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ABSTRACT 
Our team’s approach is based on word-embedding. We converted 
queries and iUnits to vectors using word2vec.  To these generated 
vectors, ranking-generation methods and summarization methods 
are applied 
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1. INTRODUCTION 
In real-world web search, the most of queries are short and has 
insufficient information. We need to complement additional 
information. That makes generation of search-ranking difficult. In 
mobileclick2 task, not only query but also iUnit is a-bit-longer 
short-text. This makes this task more difficult.  
In short-text analysis, it’s common to compensate its context by 
adding from external knowledge data. This time, we do it through 
word2vec. 
Since Mikolve published word2vec model [1], word-embedding 
has been one of very popular topic in text mining field. Varieties 
of its applications are reported in text-mining tasks. As Omer 
Levy pointed out [2], word2vec has robust performance in many 
benchmarks. This property is very useful to utilize data in web. 
 

2. MODELS OF RANKING SUBTASK 
(JAPANESE) 
2.1 Query classification 
In the training and test dataset, there are several mixed types of 
queries, not they tend to be just randomized but categorized. We 
began to divide the queries into the following seven classes in 
training data 

 Actors and musicians 
 Politicians 
 Athletes 
 Particular places or stores 
 Geological locations with purposes 

 Common noun terms 
 Natural sentences 

As for test data, it doesn’t have politicians or particular places or 
stores. We decided not to use these two classes to build a model. 
Then by merging actors, musicians and athletes, we ended up with 
keeping the following four classes both for training and test data: 
famous people, places, common noun terms and natural sentences. 

Based on the classification, we used them with two approaches. 
One is simply dividing the training and test set by the query class. 
The other is to add these classes as dummy variables to features 
by 1-of-K representation. 

2.2 Word2vec Feature Generation 
To make word2vec model, Bing’s search result text are used as 
external knowledge data. These search results include variety of 
topics related to the queries; also the qualities of documents are 
checked to some degree. Therefore, they have good quality for 
external knowledge data. To build word2vec model, we use 
gensim [4]. The following is the procedure. 

1. Delete contents of “Script” and “Style” tag from HTMLs 

2. Apply morphological analyzer (Mecab) and split it to the Part-
of-speech. 

3. Filter out all the Part-of-speech other than noun. 

4. Delete new-line among a document; Then feed them to 
gensim’s word2vec API.  

Most of queries and iUnits are split into multiple terms. When 
calculating a vector of iUnits and queries, we simply use an 
average vector of each term’s vector. 

2.3 Ranking 
2.3.1 Approach 1: Predicting importance by 
Smoothing Method 
It is widely known word2vec’s property that similar terms are 
converted closer coordinates than non-similar terms. If we assume 
that similar iUnits have close importance values, an importance of 
iUnit is predicted by its neighbor’s importance. Based on this idea, 
we use weighted average of k-nearest iUnits’ importance as 
predicted value. 
The Algorithm is 
1. Classify target iUnit’s query (by method 2.1) 
2. Select k-nearest iUnits (this time k=4) from iUnits whose 

query is the same class as the target query. 
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3. Calculate weighted average of those iUnits importance by 
following expression. 

 

With 

 

 
 

 
 

 

2.3.2 Approach 2: Learning To Rank 
Although iUnit is a short sentence, typical learning to rank 
approaches should be able to be applied with generated features. 
For iUnit Ranking Subtask, intent and intent probability are not 
given. Thus, regardless of intent for each query, we directly learn 
and predict global importance. We chose Random Forest [5] as a 
rank generator from RankLib [6]. This depends on the ranker part 
of MART [7].  

2.4 Noise Cancellation 
Looking into test data, compared to training data, there are more 
noisy iUnits, which should not meet any of intents for the query. 
We introduced two heuristic ways to displace them. Both of them 
focus on the trailing part of iUnits. One is that the iUnits end with 
some special symbols such as exclamation and question mark 
supposing that these iUnits don’t give objective answers for the 
user query. The other is that the last token of iUnit is honorific 
term. Almost all of iUnits end with indeclinable words such as 
noun, which mean they are not like sentences but bullet point 
descriptions, especially honorific forms tend to be spam among 
them on this particular dataset.  

