
OKSAT at NTCIR-11 Temporalia - Plural Sets of Search Terms for a Topic -
Takashi SATO, Shingo AOKI {sato,aoki}@ss.osaka-kyoiku.ac.jp (Osaka Kyoiku University)

[1] Introduction
• The need of information retrieval including temporal

information is increasing nowadays.
• NTCIR-11 Temporal Information Access

(Temporalia) focuses on this problem.
• OKSAT participated in Temporal Information

Retrieval (TIR) subtask of NTCIR-11 Temporalia.
• We describe our system and techniques used.
• Following experimental results, we show an

example to discuss the effectiveness of our
methods.

[2] Our Approach - Removal of Tags from Corpus
• From temporalia corpus, we extracted the text

surrounded by title tag (＜tag name="title">...</tag>) in
<meta-info> tag.

• Using 'temporalia_solrify.pl' prepared by task organizer,
the text surrounded by text tag (<text>...</text>) in
which all tags were removed was extracted.

• In addition, the val of T tags (<T val="...">) in the text tag
were extracted also.

[2] Our Approach - How to Make Search Terms
• We prepared the following three types of search

terms.
– (1)From topic file, we extracted words from title and each

subtopic of the topic, and then they were filtered by stop
word list.

– (2)We searched the internet (Wikipedia and Google) by
words from (1), and then we simply added most common
words in the search results.

– (3)We classified words from internet search of (2) if
possible. Then we added each classified group to (1). As a
result, we got plural sets of search terms for a subtopic.

[2] Our Approach - Searching and Scoring
• We used only <text> tag among tags.
• Because titles in <title> tag are short and we

observed that search words were not often used in
the title even if a document related to the topic.

• About <T> tags in <text>, we could not use these
values in order to distinguish time factor of subtopics.

• Using index made by text in <text> tag, we retrieved
the search terms (1), (2) and (3) prepared above.

• Then we scored and ranked output document id by
using probabilistic model.

[3]Structure of Gram Base Index
• Gram base indices are known as index structures, which

enable arbitrary string search.
• Grams consist of strings (character sequences), which

start every character in a text.
• The length of strings is less than 3 (such as 1-gram or 2-

gram) in common cases.
• Our grams are longer than 4-grams in average by

encoding grams in wg byte. wg is set 6 in this task.
• At first, characters are coded in varying length bit in

accordance with their frequency of appearance.
• Then they are stuffed within wg. Figure 1 shows the

stuffing of coded characters.
Figure 1. Stuffing of Coded Characters in a gram.

iC 1iC 2iC 3iC

1iC 2iC

2iC

3iC

3iC

4iC

4iC

4iC

5iC

5iC

5iC3iC

4iC 5iC 6iC

gw

Table 1. Code Table for Gram Coding

C L CODE C L CODE C L CODE C L CODE

_

0

1

2

3

4

5

6

7

8

11

8

8

8

8

8

8

8

8

8

O

1

41

81

82

83

84

85

86

87

9

A

B

C

D

E

F

G

H

I

8

4

6

5

5

3

6

6

4

4

40

1

30

9

C

7

2

1

9

3

J

K

L

M

N

O

P

Q

R

S

9

7

5

5

4

4

6

11

4

4

1

21

d

11

2

7

3

1

d

5

T

U

V

W

X

Y

Z

3

5

7

6

8

6

10

5

19

1

31

80

11

1

Figure 2. Example of Grams.

43: KFWB_NE
42: FWB_NEW
40: WB_NEWS
34: B_NEWS
39: _NEWS_
47: NEWS_TALK
43: EWS_TALK
40: WS_TALK
45: S_TALK_
41: _TALK_
46: TALK_98
43: ALK_98
47: LK_980
42: K_980
46: _980_
35: 980_
27: 80_
19: 0_
11: _

An example of gram
coding (each row is
gram length in bit and
characters in a gram)
when text is
'KFWB_NEWS_980_' a
part of the tile of the
first document of the
corpus.

[3]Structure of Gram Base Index – Cnt’d

• Figure 3 shows a data structure of gram index. An
index has three parts called root, leaf and locator.

• Grams are sorted and stored in secondary storage
as leaf.

• There is a pointer from a gram in leaf to a bucket,
which stores the document numbers where the
string corresponding to the gram is found and the
count of the gram appeared in the document.

• Locator, which is stored in secondary storage, is
collection of buckets.

• Root, which is put in main memory when searching,
is a wide range map of grams.

Figure 3. Structure of Gram Index.

locator

leaf

root
in main memory

tree structure

coded gram

locator address

buckets
(concatenated into single file)

index

text…. ……. …..

doc#
count

[3]Structure of Gram Base Index – Cnt’d

• The search algorithm is explained in terms of three
cases according to the relation between the length of
search key word (lk) and gram length (lg).

• Figure 4 (a), (b) and (c) show how to follow the
pointers in leaves and locators when lk = lg, lk < lg and
lk > lg respectively.

• Since the buckets of the locator are stored
sequentially, they are drawn in one box and
separated by double lines.

