
Improving iUnit Retrieval with Query Classification and
Multi-Aspect iUnit Scoring:

The IISR System at NTCIR-11 MobileClick Task

Chia-Tien Chang†
Department of CSE
Yuan Ze University
Taoyuan, Taiwan

s1003325@mail.yzu.edu.tw

Yu-Hsuan Wu†
Department of CSE
Yuan Ze University
Taoyuan, Taiwan

s1003312@mail.yzu.edu.tw

Yi-Lin Tsai
Department of ISA

National Tsinghua University
Hsinchu, Taiwan

s102065514@m102.nthu.edu.tw

Richard Tzong-Han Tsai∗
Department of CSIE

National Central University
Taoyuan, Taiwan

thtsai@csie.ncu.edu.tw

ABSTRACT
This paper describes our approach to the NTCIR-11 Mo-
bileClick task. Based on the assumption that different user
intentions should be handled by different extraction/retrieval
strategies, we first classify each query into one of our eight
defined query types and set the weights of the extraction
methods accordingly. Next, we extract the relevant parts of
the search results and rank the extracted sentences. Finally,
we apply a rule-based approach to iUnit extraction. Our sys-
tem achieves an nDCG@10 score of 0.2134 and a Q@10 score
of 0.1573, outperforming the baseline by 23.9% and 42.4%,
respectively. This difference demonstrates the effectiveness
of our query classification and multi-aspect iUnit scoring.

Team Name
IISR

Subtasks
iUnit Retrieval Subtask (English)

Keywords
Information Retrieval, Query Classification, Multi-aspect iU-
nit Score, MobileClick

1. INTRODUCTION
In this paper, we describe our approach to the MobileClick

iUnit Retrieval Subtask. This subtask is to answer a mobile
user’s query with a concise summary of relevant search re-
sults, providing immediate and direct information access.

In our approach, we first categorize queries into eight
types based on the assumption that different user intentions
should be handled by different extraction/retrieval strate-
gies. These eight types are based on work by T. Sakai et
al.[5]. For each type we assume that the user needs the fol-
lowing information:

†equal contribution
∗corresponding author

WHY: The reason or motivation for something.
HOW: How to do something or solve a problem.
VERSUS: A comparison of information on two or more
things.
PROS AND CONS: The advantages and disadvantages
of something.
IMPACT: The impact of an event and following develop-
ments.
PEOPLE: Facts about a person or celebrity as well as re-
lated events and organizations.
LOCATION: Information such as geographical position,
street address, phone number, opening hours, etc.
OTHER: The remaining queries are classified as OTHER.

Depending on the query type, we use different rule-based
iUnit extraction methods tailored for either tabular webpage
content or body text. Finally, all extracted iUnits are output
in order of iUnit relevancy score.

The reminder of this paper is organized as follows. Sec-
tion 2 describes our methods and implementation. Section 3
describes the evaluation results and discusses error analysis.
Section 4 concludes this paper.

2. METHOD
In this section, we describe our system, which consists

of three modules: query classification, tabular iUnit extrac-
tion, and body-text iUnit extraction. Figure 1 shows a flow
chart of our system.

2.1 Rule-based Query Type Classification
This module predicts the type of a given query. The types

are WHY, HOW, VERSUS, PROS AND CONS, IMPACT,
PEOPLE, LOCATION and OTHER.

The classification rules are described below:

1. If a query

(a) starts with “Why”,

(b) or it contains the keywords “reason”, “motivate”,
or other synonyms,

it will be classified into WHY.

Proceedings of the 11th NTCIR Conference, December 9-12, 2014, Tokyo, Japan

208

Queries

Rule-based

Query Type

Classification

Body Text iUnit

Extraction

Tabular iUnit

Extraction

Output

HTML

Documents

iUnit Extraction

Figure 1: System Flow Chart

2. If a query starts with “How” or a gerund, it will be
classified into HOW.

3. If a query contains “vs” or “difference”, it will be clas-
sified into VERSUS.

4. If a query contains “benefit”, “difficulty” or other syn-
onyms, it will be classified into PROS AND CONS.

5. If a query contains the keywords “impact”, “influ-
ence”, “effect” or other synonyms, it will be classified
into IMPACT.

6. If a query contains the name of a person from our list
of celebrities, it will be classified into PEOPLE.

7. If a query contains a location from our location list, it
will be classified into LOCATION.

8. Queries not belonging to any of the above types will
be classified into OTHER.

For rules 1, 4 and 5, we construct near synonym sets ac-
cording to search results from Thesaurus.com. The lists for
rules 6 and 7 are based on pages from Wikipedia. Our PEO-
PLE list contains all person names under the category page
“People” in English Wikipedia. Our LOCATION list com-
prises the countries, cities, counties, and states contained in
the Wikipedia respective category pages, including abbrevi-
ations of place names.

