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ABSTRACT 

This paper describes our participation in the MobileClick track 

of NTCIR-11.  We present our methods and results for both 

iUnit retrieval and summarization. Our ranking methods for the 

retrieval task are essentially two-step methods in which we first 

create a model pseudo-nugget, and then promote iUnits that are 

the most similar to that model pseudo-nugget. Our 

summarization methods consist in simply concatenating the 

iUnits (parts of sentences) that we already ranked  in our 

retrieval sub-task. 

1. INTRODUCTION 
Given a query, participants are asked to return a structured 

textual output. The expected output is a two-layered text, where 

the first layer contains the most important information and the 

outline of relevant information, while the second layer, which 

consists of several parts of text, contains detailed information 

that can be accessed by clicking on an associated part of the text 

at the first layer. 

2. RETRIEVAL RUNS 
Participants in this task must provide a ranking of information 

units (iUnits). iUnits are pieces of texts extracted from 

documents. Evaluation is done considering those iUnits, rather 

than full documents. 

The first four rankings use the iUnits provided by the organizers 

of the track. 

All ranking use either cosine similarity or Jaccard similarity. 

Cosine Similarity 

Cosine similarity measures the cosine of the angle between 

two document vectors.  Documents are represented as vectors 

where every term in the vocabulary is an independent dimension 

in the vector space. The inner-product between those 2 vectors 

is computed and used as their similarity value [4].  

  

where A and B are document vectors, and ||A|| and ||B|| are the 

magnitudes of A and B respectively. 

Jaccard Similarity 

Jaccard similarity coefficient is obtained by dividing the size of 

intersection of terms between two documents by the size of the 

union of terms between those two documents [1]. 

 

where A and B are the set of terms in two different documents 

and |A| is the size of the set A. 

2.1 RET-udel-E-MAND-1 
In this experiment, we use a two-step method. First, we generate 

and select dynamic “model” pseudo-nuggets. Secondly, using a 

baseline ranking, we re-rank iUnits by promoting the ones that 

are most similar to the model pseudo-nugget. Specifically, we 

compute the cosine similarity between each iUnit and the 

dynamic 'model' pseudo-nugget. At each iteration, the new 

model pseudo-nugget is constructed by adding a new iUnit to 

the concatenation of iUnits that have been ranked so far. The 

new iUnit that is added is the iUnit least similar to the current 

model pseudo-nugget. The idea behind selecting the iUnit that is 

the least similar to the model pseudo-nugget is to provide a 

diversified ranking that could be the basis for a well-diversified 

summary. Examples of “dynamic” model pseudo-nuggets are 

shown in Table1. 

2.2 RET-udel-E-MAND-2 
This run is very similar to the previous run. The only difference 

is in how we build the pseudo-documents. For each query, 

instead of using a dynamic model-nugget, we construct a static 

nugget that is simply the concatenation of all iUnits. Again, the 

ranking proceeds by promoting the iUnit that is the most similar 

(using cosine similarity) to the model pseudo-nugget. An 

example of “static” pseudo-nuggets is shown in Table 2. 

2.3 RET-udel-E-MAND-3 
Here again, just like in the second run, we use a static model 

pseudo-nugget. The only difference between this run and the 

second run is that instead of cosine similarity, we use Jaccard 

similarity. The idea is to investigate which one of cosine 

similarity and Jaccard similarity is well-suited for this task. 

2.4 RET-udel-E-MAND-4 
In this run, we use a static model pseudo-nugget as well. The 

model pseudo-nugget in this case, however, is the concatenation 

of the full-documents from which the top-10 relevant iUnits 

were extracted. The measure used for promoting iUnits is the 

cosine similarity. 

2.5 RET-udel-E-MAND-5 
The only difference between this run and the second run is that 

we use our own iUnits, instead of the ones provided by the 

organizers. These iUnits are constructed by breaking the 

documents from which the original top-10 iUnits were extracted 

by the organizers. Each new iUnit has a maximum of 70 

characters long. Like in the second run, we use a two-step 

method. For each query, we construct a static nugget that is 

simply the concatenation of all iUnits. Then we proceed with the 

ranking by promoting the iUnit that is the most similar (using 

cosine similarity) to the model pseudo-nugget. 
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3. Summarization Runs 
For each one of the runs described here, the text that describes 

the links is obtained by extracting the most significant words 

from the second-layer summaries. 