3. RESULTS OF RANKING SUBTASK 
(JAPANESE) 
In 2.2 process, we created word2vec model. With this model, we 
converted each iUnit in training dataset to vector and use them as 
input features.  Figure. 1 shows the result.  
Since we can’t know the importance of test dataset, all evaluation 
here is based on test dataset. For smoothing approaches, we 
applied leave-one-out cross validation per query: leave one query 
and predicting its iUnits’ importance from the other queries’ 
iUnits. On the other hand for learning-to-rank approaches, 5-fold 
cross validation were applied instead because leave-one-out takes 
time but it performed almost the same well. This means out of 
5,000 queries 1,000 are used for test and the remaining are for 
training set. For comparison, we generated LDA features and 
applied the same learning to rank algorithm. 
 

3.1 Discussion 
Table 1. Q-measure of learning word2vec features by 

smoothing model 

 Q-measure 

Random baseline 0.7728 

No query class  0.8385 

Seven query class separately predicted 0.8250 

 
As for the smoothing model, we began with predicting iUnits’ 
importance from the same query’s iUnits. The Q-measure value is 
0.888 in seven query-classes model. But when predicting another 
query’s importance from the queries in the same class, the result is 
much lower q-measure value, 0.838. This means that selecting 
similar text by word2vec model works to a certain degree. But 
when a query is changed, having similar word2vec vector is not 
enough evidence to have similar importance. Although two 
queries are in a same class, the tendencies of high-importance 
iUnit are very different. In general text search, features that 
calculated using both query and iUnit could compensate this 
problem, but our model doesn’t have this type of features. 
At the same time, this smoothing method highly depends on the 
density of data. If there are some similar queries in training data, 
the prediction would be more accurate. But if not, the advantages 
of our model are lost. This time, training data set have only 100 
queries, and most of queries are combination of multiple 
keywords. This time, the number of queries in training dataset is 
too small to make this model work fine. The direct dependence to 
number of training data is one of the bottlenecks of the smoothing 
based prediction model. 
 

Table 2. Q-measure of learning word2vec features by 
learning-to-rank 

 Q-measure 

Word2vec, 100 features  0.8527 

Word2vec,  100 features separately 
learned inside the query class  0.8380 

Word2vec 100 + class representative 
features 0.8586 

LDA features 0.8228 

LDA features learn inside the query class 0.8326 

 
Table 2 shows the results of the learning-to-rank approaches. The 
q-measure scores show the effectiveness of this approach. In 
word2vec, the meaning of each vector is not clear, but learning to 
rank algorithms learned the relations between them and 
importance.  Compared to the traditional features like TF-IDF, the 
each vector is not strong, but those vectors can help task the 
sematic search. 
When compared word2vec based learning to rank with LDA 
based one, word2vec features results in higher scores than LDA. 
This is partially because LDA is not robust to noises. A web-page 
contains not only an article, but also ads and UI parts like footer, 
header. Those elements prevent LDA from working as it designed. 
On the other hand, word2vec learn the vector by keywords around 
it.  So those elements don’t affect result if the same keywords 
don’t appear in the UI components. 
As for using query’s class or not, the number of training data is a 
problem If we divided 100 queries into 7 classes, the average 
number of queries and iUnits in each group is less than 15 and 
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770. It’s not enough number for learn something from 100 
features data.  
 

4. MODELS OF SUMMARIZATION 
SUBTASK (JAPANESE) 
Summarization task is divided into three parts; assigning each 
iUnit to intent, calculation of penalized importance of iUnits and 
iUnits layering. 
 

4.1 Intent Labeling 
In iUnit ranking subtask, iUnits are converted to vectors. In the 
same way, intents are converted to vectors. For each iUnit, one 
intent is assigned based on cosine similarity between the vectors. 
 

