
Tangent-3 at the  
NTCIR-12 MathIR Task

Kenny Davila, Richard Zanibbi
Rochester Institute of Technology, USA

Andrew Kane, Frank Wm. Tompa
University of Waterloo, Canada

NTCIR-12 MathIR Task Session
June 10, 2016

Tangent: Evolution
Tangent-1 - MSc thesis by D. Stalker (2013) extending T. Schellenberg's MSc
thesis (2011). Bag of symbol pairs with inverted index for formula retrieval.

Tangent-2 added matrix support + text search (Lucene); strong results for
NTCIR-11 Math-2 subtask at NTCIR-11 (N. Pattaniyil, MSc project 2014).
Large indices; slow retrieval.

Tangent-3* improved formula representation, faster retrieval, improved
wildcard support, unification of arguments (numbers, ids), and re-ranking by
query recall in subexpressions (Maximum Subtree Similarity)
e.g., ‘x2’ in ‘x2’ and ’x2 + 1’ treated as equally strong matches.

Text/keyword retrieval via same independent Lucene index from
Tangent-2. Linearly combine text and formula match scores.

*R. Zanibbi, K. Davila, A. Kane, and F. Tompa. Multi-stage math formula search: Using
appearance-based similarity metrics at scale. SIGIR, 2016.

Tangent-3 Text + Math Retrieval

Formulae and Keywords retrieved independently.

Documents ranked using linear combination of best formula
match scores in each document, and Lucene document scores.

Formula Retrieval in Tangent-3

Structure Representation
Indexing
Wildcards and Unification
Re-ranking

Formula Representation
Symbol Layout Tree (SLT, Appearance-Based)

5/6/15, 10:24 PMexpression

Page 1 of 1file:///Users/rlaz/Desktop/Research/Tangent_0.3/tangent-03/tangent/CIKM_paper/Figures/NTCIR11-Math-94_query.svg

()2x1

π =

i

↓
2

 *
↑

N i

5/6/15, 10:24 PMexpression

Page 1 of 1file:///Users/rlaz/Desktop/Research/Tangent_0.3/tangent-03/tangent/CIKM_paper/Figures/NTCIR11-Math-94_query.svg

()2x1

π =

i

↓
2

 *
↑

N i

⇡i = 2⇤
�
N
i

�

Figure 2: Query Formula with Corresponding SLT.
The query has one wildcard, and a tabular structure.

ture the spatial relationships between objects represented
by the nodes. With respect to a given object O, seven axes
reflect the following relationships:

1. next (!) references the adjacent object that appears
to the right of O and on the same line

2. within (·) references the radicand if O is a root or
the first element appearing in row-major order in O if
it is a structure represented by M!

3. element (() references the next element appearing
after O in row-major order inside a structure repre-
sented by M!

4. above (") references the leftmost object on a higher
line starting at the position above O (e.g., superscript,
over symbol, fraction numerator, or index for a radical)

5. below (#) references the leftmost object on a lower
line starting at the position below O (e.g., subscript,
under symbol, fraction denominator)

6. pre-above (*) references the leftmost object of a
prescripted superscript of O

7. pre-below (+) references the leftmost object of a
prescripted subscript of O

An SLT is rooted at the leftmost object on the main writing
line of the formula it represents. Figure 2 shows an example
of an SLT, where for simplicity, unlabeled edges represent
the next relationship and the type prefixes are omitted.

The given relationships can describe a very large set of
expressions. One limitation is that above/superscript and
below/subscript regions are not distinguished; this leads to
information loss in the infrequent case where both regions
are present (e.g. x̂2 may be represented without an accent).

Creating SLTs. SLTs can be created in linear time from
Presentational MathML by a recursive descent parser. For
other input formats, we assume that converters such as La-
TeXML4 exist to produce Presentational MathML.

In most circumstances, whitespace is not represented in an
SLT. As a result, although unicode whitespace and related
characters, such as “invisible times” (U+2062), occasionally
appear as operators in Presentational MathML expressions,
they are all ignored for the purpose of matching expressions
in Tangent-3.