2.2 iUnit Extraction
We found that the relevant search results for queries of

different types appear in different HTML tags. Relevant iU-
nits for most query types are found in <body> text; how-
ever, iUnits for LOCATION queries often occur in HTML
tables. Accordingly, we use separate extraction methods for
tabular and body-text iUnits. For <body> text, we need
to first score the relevance of each retrieved sentence before
iUnit extraction. For tabular results, we can extract iUnits
directly from table and list cells. For queries of the OTHER
type, we combine both methods, as OTHER iUnits exhibit
no regular characteristics.

2.2.1 Body Text iUnit Extraction
In this section, we describe the steps taken to extract iU-

nits from HTML web page <body> text. First, we filter out
irrelevant elements of the HTML documents. Then, we rank
the remaining sentences according to relevance. Finally, we
extract iUnits use syntactic rules.

2.2.1.1 Filtering.
We use the Apache OpenNLP1 sentence splitter to sepa-

rate sentences and filter out irrelevant sentences.

Hyperlink Element Removal

Roughly speaking, HTML pages contain two types of ele-
ments. The first hold text while the second contain hyper-
links to other web pages, delimited by <a> and in
HTML. Our goal is to extract the content of text elements,
so we adopt Keyaki et al. [4]’s method of discarding hyper-
link elements. Their method uses a ratio to determine if an
element e is text or hyperlink: the number of words in e’s
<a> elements to the total number of words in e. If the ratio
exceeds the threshold value τ , e’s content is removed. In our
system, we set the threshold to 0.4.

Interrogative Sentence Filter

Under the assumption that iUnits are found in declarative
sentences, we filter out all interrogative sentences beginning
with Wh- words, “be” verbs, or modal verbs (does, could,
should) or ending with a question mark.

2.2.1.2 Sentence Ranking.
We use the following methods to rank the remaining sen-

tences according to relevance.

Topic-based Scoring

The latent Dirichlet allocation (LDA) model assumes that
the words of each document arise from a mixture of topics,
each topic being distributed over the vocabulary [1]. We use
the LDA model to find the correlation between the given
query and the words in a sentence.

We assume that a given query and its iUnits will be in the
same topic. Our model learns five topics from each docu-
ment (result page). The n-word sentence is a string of words
w1,..., wn, wi is the ith word in a sentence, P(i,w) denotes

the probability of word w occurring in topic i, Qi is the ith

token in a query, and N means the number of words in a
query. The score of topic k in the given query is calculated
as:

Rk =

N∑
i=1

P(k,Qi)

N∑
i=1

5∑
j=1

P(j,Qi)

The TBS score of a given sentence s is calculated by the
following formula:

TBS(s) =

n∑
i=1

5∑
j=1

(RjP(j,wi))

n
1http://opennlp.apache.org

Proceedings of the 11th NTCIR Conference, December 9-12, 2014, Tokyo, Japan

209

Similarity Scoring

Assuming that sentences which exist in other similar sen-
tences in different documents (search results) are more im-
portant, we apply the LexRank algorithm [2] to calculate
the cosine similarity between each sentence. Following is
the recursive calculation of LexRank:

p = [dU + (1 − d)B]T p

where p is a vector, each element pi means the importance of
the ith sentence in all documents, and d is a dumping factor.
B is the similarity matrix. Each element bi,j corresponds to
the cosine similarity between sentence i and j. U is a square
matrix with all elements equal to 1/N . N denotes the total
number of all sentences.

After p convergence, the score of the ith sentence s is
calculated by:

ContentSim(s) = pi

TF-IDF Scoring

If a sentence contains more query terms, it should be as-
signed with a higher score. If a query term appears in many
sentences, it is ineffective to be used for distinguishing sen-
tences. We use Lucene2 to implement this method.

Search Rank Scoring

This weight refers to the original order returned by Bing.
Top pages are more likely to contain iUnits. Therefore, this
score is designed as follows.

SearchRank(s) =
1

log[Ranksearch(s) + 1]

Where Ranksearch(s) means the search rank of the page
including the sentence s. We rank the sentences using Score(s),
which multiplies together the scores from the above meth-
ods.

Score(s) = TBS(s) × ContentSim(s)×
TF -IDF (s) × SearchRank(s)

2.2.1.3 iUnit Extraction and Filtering.
For iUnit extraction, we select 2,000 sentences with higher

score from the sentences we ranked in section 2.2.1.2 as can-
didate sentences. We use full parser provided by the Stan-
ford NLP3 to identify clauses and separate the clauses by
a comma or a semi-colon. Then, we employ the following
strategies to extract iUnits for different query types.

