
Udel @ NTCIR-11 MobileClick Track
 Ashraf Bah and Ben Carterette

Computer and Information Sciences
University of Delaware

Newark, DE 19716

{ashraf, carteret} @udel.edu

ABSTRACT

This paper describes our participation in the MobileClick track

of NTCIR-11. We present our methods and results for both

iUnit retrieval and summarization. Our ranking methods for the

retrieval task are essentially two-step methods in which we first

create a model pseudo-nugget, and then promote iUnits that are

the most similar to that model pseudo-nugget. Our

summarization methods consist in simply concatenating the

iUnits (parts of sentences) that we already ranked in our

retrieval sub-task.

1. INTRODUCTION
Given a query, participants are asked to return a structured

textual output. The expected output is a two-layered text, where

the first layer contains the most important information and the

outline of relevant information, while the second layer, which

consists of several parts of text, contains detailed information

that can be accessed by clicking on an associated part of the text

at the first layer.

2. RETRIEVAL RUNS
Participants in this task must provide a ranking of information

units (iUnits). iUnits are pieces of texts extracted from

documents. Evaluation is done considering those iUnits, rather

than full documents.

The first four rankings use the iUnits provided by the organizers

of the track.

All ranking use either cosine similarity or Jaccard similarity.

Cosine Similarity

Cosine similarity measures the cosine of the angle between

two document vectors. Documents are represented as vectors

where every term in the vocabulary is an independent dimension

in the vector space. The inner-product between those 2 vectors

is computed and used as their similarity value [4].

where A and B are document vectors, and ||A|| and ||B|| are the

magnitudes of A and B respectively.

Jaccard Similarity

Jaccard similarity coefficient is obtained by dividing the size of

intersection of terms between two documents by the size of the

union of terms between those two documents [1].

where A and B are the set of terms in two different documents

and |A| is the size of the set A.

2.1 RET-udel-E-MAND-1
In this experiment, we use a two-step method. First, we generate

and select dynamic “model” pseudo-nuggets. Secondly, using a

baseline ranking, we re-rank iUnits by promoting the ones that

are most similar to the model pseudo-nugget. Specifically, we

compute the cosine similarity between each iUnit and the

dynamic 'model' pseudo-nugget. At each iteration, the new

model pseudo-nugget is constructed by adding a new iUnit to

the concatenation of iUnits that have been ranked so far. The

new iUnit that is added is the iUnit least similar to the current

model pseudo-nugget. The idea behind selecting the iUnit that is

the least similar to the model pseudo-nugget is to provide a

diversified ranking that could be the basis for a well-diversified

summary. Examples of “dynamic” model pseudo-nuggets are

shown in Table1.

2.2 RET-udel-E-MAND-2
This run is very similar to the previous run. The only difference

is in how we build the pseudo-documents. For each query,

instead of using a dynamic model-nugget, we construct a static

nugget that is simply the concatenation of all iUnits. Again, the

ranking proceeds by promoting the iUnit that is the most similar

(using cosine similarity) to the model pseudo-nugget. An

example of “static” pseudo-nuggets is shown in Table 2.

2.3 RET-udel-E-MAND-3
Here again, just like in the second run, we use a static model

pseudo-nugget. The only difference between this run and the

second run is that instead of cosine similarity, we use Jaccard

similarity. The idea is to investigate which one of cosine

similarity and Jaccard similarity is well-suited for this task.

2.4 RET-udel-E-MAND-4
In this run, we use a static model pseudo-nugget as well. The

model pseudo-nugget in this case, however, is the concatenation

of the full-documents from which the top-10 relevant iUnits

were extracted. The measure used for promoting iUnits is the

cosine similarity.

2.5 RET-udel-E-MAND-5
The only difference between this run and the second run is that

we use our own iUnits, instead of the ones provided by the

organizers. These iUnits are constructed by breaking the

documents from which the original top-10 iUnits were extracted

by the organizers. Each new iUnit has a maximum of 70

characters long. Like in the second run, we use a two-step

method. For each query, we construct a static nugget that is

simply the concatenation of all iUnits. Then we proceed with the

ranking by promoting the iUnit that is the most similar (using

cosine similarity) to the model pseudo-nugget.

Proceedings of the 11th NTCIR Conference, December 9-12, 2014, Tokyo, Japan

216

3. Summarization Runs
For each one of the runs described here, the text that describes

the links is obtained by extracting the most significant words

from the second-layer summaries.