Tuple Representation for SLTs. An e↵ective formula
search engine must be able to find formulae that contain
a query formula, appear within a query formula, or are in
many ways only similar to a query formula. Thus high-
quality search engines create indexes based on selected fea-
tures of formulae found in a corpus and match queries based
on those features. Previous versions of Tangent showed that
pairs of symbols together with their relative inter-symbol

4http://dlmf.nist.gov/LaTeXML/

distances in two dimensions are e↵ective features to use [16],
and we improve on this approach.
As described above, a node in an SLT can have up to

seven labeled outgoing edges (with no edge label repeating
for any node) corresponding to the seven defined axes. For a
given SLT, Tangent-3 produces a set of tuples, each of which
encodes the relationship between a pair of symbols occurring
on some path from the root to a leaf. Given two nodes on
such a path, we define the relative path between the nodes by
the sequence of edge labels traversed from the ancestor node
to the descendant. The features we select from an SLT are
tuples that encode pairs of labels occurring on ancestor and
descendant nodes, together with their relative path and the
number of times each such label-label-path triple occurs in
SLT. For example, the tuple (V !x,N !2,!"!!,3) indicates
that the corresponding formula includes three instances of a
node representing the number 2 that appears “to the right,
then above, and then twice to the right”with respect to some
node representing variable x; for example, such a formula
might include ...xyz+2....
Tuple Generation Parameters. As seen in Figure 1,

there are two parameters that control symbol pair tuple gen-
eration: the window size (w), and how symbols at the end
of writing lines are included in the index (EOL).
To save both space and time, and following the practice of

searching via n-grams [26], Tangent-3 extends the approach
used in Tangent-2 by storing only those tuples for which the
distance between symbols (measured by the number of edges
separating them) is less than or equal to a specified window
size w. For example, the tuple described in the previous
paragraph will be included in the index only if w � 4.
In addition to symbol pairs, end-of-line information can be

captured by introducing special tuples of the form (symbol,
!0, !, count). Including these is likely to improve retrieval,
particularly for very small expressions. However, wildcards
as EOL symbols have very large wildcard expansions, in-
creasing retrieval time. To alleviate this problem, we exam-
ine adding EOL symbols for small expressions with height
two or less (Sm-EOL), adding all EOL symbols (EOL), and
omitting EOL symbols (No-EOL).

5. CORE ENGINE
The core engine is the first retrieval stage in Tangent-

3, quickly finding the top-k highly relevant matches for a
formula query, which are later re-ranked (see Figure 1). The
engine ranks these top-k formulae using a simple algorithm,
along with a list of document locations for each formula.
Since runtime performance is a high priority, the core en-

gine uses a customized inverted index data structure imple-
mented in C++. In addition, the engine evaluates only a
subset of the query language functionality to allow the use
of a fast and simple ranking algorithm that can still find a
good set of candidate results.
The input to the indexer is a set of document names and

the extracted mathematical formulae found in each docu-
ment, and the input to the search engine is a single query
formula. Each formula is converted to a set of tuples (see
Sections 3 and 4) that serve as index and search “terms.”
Index Data Structures. At index time, an inverted in-

dex is built over the given document-formula-tuple relation-
ships, using two main data structures: dictionaries (D⇤)
convert objects (such as strings or tuples) into a compact
0-based range of internal identifiers (integers) and postings

Generated from Presentation MathML

All groupings (matrices, vectors, parens, etc.) represented identically.
Unlike Tangent-2, distinguishes above from superscript, and below
from subscript.

Formula Indexing

1. Inverted Index for Symbol Pairs
Keys: Pairs of symbols/groupings
Values: Posting lists of unique formula ids

2. Formula uid → Formula/Doc Index
 e.g., ‘x2’ uid to all (doc:offset) entries

Symbol Pairs with Relationships

5/6/15, 10:24 PMexpression

Page 1 of 1file:///Users/rlaz/Desktop/Research/Tangent_0.3/tangent-03/tangent/CIKM_paper/Figures/NTCIR11-Math-94_query.svg

()2x1

π =

i

↓
2

 *
↑

N i

5/6/15, 10:24 PMexpression

Page 1 of 1file:///Users/rlaz/Desktop/Research/Tangent_0.3/tangent-03/tangent/CIKM_paper/Figures/NTCIR11-Math-94_query.svg

()2x1

π =

i

↓
2

 *
↑

N i

⇡i = 2⇤
�
N
i

�

Figure 2: Query Formula with Corresponding SLT.
The query has one wildcard, and a tabular structure.

ture the spatial relationships between objects represented
by the nodes. With respect to a given object O, seven axes
reflect the following relationships:

1. next (!) references the adjacent object that appears
to the right of O and on the same line

2. within (·) references the radicand if O is a root or
the first element appearing in row-major order in O if
it is a structure represented by M!