1. For query type WHY, clauses not led by “because”,
“due to” or their synonyms are removed.

2. For query type HOW, clauses contain “the way” or the
words of the given query are extracted.

3. For query type VERSUS, if a query contains “A vs B”
or compares something between A and B, we extract
clauses which contain both A and B, or a comparative
adjective in it. For example, for the query “java vs
python text processing”, a clause containing “java and

2http://lucene.apache.org/
3http://nlp.stanford.edu/software/lex-parser.shtml

python” or “java is better” or “python is worse” will
be extracted.

4. For query type PROS AND CONS, clauses contains
“benefit”, “difficulty” or their synonyms are extracted.

5. For query type IMPACT, clauses contains “impact”,
“influence”, “effect” or their synonyms are extracted.

6. For query type PEOPLE, we first separate the given
query into two parts: name and other. Clauses con-
taining both are extracted.

7. For query type OTHER, clauses containing the last
word of the given query are extracted.

2.2.1.4 iUnit Scoring.
All extracted clauses are treated as iUnits. For each iUnit

u, we assign a score according to their length, relevance to
the given query and term frequency.

Length Score

In order to provide succinct information to users, shorter
iUnits get higher scores. We define the length score as fol-
lows:

Len(u) =

 2, u’s length is between 2 and 10 words
1, u’s length is between 11 and 15 words
0 otherwise

Query-term-existence Score

An iUnit is more likely to be relevant to the given query if
it contains at least one non-stopword query term. We define
the Qte score as follows:

Qte(u) =

{
2, u contains a non-stopword word in query
0 otherwise

Frequency-of-common-terms Score

For a given query, all correct iUnits may have common
keywords. For instance, “L-Tryptophan” is a keyword to
the query “why does turkey make you sleepy”. We extract
the 20 most frequent noun phrases (as tagged by parser) in
all extracted clauses.

Fct(u) =

{
3, u contains one of 20 noun phrases
0 otherwise

We then sum all the above scores to get the final score of
an iUnit. If the score exceeds 5, a score of 5 is given to that
iUnit.

TotalScore(u) = Len(u) +Qte(u) + Fct(u)

2.2.2 Tabular iUnit Extraction
For tabular iUnit extraction, we first retrieve the web

pages for the top 15 search results. We then extract the
information in all tables on these pages, considering each
row an iUnit. We score these iUnits according to the follow-
ing rules:

Proceedings of the 11th NTCIR Conference, December 9-12, 2014, Tokyo, Japan

210

Table 1: Performance of baseline and our system
TeamID RunID nDCG@5 nDCG@10 nDCG@80 nDCG@400 Q@5 Q@10 Q@80 Q@400
NUIR 1 0.1834 0.1723 0.1328 0.1224 0.1440 0.1105 0.0350 0.0293
NUIR 2 0.1083 0.1011 0.0694 0.0608 0.1019 0.0836 0.0229 0.0163
NUIR 3 0.1195 0.1073 0.0726 0.0655 0.1367 0.0946 0.0273 0.0222
IISR 1 0.2197 0.2134 0.1929 0.1809 0.1892 0.1573 0.0647 0.0546

Tabular Length Score

In order to provide succinct information to users, shorter
iUnits get higher scores. We define the tabular length score
as follows:

tLen(u) =

 2, u’s length is between 1 and 3 words
1, u’s length is between 4 and 6 words
0 otherwise

Tabular Query-term-existence Score

For tabular iUnit extraction, a keyword in a query is a very
important indicator to show the relevance between iUnits
and the query. For instance, a iUnit contains the location
itself or the last word of the query, might be more important
to a given query. We define the tQte score as follows:

tQte(u) =

{
3, u contains a keyword word in query
0 otherwise

Tabular Frequency Score

The more frequently an iUnit appears in tables, the more
likely it is to be relevant to the given query. We design a
tabular frequency score in accordance with the above obser-
vation:

tFre(u) =

 2, u apears more than 3 times
1, u apears 1 to 2 times
0 otherwise

To calculate the final score for a tabular iUnit, we sum the
scores as in body-text iUnit extraction. If the score exceeds
5, a maximum score of 5 is given to that iUnit.

tTotalScore(u) = tLen(u) + tQte(u) + tFre(u)

3. EVALUATION
In this section, we report our results on the MANDA-

TORY run in the NTCIR-11 MobileClick task. We submit-
ted one run for the iUnit Retrieval Subtask.

We employ the normalized versions of DCG (i.e. nDCG)
and Q-measure as our primary evaluation metrics, comput-
ing them for different cutoff thresholds k. The two metrics
are based on the following two principles: (1) the more gold
standard iUnits (GiUnits) a run ranks highly, the higher a
score the run achieves; (2) redundant GiUnits do not im-
prove the score[3]. Table 1 shows the overall nDCG and
Q-measure score at our run (IISR-1) and baseline (NUIR).
Our system achieves an nDCG@10 score of 0.2134 and a
Q@10 score of 0.1573, outperforming the baseline by 23.9%
and 42.4%, respectively.