Significant key-phrases were extracted using a model that

exploits linguistic and statistical meth-ods. The method uses

statistical lexical analysis to determine the most significant

single-word terms, and extracts those terms as well as their

immediate context to form complex terms – using noun-chunks

where applicable or n-grams. Then it proceeds by clustering

similar complex terms – using Monge-Elkan distance as the

string-similarity measure – and selecting a representative for

each cluster to be a candidate key-phrase. For selecting a

representative, a similarity maximization algorithm is used that

prefers the key-phrase that resembles the remaining key-phrases

most closely. Finally, all the candidates are analyzed in order to

determine confidence scores for each in the context of the

document in question. The confidence scores are obtained by

combining the significance of cue tokens in the representing

candidate, the scope, as determined by the distribution of the

candidate cluster over the document, and number of words

contained in the candidate. Xtrak4Me [3] is an open-source

library that performs this.

3.1 SUM-udel-E-MAND-1
This summarization run is based on the ranking created in the

RET-udel-E-MAND-1 run of the retrieval task. Instead of

providing a ranking, this time we concatenate the re-ranked

iUnits to form several second-layer summaries. Each second

layer summary is made of about 280 characters. First layer

summaries are obtained by simply using the first iUnit as first-

layer summary. The text that describes the links is obtained by

extracting the most significant words from the second-layer

summaries.

3.2 SUM-udel-E-MAND-4
This second summarization run is based on the ranking created

in the RET-udel-E-MAND-4 run of the retrieval task. Again,

instead of providing a ranking, we concatenate the re-ranked

iUnits to form several second-layer summaries. Each second

layer summary is made of about 280 characters. First layer

summaries are obtained by simply using the first iUnit as first-

layer summary. The text that describes the links is obtained by

extracting the most significant words from the second-layer

summaries.

3.3 SUM-udel-E-MAND-5
This summarization run is based on the ranking created in the

RET-udel-E-MAND-5 run of the retrieval task. Like in the

previous summarization runs, instead of providing a ranking, we

concatenate the re-ranked iUnits to form several second-layer

summaries. Again, each second layer summary is made of about

280 characters, and first layer summaries are obtained by simply

using the first iUnit as first-layer summary. The text that

describes the links is obtained by extracting the most significant

words from the second-layer summaries.

Table 1. Example pseudo-nuggets for RET-udel-E-MAND-1 (from iterations 1 through 4) for query 1.

Current Pseudo-nugget (starting with

iteration1 and ending with iteration 4)

Selected Pseudo-nugget (i.e. the one least

similar to current pseudo-nugget)

New Pseudo-nugget

- Java documentation is extensive Java documentation is extensive.

Java documentation is extensive. Gensim, Pattern, and other Python modules

are good at text processing

Java documentation is extensive. Gensim,

Pattern, and other Python modules are good

at text processing.

Java documentation is extensive. Gensim,

Pattern, and other Python modules are good

at text processing.

static typing Java documentation is extensive. Gensim,

Pattern, and other Python modules are good

at text processing. static typing.

Java documentation is extensive. Gensim,

Pattern, and other Python modules are good

at text processing. static typing.

semantic similarity Java documentation is extensive. Gensim,

Pattern, and other Python modules are good

at text processing. static typing. semantic

similarity.

Table 2. Pseudo-nuggets for RET-udel-E-MAND-2, RET-udel-E-MAND-3 and RET-udel-E-MAND-5 for query 1

Static (unchanging) model pseudo-nugget used for query

Java documentation is extensive Python is more expressive Java is more verbose Java is easy Java is faster Python has clear, concise syntax

Python is easier to learn Python is difficult for beginners Java has weird syntax Use the best tool for the job natural language processing

Python can be written more quickly Python can be maintained more easily Natural Language Toolkit (NLTK) provides a lot of tools for

natural language processing Python is a more natural language Python has extensive libraries Java Python Text processing Python reduces

development time, increases productivity code Kivy concurrency array scripting language non-scripting object oriented language platform

regular expressions immutable sequences freely available high-level language string portability character classes Python is a dynamically-

typed language, allowing higher productivity static typing Programming languages are tools text similarity semantic similarity Gensim,

Pattern, and other Python modules are good at text processing

Proceedings of the 11th NTCIR Conference, December 9-12, 2014, Tokyo, Japan

217

4. Results
Table 3. nDCG@10 and nDCG@400 results for iUnit

Retrieval Subtask

Runs nDCG@10 nDCG@400

RET-udel-E-1 0.4485 0.4354

RET-udel-E-2 0.5720 0.6915

RET-udel-E-3 0.5365 0.6787

RET-udel-E-4 0.5570 0.6906

RET-udel-E-5 0.1538 0.2185

Table 3 shows the nDCG results for all our runs. As can be seen

in Table 3 – as well as Table 4 – there is a very big difference

between the first four runs and RET-udel-E-5. This is simply

because the first four runs use the iUnits provided by the

organizers (gold iUnits). Gold iUnits were generated manually

by assessors, hence those iUnits turned out to be of a very good

quality. The first four runs can thus be considered manual runs

(as opposed to automatic runs that did not involve any human

input), and are not directly comparable to RET-udel-E-5 and the

other runs submitted to the track. It is important therefore to

note that, although our manual runs greatly outperform all other

runs submitted to the track, the latter are on par with our

automatic run RET-udel-E-5.