Figure 4. Index Search.

locator

leaf

text text text text text

text

doc#s

ftr

leaf

text

locator

ftra
ftrb

ftsa

ftra ftraftrb

locator

leaf

text search

searearcarch

(a) lk = lg (b) lk < lg (c) lk > lg

[4]Experimental Results - Indexing
• We made gram based indices from text surrounded by

<text> and <title> tag of corpus.
• Table 2 shows specifications of computer we used.

And Table 3 shows statistics of indices.

CPU Intel Core i5-4430@3.0GHz 4C/4T

MEM 8GB, DDR3-1600

O S FreeBSD 8.4, 64bit

HDD 1TB, SATA 6GB/s, 64MB Cache

title text

data size (MB) 0.170 8.90

index size (MB) 0.489 18.9

time (min.) 2.08 153

Table 2. Specifications of computer Table 3. Statistics of Indices

[4]Experimental Results - Runs

• Using three types of search terms we made the
following runs.

– OKSAT-TF01 : type (1) of slide[2]
– OKSAT-TF02 : type (2) of slide[2]
– OKSAT-TF03 : type (3) of slide[2]

• Table 4 shows time (searching and scoring in
minutes) and AP (mean average precision) of our
submitted runs.

• Because task organizers have a shallow pooling at
document 20, P@20 and nDCG@20 are shown in
this table also.

Table 4. Time and MAP of Submitted Runs

• The CPU of our computer has 4 cores and can
process 4 threads simultaneously.

• OKSAT-TF01 and OKSAT-TF02 were executed
simultaneously by 2 threads each.

• On the other hand OKSAT-TF03 was executed alone
by 4 threads.

• So, OKSAT-TF03 was executed twice as fast as
OKSAT-TF01 and OKSAT-TF02.

RUN ID Time AP P@20 nDCG@20

OKSAT-T-TF01 54 0.2138 0.5828 0.4566

OKSAT-T-TF02 83 0.2063 0.5843 0.4551

OKSAT-T-TF03 25 0.1971 0.5723 0.4391

[4]Experimental Results - Temporal Class Analysis
• Table 5 shows P@20 of each temporal query classes.
• The atemporal query class was better than other query classes.
• The past query class was difficult for our group.

Table 5. P@20 of Each Temporal Query Classes

RUN ID atemporal future past recency

OKSAT-T-TF01 0.6460 0.5740 0.5050 0.6060

OKSAT-T-TF02 0.6260 0.6030 0.5070 0.6010

OKSAT-T-TF03 0.5830 0.6190 0.4870 0.6000

[4]Experimental Results - Topic-based Analysis

• We show poorly and better performing topic
examples about expansion of search terms (i.e.
from OKSAT-FT-01 to OKSAT-FT-02).

– 026a: We expanded search term from 'passive smoke'
to 'smoke' and 'smoking'. This made P@20 fall down
from 0.9500 to 0.5500.

– 045f: We expanded search term from 'Papacy' to
'Pope'. This raised P@20 from 0.0500 to 0.4000.

• However, the effect of search term expansion was
not similar about other temporal classes.

• So the effect of word expansion was sensitive to
temporal classes.

[4]Experimental Results - Examples of Plural Sets of
Search Terms

• In temporal information retrieval, there are cases when plural events
should be searched.

• Searching by only one set of search terms is not enough, in those cases.
• So, we made our system to handle plural sets of search terms for a

subtopic.
• Concretely, we explain an effect of plural sets of search terms about

subtopic id 001p (subtopic of type past of topic id 001).
• We added the words extracted from title of topic id 001 and its subtopic

001p to the words after '+' below.
– 001p-1 (+ 'Tokyo subway',' Tokyo', 'subway', 'sarin')
– 001p-2 (+ 'Hiroshima nuclear')
– 001p-3 (+ 'Tohoku earthquake')

• Then three sets of search terms were made.
• Table 6 shows relations of the term sets above and the AP (average

precision), P@20 and nDCG@20 of their runs.

[4]Experimental Results
- Examples of Plural Sets of Search Terms - Cnt’d

• We merged these three runs into one by two ways.
• One is merging by score order of document and the

other is merging by rotation (first we gather top of three
runs, next we gather second of three runs and so on.)

Table 6. Term Set and AP etc.
Term Set AP P@20 nDCG@20
001p-1 0.0807 0.2355 0.2328
001p-2 0.0911 0.3009 0.3716
001p-3 0.01849 0.5319 0.4958

[4]Experimental Results
- Examples of Plural Sets of Search Terms - Cnt’d
• Table 7 shows merge type and AP, P@20 and nDCG@20.
• In this table, 'base words' stands for no words from the

internet added i.e. words extracted from title of topic id 001
and its subtopic 001p only.

• From Table 7, we observe that the AP, P@20 and
nDCG@20 of merging by rotation is higher than those of
base words only and merging by rotation.

Table 7. Merge Type and AP etc.

Merge Type AP P@20 nDCG@20
base words 0.1849 0.5139 0.4958

by score 0.1368 0.4205 0.4465
by rotation 0.2669 0.6362 0.5589

[5] CONCLUSIONS

• OKSAT submitted three runs for Temporal Information
Retrieval (TIR) subtask of NTCIR-11 Temporalia).

• In third run, we prepared plural sets of search terms for a
subtopic using words added by the internet search.

• Analyzing experimental results, we observe the
effectiveness of using plural sets of search terms for a
subtopic.

