cand do
3:
Scoreitem = 0.54∗(1−AverageSimilarityitem,chosen)+
0.28 ∗ (−item.length/query.length) + 0.18 ∗
Relevance(item, query) + 0.0 ∗ log(item.frequency)

4: end for
5: itembest = item with highest score
6: Cand.remove (itembest)
7: Chosen.remove (itembest)
8: select train(n− 1, Cand,Chosen)
9: end while

or Baidu Baike3. Contents on these pages are usually
contributed by user crowds and well-organized. For
example, for query ‘bathtub’, there are several subtitles
on the page from Baidu Baike including: bathtub history,
bathtub material, bathtub shopping instructions etc. Thus,
we can use these subtitles or disambiguation items as FLSs
and then classify other candidates into these FLSs. We name
this method as Knowledge Base Aided FLS construction.

3.6 Second Level Subtopic Classification
In the Top-Down hierarchy construction process, after we

get FLS subtopics with greedy select algorithm, we have
to classified other SLSs into these FLSs. A lot of features
between FLS and SLS are extracted for classification:

• Text Similarity (With different weight Attenuation
model)

• Shared result number on different Search Result List
length (10/20/50/100)

3A famous Chinese online encyclopedia
(http://baike.baidu.com)

There are 75 features involved in this model and we train
a linear regression model (L1-regularized L2-loss support
vector classification) and achieve pairwise accuracy 0.59.

3.7 Evaluation Results
Based on the previous described methods, we make

different combinations of the methods and submit 5 runs.
The descriptions of the 5 runs are as below:

• THUSAM-S-C-1A: Cluster the candidates, find n-
grams for each cluster, choose the shortest n-gram that
matches a candidate in the cluster as its first level
subtopic.

• THUSAM-S-C-2A: Cluster the candidates, find n-
grams for each cluster, choose the n-gram with the
highest weight using learning to rank algorithm as its
first level subtopic.

• THUSAM-S-C-3A: Pick out the wiki disambiguation
items as first level subtopics and make classification.

• THUSAM-S-C-4A: Pick out the first level subtopics
with a greedy selection algorithm and make
classification.

• THUSAM-S-C-5A: Select first level subtopics with
an n-gram learning to rank algorithm and make
classification.

The mean values of H-score, F-score, S-score and H-
measure are shown in Table 5.

Table 5: Experimental results of Chinese subtopic
mining runs

Runtag H-score F-score S-score H-measure
THUSAM-S-C-1A 0.5527 0.5537 0.4634 0.2773

THUSAM-S-C-2A 0.4347 0.4498 0.4633 0.2204
THUSAM-S-C-3A 0.3284 0.3744 0.3981 0.1400
THUSAM-S-C-4A 0.3284 0.3744 0.3993 0.1404
THUSAM-S-C-5A 0.4287 0.5040 0.4626 0.2224

From the results we can see that bottom-up FLS
construction methods achieve higher H-measures than top-
down FLS construction methods. This is reasonable because
top-down FLS construction methods largely depend on the
selection of first level subtopics. If the selected first level
subtopics are not diverse enough, both F-score and S-
score will be affected, thus decreasing Hmeasure. While
bottom-up FLS construction methods ensure the diversity
of first level subtopics through the clustering of second level
subtopics.

4. CHINESE DOCUMENT RANKING

4.1 Retrieval Models and Dataset
In the retrieval step, we adopt the same improved

probabilistic model and the same retrieval strategies as the
ones we used in NTCIR-9 for document ranking. All the
retrieval processes are conducted on SogouT-08 dataset and
train different parameters are applied in these model or
retrieval strategies. These parameters are determined and
shown in Table 6.

Proceedings of the 11th NTCIR Conference, December 9-12, 2014, Tokyo, Japan

60

Table 6: Parameters in retrieval models
part α1 k1 b ω

Content 0.2 0.6 0.35 0.2
Anchor 0.1 1.6 0.3 0.5
Click 0.1 1.4 0.55 0.3

4.2 Result re-rank with HITS
We adopt HITS[4] to re-rank the baseline search results

in the Document ranking subtask, which is similar with our
approach in INTENT-10. The main idea that we will re-
rank the documents, which are the m-the biggest of either
Authority or Hub values, up to the front. Top m documents
sorted by either Authority or Hub Value are placed up to
the front. Its new rank is determined as follows:

Rnew = Rold −Rold × (Authority +Hub) (6)

where Rnew stands for the new rank of the document, and
Rold is the old one. The new rank is determined by three
factors: the original rank, the Authority and the Hub values
of the document. The m is set to 40 according to the training
results in the TREC 2009 and TREC 2010 diversity task,
because top 40 is a stable choice for ERR- IA value. Previous
study[8] proved that HITS can stably improve the diversity
of the searching result on both the TREC-based dataset and
the SogouT dataset.

4.3 Pruning exhaustive search method
Given a list of possible subtopics (or sub-intents) for a

particular ambiguous or broad query, both search result
diversification in document ranking and the ideal list
generation in diversity evaluation can be cast as a maximum
coverage problem, which has proven to be NP-hard.