4.2 Calculation of importance 
In iUnit ranking sub task, we calculated each iUnit’s predicted 
importance. Since each iUnit’s utility has decay according to their 
position, using shorter iUnit results in better M-measure score 
than using longer one, if their importance is the same.  Thus, to 
take decay factor into consideration, we calculate each iUnit’s 
importance using its length of iUnit and ranking sub task’s result. 
Given a constant parameter , the weight  calculated by iUnit 
ranking sub task for iUnit i, and length of iUnit , the re-
calculated weight of iUnit i is given by:  

 

We set  = 0.3 heuristically. This calculation makes the weight of 
longer sentence smaller while importance of shorter sentence 
larger by dividing total length of summarization by the length of 
iUnit. 280 is the length limitation of characters for this Japanese 
task. 
 

4.3 IUnit Layering 
Next we determine layer of each iUnit: which iUnit should be 
listed on the first layer and the second layer. Here we assume that 
iUnits that have large standard deviation between similarity score 
to and each intent should be listed on the second layer, because 
those sentences have large similarity to certain intent and we can 
put them under the link from the intent. Here we set 0.05 as 
threshold heuristically and if the standard deviation is higher than 
0.05 then the iUnit is put on second layer, while if the standard 
deviation is lower than 0.05 then the iUnit is put on first layer. 
Then we calculate each weight for the intent itself by calculating 
average of length-normalized weight of all intents, which are 
assigned to the intent. On both of first and second layers, iUnits 
are sorted by its length-normalized weight. 
 

5. RESULTS OF SUMMARIZATION 
SUBTASK (JAPANESE) 
5.1 Results 
Table.3 shows that M-measure for our proposed method and other 
baseline methods. Our proposed method gives higher score on M-
measure rather than baseline methods in average of all queries. 
 

Table 3. Mean of M-measure  

 Score 

Proposed method 18.4203 

LM-based two-layer baseline 17.4376 

Random baseline 15.0373 

LM-based baseline 12.799 
 
Table 4 and Table 5 show five queries which show highest and 
lowest M-measure, respectively. As for MC2-J-0083, iUnit and its 
intent is missing in dataset. Other four low M-measure score on 
queries are classified to “geological locations with purposes”.  
 

Table 4.  Five highest M-measure queries 

 
Table 5.  Five lowest M-measure queries 

 
 

5.2 Discussion 
As for MC2-J-0034, all iUnits are listed on the second layer. It 
means our threshold, which defines if each iUnit should be listed 
on the first layer or the second layer, sometimes too small to 
divide iUnits into two layers. If we loosen restriction for iUnit to 
be put on the first layer by setting larger value as threshold, more 
iUnits are listed on the second layer in this case. On the other 
hand, as for MC2-J-0042, 11 iUnits are chosen to be listed on the 
first layer with same threshold.  
 
Here, we focus on the number of intents for each query. The 
average number of intents for queries listed on Table. 4 is 13.25, 
while the one for queries listed on Table. 5 is 2.6.  From this, we 
suppose that our threshold 0.05 is fit if the query has few intent, 
and not adequate for the case that the query has many intents. 
Although we applied the same value as threshold for all queries 
here, it is assumed that we can improve our proposed method by 

Qid Query M-measure 

MC2-J-0042  52.6187 

MC2-J-0004  41.54 

MC2-J-0022   40.7866 

MC2-J-0061 Ups 40.2946 

MC2-J-0073  39.9209 

Qid Query M-measure 

MC2-J-0083  0.0000 

MC2-J-0034   3.3758 

MC2-J-0035   4.6622 

MC2-J-0038   4.7315 

MC2-J-0037   4.8742 
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introducing logic to decide it depending on dispersion of 
similarity between intent and iUnits. 
 

6. CONCLUSION 
We described our approach in this paper. In the ranking subtasks, 
the features are generated from query classification and word2vec. 
The 1st model are based on smoothing based prediction, the 2nd 
model is based on MLR. The both achieved higher score than the 
baseline. 
In the summarization subtasks, the features are based on the 
ranking subtask’s result and word2vec, also result in higher score 
than the baseline. 
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Figure 1. iUnits in word2vec space 
IUnits vectors are reduced to two dimensional space by applying t-SNE, commonly used dimension reduction technique. 
The sizes of marks show its importance, the colors of text-boxes corresponds to its query class. 
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