3. element (() references the next element appearing
after O in row-major order inside a structure repre-
sented by M!

4. above (") references the leftmost object on a higher
line starting at the position above O (e.g., superscript,
over symbol, fraction numerator, or index for a radical)

5. below (#) references the leftmost object on a lower
line starting at the position below O (e.g., subscript,
under symbol, fraction denominator)

6. pre-above (*) references the leftmost object of a
prescripted superscript of O

7. pre-below (+) references the leftmost object of a
prescripted subscript of O

An SLT is rooted at the leftmost object on the main writing
line of the formula it represents. Figure 2 shows an example
of an SLT, where for simplicity, unlabeled edges represent
the next relationship and the type prefixes are omitted.

The given relationships can describe a very large set of
expressions. One limitation is that above/superscript and
below/subscript regions are not distinguished; this leads to
information loss in the infrequent case where both regions
are present (e.g. x̂2 may be represented without an accent).

Creating SLTs. SLTs can be created in linear time from
Presentational MathML by a recursive descent parser. For
other input formats, we assume that converters such as La-
TeXML4 exist to produce Presentational MathML.

In most circumstances, whitespace is not represented in an
SLT. As a result, although unicode whitespace and related
characters, such as “invisible times” (U+2062), occasionally
appear as operators in Presentational MathML expressions,
they are all ignored for the purpose of matching expressions
in Tangent-3.

Tuple Representation for SLTs. An e↵ective formula
search engine must be able to find formulae that contain
a query formula, appear within a query formula, or are in
many ways only similar to a query formula. Thus high-
quality search engines create indexes based on selected fea-
tures of formulae found in a corpus and match queries based
on those features. Previous versions of Tangent showed that
pairs of symbols together with their relative inter-symbol

4http://dlmf.nist.gov/LaTeXML/

distances in two dimensions are e↵ective features to use [16],
and we improve on this approach.
As described above, a node in an SLT can have up to

seven labeled outgoing edges (with no edge label repeating
for any node) corresponding to the seven defined axes. For a
given SLT, Tangent-3 produces a set of tuples, each of which
encodes the relationship between a pair of symbols occurring
on some path from the root to a leaf. Given two nodes on
such a path, we define the relative path between the nodes by
the sequence of edge labels traversed from the ancestor node
to the descendant. The features we select from an SLT are
tuples that encode pairs of labels occurring on ancestor and
descendant nodes, together with their relative path and the
number of times each such label-label-path triple occurs in
SLT. For example, the tuple (V !x,N !2,!"!!,3) indicates
that the corresponding formula includes three instances of a
node representing the number 2 that appears “to the right,
then above, and then twice to the right”with respect to some
node representing variable x; for example, such a formula
might include ...xyz+2....
Tuple Generation Parameters. As seen in Figure 1,

there are two parameters that control symbol pair tuple gen-
eration: the window size (w), and how symbols at the end
of writing lines are included in the index (EOL).
To save both space and time, and following the practice of

searching via n-grams [26], Tangent-3 extends the approach
used in Tangent-2 by storing only those tuples for which the
distance between symbols (measured by the number of edges
separating them) is less than or equal to a specified window
size w. For example, the tuple described in the previous
paragraph will be included in the index only if w � 4.
In addition to symbol pairs, end-of-line information can be

captured by introducing special tuples of the form (symbol,
!0, !, count). Including these is likely to improve retrieval,
particularly for very small expressions. However, wildcards
as EOL symbols have very large wildcard expansions, in-
creasing retrieval time. To alleviate this problem, we exam-
ine adding EOL symbols for small expressions with height
two or less (Sm-EOL), adding all EOL symbols (EOL), and
omitting EOL symbols (No-EOL).