We observe that the NP-hard problem in diversified
searches is mainly caused by the fact that a document may
be relevant to more than one subtopics. In practice, a large
proportion of relevant documents are relevant to only one
subtopic: looking into the TREC Web Diversity and NTCIR
Intent datasets, we can observe that only about 27% of
relevant documents are relevant to more than one subtopics.
Therefore, a large part of candidate documents can be easily
put into several sets of ordered pairs reflecting their relative
orders in the optimal diversified result list. Rather than
performing an exhaustive search on all possible ordered lists,
a severe pruning can take place, which removes all the lists
contradicting the determined ordered pairs.

Based on these observations, we adopted a Pruned
exhaustive search algorithm [2] on documents to generate
a diversified search result list for each query.

With this algorithm, for each query, we generate a
diversified result list based on the subtopic mined with
subtopics constructed with Top-Down strategy and N-gram
learning-to-rank list.

4.4 Runs and Results
In document ranking subtask, we submit 4 runs with

combination of different window size and subtopic mining
results.

• THUSAM-D-C-1A: Exhaustive search with window
size 4. The SM result is from Subtopic N-gram
Learning to rank list.

• THUSAM-D-C-1B: Exhaustive search with window
size 5.The SM result is from Subtopic N-gram Learning
to rank list.

• THUSAM-D-C-2A: Exhaustive search with window
size 4.The SM result is from heuristic greedy select
from subtopics.

• THUSAM-D-C-2B: Exhaustive search with window
size 5.The SM result is from heuristic greedy select
from subtopics.

The results of course-grain and fine-grain D#-nDCG over
all query topics are shown in Table 7.

Table 7: Experimental results of Chinese document
ranking runs

Coarse-grain
results (evaluated
with first-level
subtopics)

Fine-grain
results (evaluated
with second-level
subtopics)

THUSAM-D-C-1A 0.6965 0.6127
THUSAM-D-C-1B 0.6943 0.6106
THUSAM-D-C-2B 0.3697 0.2711
THUSAM-D-C-2A 0.3502 0.2623

From the results we can see that both runs with subtopic
N-gram learning to rank list perform significantly better
than subtopic results from heuristic greedy select, which
confirms the subtopic mining results that N-gram learning
to rank based subtopic mining approach performs better
than heuristic greedy select. Additionally, exhaustive search
with window size 4 achieves a higher D#-nDCG value than
window size 5.

• THUSAM-D-C-1A: Exhaustive search with window
size 4. The SM result is from Subtopic N-gram
Learning to rank list.

• THUSAM-D-C-1B: Exhaustive search with window
size 5.The SM result is from Subtopic N-gram Learning
to rank list.

• THUSAM-D-C-2A: Exhaustive search with window
size 4.The SM result is from heuristic greedy select
from subtopics.

• THUSAM-D-C-2B: Exhaustive search with window
size 5.The SM result is from heuristic greedy select
from subtopics.

5. CONCLUSIONS
In this paper, we introduce our approaches for NTCIR-

11 IMine task. For subtopic mining subtask, we try
to mine candidates from different data resources. The
topic hierarchy is construct with different strategies. For
Subtopic Mining Chinese subtask, we adopt Bottom-Up,
Top-Down and Knowledge base Aided strategies. For
Subtopic Mining English subtask, we adopt Bottom-Up
and Up-Bottom strategies. Evaluation results have shown
that candidates clustering and cluster naming are helpful
for subtopic hierarchy construction. For document ranking
subtask, we adopt pruning exhaustive search method to
generate diversified list.

Proceedings of the 11th NTCIR Conference, December 9-12, 2014, Tokyo, Japan

61

6. REFERENCES
[1] R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong.

Diversifying search results. In Proceedings of the Second
ACM International Conference on Web Search and
Data Mining, pages 5–14. ACM, 2009.

[2] F. Chen, Y. Liu, J. Li, M. Zhang, and S. Ma. A
pruning algorithm for optimal diversified search. In
Proceedings of the companion publication of the 23rd
international conference on World wide web companion,
pages 237–238. International World Wide Web
Conferences Steering Committee, 2014.

[3] C. Fellbaum. Wordnet and wordnets. 2005.

[4] J. M. Kleinberg. Authoritative sources in a hyperlinked
environment. Journal of the ACM (JACM),
46(5):604–632, 1999.

[5] T. Sakai and R. Song. Evaluating diversified search
results using per-intent graded relevance. In Proceedings
of the 34th international ACM SIGIR conference on
Research and development in Information Retrieval,
pages 1043–1052. ACM, 2011.

[6] R. L. Santos, J. Peng, C. Macdonald, and I. Ounis.
Explicit search result diversification through
sub-queries. In Advances in information retrieval, pages
87–99. Springer, 2010.

[7] Y. Xue, F. Chen, A. Damien, C. Luo, X. Li, S. Huo,
M. Zhang, Y. Liu, and S. Ma. Thuir at ntcir-10 intent-2
task. In Proceedings of NTCIR, volume 10, 2013.

[8] Y. Xue, F. Chen, T. Zhu, C. Wang, Z. Li, Y. Liu,
M. Zhang, Y. Jin, and S. Ma. Thuir at ntcir-9 intent
task. Citeseer.

Proceedings of the 11th NTCIR Conference, December 9-12, 2014, Tokyo, Japan

62