Figure 2 and 3 show the mean nDCG and the mean Q-
measure scores at different thresholds for our eight query
types. In both evaluation metrics, we have poor perfor-
mance on PROS AND CONS and IMPACT types. For these

two types, our extraction strategies are not thorough enough–
we extracted a limited number of keywords. For exam-
ple, in the query “mechanical keyboard benefits” (in type
PROS AND CONS), the iUnits such as “more accurate”,
“longer keystroke typing”, and “sturdier keyboard” cannot
be extracted since no keywords can be matched in these
clauses. We believe we could improve performance in such
cases by extracting comparative adjectives, as we did for the
VERSUS type.

0

0.1

0.2

0.3

0.4

0.5

0.6

nDCG@5 nDCG@10 nDCG@80 nDCG@400

Figure 2: Mean nDCG at different thresholds for
our eight query types

0

0.05

0.1

0.15

0.2

0.25

0.3

Q@5 Q@10 Q@80 Q@400

Figure 3: Mean Q-measure at different thresholds
of our eight query types

We received zero nDCG and Q-measure values for queries
6, 11, 29, 41 and 47. Comparing the iUnits extracted by
our system (CiUnits) for these five queries with the cor-
responding gold standard iUnits (GiUnits), we found our
CiUnits were shorter than the GiUnits on average. Table
2 shows the average length. Since we want to provide suc-
cinct information to users, one of our score aspects gives a
higher rating to shorter iUnits. However, in the five case
above, our shorter CiUnits did not contain enough infor-
mation. According to the organizer’s assessment rules, an

Proceedings of the 11th NTCIR Conference, December 9-12, 2014, Tokyo, Japan

211

Table 2: The average length (in words) of the extracted iUnits and the Gold Standard iUnits (GiUnits)

Query ID Query Query Type
Average Length
of our iUnits

Average Length
of the GiUnits

MC-E-0011 aaron rodgers belt celebration PEOPLE 6.26 12.16

MC-E-0029 government shutdown financial impact IMPACT 9.96 33.27

MC-E-0041 theaters texarkana LOCATION 3.34 5.57

MC-E-0047 pope francis humility PEOPLE 9.23 26.62

Table 3: iUnit examples for query 6 “ron paul tea party”

the extracted iUnits with the highest
scores (score of 5)

(1) Ron Paul is correct

(2) We all love Ron Paul

(3) Ron Paul is not the tea party leader

GiUnits with the highest scores (score of 3)

(1) Paul attended the Tea,Party Republican Presidential debate broad-
casted by CNN

(2) Ron Paul speaks at,the Tea Party Express rally at the Capitol in
Austin, Texas, on Sunday May 6, 2012

(3) Tea party audience boos Ron Paul for explaining motive of al Qaeda

extracted iUnit that does not contain any GiUnit will get
no score [3]. Table 3 shows a few examples for query 6, “ron
paul tea party”.

4. CONCLUSIONS
We describe our approach to the NTCIR-11 MobileClick

task in this paper. Our approach comprises Query Type
Classification and iUnit Extraction. For Query Type Classi-
fication, the given queries are classified into eight categories.
In iUnit Extraction, we first separate extraction methods for
tabular and body-text iUnits depending on the category of
each query. We extract and rank the sentences in HTML
documents. To generate the final results, we extract the
iUnits according to their relevancy score.

5. REFERENCES
[1] D. M. Blei, A. Y. Ng, M. I. Jordan, and J. Lafferty.

Latent dirichlet allocation. Journal of Machine
Learning Research, 3, 2003.

[2] G. Erkan and D. R. Radev. Lexrank: Graph-based
lexical centrality as salience in text summarization.
Journal of Artificial Intelligence Research, 22:457–479,
2004.

[3] M. P. Kato, M. Ekstrand-Abueg, V. Pavlu, T. Sakai,
T. Yamamoto, and M. Iwata. Overview of the ntcir-11
mobileclick task. In Proceedings of the 11th NTCIR
Conference, 2014.

[4] A. Keyaki, J. Miyazaki, K. Hatano, G. Yamamoto,
T. Taketomi, and H. Kato. Xml element retrieval@
1click-2. In Proceedings of the 10th NTCIR Conference,
2013.

[5] T. Sakai, M. P. Kato, and Y.-I. Song. Overview of
ntcir-9 1click. Presentation Slides, Dec, 2011.

Proceedings of the 11th NTCIR Conference, December 9-12, 2014, Tokyo, Japan

212