5. CORE ENGINE
The core engine is the first retrieval stage in Tangent-

3, quickly finding the top-k highly relevant matches for a
formula query, which are later re-ranked (see Figure 1). The
engine ranks these top-k formulae using a simple algorithm,
along with a list of document locations for each formula.
Since runtime performance is a high priority, the core en-

gine uses a customized inverted index data structure imple-
mented in C++. In addition, the engine evaluates only a
subset of the query language functionality to allow the use
of a fast and simple ranking algorithm that can still find a
good set of candidate results.
The input to the indexer is a set of document names and

the extracted mathematical formulae found in each docu-
ment, and the input to the search engine is a single query
formula. Each formula is converted to a set of tuples (see
Sections 3 and 4) that serve as index and search “terms.”
Index Data Structures. At index time, an inverted in-

dex is built over the given document-formula-tuple relation-
ships, using two main data structures: dictionaries (D⇤)
convert objects (such as strings or tuples) into a compact
0-based range of internal identifiers (integers) and postings

TANGENT-3 AT THE NTCIR-12 MATHIR TASK
KENNY DAVILA,1 RICHARD ZANIBBI,1 ANDREW KANE,2 AND FRANK WM. TOMPA2

1ROCHESTER INSTITUTE OF TECHNOLOGY, USA {KXD7282,RLAZ}@CS.RIT.EDU 2UNIVERSITY OF WATERLOO, CANADA {ARKANE,FWTOMPA}@UWATERLOO.CA

FORMULA MATCHING USED IN RE-RANKING

QUERY

x

2 + y

2 = ⇤
MATCH

↵

2+�2=�2

Case Query Match

Unrestricted x + ⇤
x+1
x+y + z + sin(x)
y + x+z = ⇡

4
e

⇤
f(x) = e

x+1 + 2

Children ⇤2+1
x

2 + y

2+1
x

2 + y+1
x

2 + (y + z)2+1

Binding ⇤1⇤2+⇤1⇤+1
x

2+x+1
(x + 1)2+(x + 1)+1
x

2+y+1

Fill right
x + ⇤+1

x+y+1
x+y+z + 1
x+y � z+1
x+ 1

2+y

� 3z+1

Fill left ⇤+1
x + y + z+1
↵ = f(x + y+1, x2)
f (x, y) = 1

x+y+1

(a) Query match with identical symbols (blue), (b) Wildcard expansion. Wildcards are matched
wildcard match (red), and unification (orange). after identical symbols and relationships

Numbers and identifiers are unified. are found, using the cases above.

Fig. 2. Formula Matching with Wildcard Expansion and Unification. For re-ranking, a greedy algorithm
locates the best matching subexpression (i.e., connected component) on a candidate formula.

FORMULA STRUCTURE REPRESENTATION

⇡i = 2⇤
�N
i

�
5/6/15, 10:24 PMexpression

Page 1 of 1file:///Users/rlaz/Desktop/Research/Tangent_0.3/tangent-03/tangent/CIKM_paper/Figures/NTCIR11-Math-94_query.svg

()2x1

π =

i

↓
2

 *
↑

N i

SYM-1 SYM-2 PATH COUNT
V!⇡ V!i # 1
V!⇡ = ! 1
= N!2 ! 1
N!2 * " 1
N!2 M!()2x1 ! 1
M!()2x1 V!N · 1
V!N V!i (1
V!⇡ N!2 !! 1
= * !" 1
...

...
...

...
V!⇡ V!i !!! · (1

(a) Formula and Symbol Layout Tree (b) Symbol Pair Tuples

Fig. 1. Indexing a Symbol Layout Tree (SLT) obtained from Presentation MathML. (b) shows SLT symbol pairs
at different depths with corresponding counts. For SLTs with tree height 2 symbols at the end of writing
lines are also indexed (e.g., 2, N , and i). Formula index sizes: Wiki 580.5 MB, arXiv 8.3 GB on disk.