Significant key-phrases were extracted using a model that 

exploits linguistic and statistical meth-ods. The method uses 

statistical lexical analysis to determine the most significant 

single-word terms, and extracts those terms as well as their 

immediate context to form complex terms – using noun-chunks 

where applicable or n-grams. Then it proceeds by clustering 

similar complex terms – using Monge-Elkan distance as the 

string-similarity measure – and selecting a representative for 

each cluster to be a candidate key-phrase. For selecting a 

representative, a similarity maximization algorithm is used that 

prefers the key-phrase that resembles the remaining key-phrases 

most closely. Finally, all the candidates are analyzed in order to 

determine confidence scores for each in the context of the 

document in question. The confidence scores are obtained by 

combining the significance of cue tokens in the representing 

candidate, the scope, as determined by the distribution of the 

candidate cluster over the document, and number of words 

contained in the candidate. Xtrak4Me [3] is an open-source 

library that performs this. 

3.1 SUM-udel-E-MAND-1 
This summarization run is based on the ranking created in the 

RET-udel-E-MAND-1 run of the retrieval task. Instead of 

providing a ranking, this time we concatenate the re-ranked 

iUnits to form several second-layer summaries. Each second 

layer summary is made of about 280 characters. First layer 

summaries are obtained by simply using the first iUnit as first-

layer summary. The text that describes the links is obtained by 

extracting the most significant words from the second-layer 

summaries. 

3.2 SUM-udel-E-MAND-4 
This second summarization run is based on the ranking created 

in the RET-udel-E-MAND-4 run of the retrieval task. Again, 

instead of providing a ranking, we concatenate the re-ranked 

iUnits to form several second-layer summaries. Each second 

layer summary is made of about 280 characters. First layer 

summaries are obtained by simply using the first iUnit as first-

layer summary. The text that describes the links is obtained by 

extracting the most significant words from the second-layer 

summaries. 

3.3 SUM-udel-E-MAND-5 
This summarization run is based on the ranking created in the 

RET-udel-E-MAND-5 run of the retrieval task. Like in the 

previous summarization runs, instead of providing a ranking, we 

concatenate the re-ranked iUnits to form several second-layer 

summaries. Again, each second layer summary is made of about 

280 characters, and first layer summaries are obtained by simply 

using the first iUnit as first-layer summary. The text that 

describes the links is obtained by extracting the most significant 

words from the second-layer summaries. 

Table 1. Example pseudo-nuggets for RET-udel-E-MAND-1 (from iterations 1 through 4) for query 1. 

Current Pseudo-nugget (starting with 

iteration1 and ending with iteration 4) 

Selected Pseudo-nugget (i.e. the one least 

similar to current pseudo-nugget) 

New Pseudo-nugget 

- Java documentation is extensive Java documentation is extensive. 

Java documentation is extensive. Gensim, Pattern, and  other Python modules 

are good at text processing 

Java documentation is extensive. Gensim, 

Pattern, and other Python modules are good 

at text processing. 

Java documentation is extensive. Gensim, 

Pattern, and other Python modules are good 

at text processing. 

static typing Java documentation is extensive. Gensim, 

Pattern, and other Python modules are good 

at text processing. static typing. 

Java documentation is extensive. Gensim, 

Pattern, and other Python modules are good 

at text processing. static typing. 

semantic similarity Java documentation is extensive. Gensim, 

Pattern, and other Python modules are good 

at text processing. static typing. semantic 

similarity. 

 

Table 2. Pseudo-nuggets for RET-udel-E-MAND-2, RET-udel-E-MAND-3 and RET-udel-E-MAND-5 for query 1 

Static (unchanging) model pseudo-nugget used for query 

Java documentation is extensive Python is more expressive Java is more verbose Java is easy Java is faster Python has clear, concise syntax 

Python is easier to learn Python is difficult for beginners Java has weird syntax Use the best tool for the job natural language processing 

Python can be written more quickly Python can be maintained more easily Natural Language Toolkit (NLTK) provides a lot of tools for 

natural language processing Python is a more natural language Python has extensive libraries  Java Python Text processing Python reduces 

development time, increases productivity code Kivy concurrency array scripting language non-scripting object oriented language platform 

regular expressions immutable sequences freely available high-level language string  portability character classes Python is a dynamically-

typed language, allowing higher productivity  static typing Programming languages are tools text similarity semantic similarity Gensim, 

Pattern, and  other Python modules are good at text processing 
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4. Results 
Table 3. nDCG@10 and nDCG@400 results for iUnit 