On another note, given that runs RET-udel-E-5 and RET-udel-

E-2 use the same ranking method, it is clear that optimizing the

methods used for the extraction of iUnits in order to obtain good

quality iUnits before ranking them, is a crucial task. In fact in

this case, using gold iUnits significantly increases the

nDCG@10 value of RET-udel-E-2 by 272%.

As far as the manual runs are concerned, results vary greatly

among them – albeit not as much as the variation between each

manual run and our automatic run – depending on what ranking

method is used. The first observation stems from the fact that

RET-udel-E-2 performs much better than RET-udel-E-1. This

suggests that using a static pseudo-nugget – which is simply the

concatenation of all iUnits – is much more helpful than using a

dynamic pseudo-nugget. This could be due to the fact that, in

RET-udel-E-1, the idea of choosing a new iUnit that is the least

similar to the current pseudo-nugget (for the purpose of

obtaining a new diversified pseudo-nugget) does not work as

intended. In fact, in some cases, the iUnit the least similar to the

current pseudo-nugget could be an irrelevant or spammy iUnit.

Such iUnit could lead to obtaining a poorer quality new pseudo-

nugget. Further investigation will be needed to determine with

certitude what causes RET-udel-E-1 to perform much worse

than RET-udel-E-2.

It is interesting to note that using cosine similarity in our

experiments leads to better results than using Jaccard similarity,

as can be witnessed through the fact that RET-udel-E-2

performs better than RET-udel-E-3. Indeed, the only difference

between the two runs is that RET-udel-E-2 uses cosine

similarity while RET-udel-E-3 uses Jaccard similarity.

Also of note is the fact that the difference between RET-udel-E-

2 and RET-udel-E-4 is not big (0.6915 vs 0.6909 for

nDCG@400; 0.5720 vs 0.5570 for nDCG@10; 0.5503 vs

0.5440 for Q@400; and 0.6153 vs 0.6195 for Q@10). The

difference between the two is simple. For RET-udel-E-4, a

model pseudo-nugget of a query is the concatenation of the full-

documents from which the top-10 relevant iUnits were

extracted; whereas for RET-udel-E-2, a model pseudo-nugget of

a query is simply the concatenation of all gold iUnits for that

query. The fact that the difference between the results of these

two runs is small suggests that there is not much difference

between using iUnits to create static model pseudo-nuggets and

using full-documents to create static model pseudo-nuggets.

Table 4. Q@10 and Q@400 results for iUnit Retrieval

Subtask

Runs Q@10 Q@400

RET-udel-E-1 0.5684 0.3028

RET-udel-E-2 0.6153 0.5503

RET-udel-E-3 0.6253 0.5493

RET-udel-E-4 0.6195 0.5450

RET-udel-E-5 0.0893 0.0324

nDCG measures (shown in Table 3) and Q-measures (shown in

Table 4) have very similar trends, even though the former is a

rank-based graded-relevance metric and the latter is a recall-

based graded relevance metric. An analysis of the Q-measures

leads to the same conclusions we have made using nDCG

measures. One difference is that, using Q@10, RET-udel-E-3 is

our best run. Though, RET-udel-E-2 remains the best run, if we

use Q@400 instead. Another difference is that RET-udel-E-2’s

nDCG value increases as we increase the cutoff value from 10 to

400, and its Q value decreases as we increase the cutoff value

from 10 to 400.

REFERENCES
[1] Grefenstette, E., Pulman, S.: Analysing Document Similarity

Measures. Dissertation. (2010)

[2] Kato, M. P., Ekstrand-Abueg, M., Pavlu, V., Sakai, T.,

Yamamoto, T., & Iwata, M.: Overview of the NTCIR-11

MobileClick Task. (2014)

[3] Schutz, A. T.: Keyphrase extraction from single documents

in the open domain exploiting linguistic and statistical methods.

Dissertation, National University of Ireland. (2008).

[4] Singhal, A.: Modern information retrieval: A brief overview.

IEEE Data Eng. Bull., 24(4) (2001) 35-43.

Proceedings of the 11th NTCIR Conference, December 9-12, 2014, Tokyo, Japan

218