Retrieval Subtask 

Runs nDCG@10 nDCG@400 

RET-udel-E-1 0.4485 0.4354 

RET-udel-E-2 0.5720 0.6915 

RET-udel-E-3 0.5365 0.6787 

RET-udel-E-4 0.5570 0.6906 

RET-udel-E-5 0.1538 0.2185 

 

Table 3 shows the nDCG results for all our runs. As can be seen 

in Table 3 – as well as Table 4 – there is a very big difference 

between the first four runs and RET-udel-E-5. This is simply 

because the first four runs use the iUnits provided by the 

organizers (gold iUnits). Gold iUnits were generated manually 

by assessors, hence those iUnits turned out to be of a very good 

quality. The first four runs can thus be considered manual runs 

(as opposed to automatic runs that did not involve any human 

input), and are not directly comparable to RET-udel-E-5 and the 

other runs submitted to the track. It is important therefore to 

note that, although our manual runs greatly outperform all other 

runs submitted to the track, the latter are on par with our 

automatic run RET-udel-E-5. 

On another note, given that runs RET-udel-E-5 and RET-udel-

E-2 use the same ranking method, it is clear that optimizing the 

methods used for the extraction of iUnits in order to obtain good 

quality iUnits before ranking them, is a crucial task. In fact in 

this case, using gold iUnits significantly increases the 

nDCG@10 value of RET-udel-E-2 by 272%. 

As far as the manual runs are concerned, results vary greatly 

among them – albeit not as much as the variation between each 

manual run and our automatic run – depending on what ranking 

method is used. The first observation stems from the fact that 

RET-udel-E-2 performs much better than RET-udel-E-1. This 

suggests that using a static pseudo-nugget – which is simply the 

concatenation of all iUnits – is much more helpful than using a 

dynamic pseudo-nugget. This could be due to the fact that, in 

RET-udel-E-1, the idea of choosing a new iUnit that is the least 

similar to the current pseudo-nugget (for the purpose of 

obtaining a new diversified pseudo-nugget) does not work as 

intended. In fact, in some cases, the iUnit the least similar to the 

current pseudo-nugget could be an irrelevant or spammy iUnit. 

Such iUnit could lead to obtaining a poorer quality new pseudo-

nugget. Further investigation will be needed to determine with 

certitude what causes RET-udel-E-1 to perform much worse 

than RET-udel-E-2. 

It is interesting to note that using cosine similarity in our 

experiments leads to better results than using Jaccard similarity, 

as can be witnessed through the fact that RET-udel-E-2 

performs better than RET-udel-E-3. Indeed, the only difference 

between the two runs is that RET-udel-E-2 uses cosine 

similarity while RET-udel-E-3 uses Jaccard similarity. 

Also of note is the fact that the difference between RET-udel-E-

2 and RET-udel-E-4 is not big (0.6915 vs 0.6909 for 

nDCG@400; 0.5720 vs 0.5570 for nDCG@10; 0.5503 vs 

0.5440 for Q@400; and 0.6153 vs 0.6195 for Q@10). The 

difference between the two is simple. For RET-udel-E-4, a 

model pseudo-nugget of a query is the concatenation of the full-

documents from which the top-10 relevant iUnits were 

extracted; whereas for RET-udel-E-2, a model pseudo-nugget of 

a query is simply the concatenation of all gold iUnits for that 

query. The fact that the difference between the results of these 

two runs is small suggests that there is not much difference 

between using iUnits to create static model pseudo-nuggets and 

using full-documents to create static model pseudo-nuggets. 

Table 4. Q@10 and Q@400 results for iUnit Retrieval 

Subtask 

Runs Q@10 Q@400 

RET-udel-E-1 0.5684 0.3028 

RET-udel-E-2 0.6153 0.5503 

RET-udel-E-3 0.6253 0.5493 

RET-udel-E-4 0.6195 0.5450 

RET-udel-E-5 0.0893 0.0324 

 

nDCG measures (shown in Table 3) and Q-measures (shown in 

Table 4) have very similar trends, even though the former is a 

rank-based graded-relevance metric and the latter is a recall-

based graded relevance metric. An analysis of the Q-measures 

leads to the same conclusions we have made using nDCG 

measures. One difference is that, using Q@10, RET-udel-E-3 is 

our best run. Though, RET-udel-E-2 remains the best run, if we 

use Q@400 instead. Another difference is that RET-udel-E-2’s 

nDCG value increases as we increase the cutoff value from 10 to 

400, and its Q value decreases as we increase the cutoff value 

from 10 to 400. 
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