NTCIR-12 MATHIR TASKS [4]
Tangent was used in three of the four MathIR Tasks.

arXiv Main Task. 29 formula and keyword queries for 100,000 technical articles (from
www.arxiv.org) broken into fragments ranging from two words to multiple paragraphs.
The 8,301,578 document fragments contain 39,008,971 unique formulae.

Wikipedia Main Task. 30 queries containing keywords and math expressions for
30,000 English Wikipedia articles containing more than 500,000 formulas.

Wikipedia Formula Browsing Task. 40 queries containing isolated formulae. The first
20 are concrete (without wildcards), while the remaining 20 are constructed by deleting
or replacing subexpressions with wildcards in the concrete queries.

MATH. INFORMATION RETRIEVAL WITH TANGENT-3
Mathematical Information Retrieval (MIR [1,4,5]) is concerned with finding infor-
mation on mathematical topics, using a combination of keywords and formulae.
Information needs for MIR differ with users’ mathematical expertise [1,4,5], e.g.,
queries to define unfamiliar notation, vs. queries for properties of mathematical objects.

The Tangent-3 math-aware search engine [2,3,6] processes queries as in the following.
1. Text (T) retrieved using Solr
2. Formulae (F) retrieved via symbol pairs and their spatial relationships. Matching

formulae ranked by approx. Dice coefficient of symbol pair matches: 2RP/(R+P)
• Best formula match used to score each document for a formula query; for

multiple query formulae use a linear combination of best match scores
• Optional re-ranking of top-k (for NTCIR-12, k = 1000)

3. Final score (↵T + (1� ↵)F): linear combination of Text and Formulae scores

Parameters Explored
1. Text vs. Formula score weighting (↵, uniform vs. proportional to query tokens)
2. Multiple query formula weighting (uniform vs. size-proportional)
3. Formula hit re-ranking
4. Wildcard matching (symbol vs. subexpression), Unification (none vs. num + id)

*For SLTs with tree height less than 3, symbols
at end of writing lines also indexed.

Wildcard Matching and Unification

Greedy Wildcard Expansion:
use exact symbol matches first,
then ‘flood fill’ with constraints.

TANGENT-3 AT THE NTCIR-12 MATHIR TASK
KENNY DAVILA,1 RICHARD ZANIBBI,1 ANDREW KANE,2 AND FRANK WM. TOMPA2

1ROCHESTER INSTITUTE OF TECHNOLOGY, USA {KXD7282,RLAZ}@CS.RIT.EDU 2UNIVERSITY OF WATERLOO, CANADA {ARKANE,FWTOMPA}@UWATERLOO.CA

FORMULA MATCHING USED IN RE-RANKING

QUERY

x

2 + y

2 = ⇤
MATCH

↵

2+�2=�2

Case Query Match

Unrestricted x + ⇤
x+1
x+y + z + sin(x)
y + x+z = ⇡

4
e

⇤
f(x) = e

x+1 + 2

Children ⇤2+1
x

2 + y

2+1
x

2 + y+1
x

2 + (y + z)2+1

Binding ⇤1⇤2+⇤1⇤+1
x

2+x+1
(x + 1)2+(x + 1)+1
x

2+y+1

Fill right
x + ⇤+1

x+y+1
x+y+z + 1
x+y � z+1
x+ 1

2+y

� 3z+1

Fill left ⇤+1
x + y + z+1
↵ = f(x + y+1, x2)
f (x, y) = 1

x+y+1

(a) Query match with identical symbols (blue), (b) Wildcard expansion. Wildcards are matched
wildcard match (red), and unification (orange). after identical symbols and relationships

Numbers and identifiers are unified. are found, using the cases above.

Fig. 2. Formula Matching with Wildcard Expansion and Unification. For re-ranking, a greedy algorithm
locates the best matching subexpression (i.e., connected component) on a candidate formula.

FORMULA STRUCTURE REPRESENTATION

⇡i = 2⇤
�N
i

�
5/6/15, 10:24 PMexpression

Page 1 of 1file:///Users/rlaz/Desktop/Research/Tangent_0.3/tangent-03/tangent/CIKM_paper/Figures/NTCIR11-Math-94_query.svg

()2x1

π =

i

↓
2

 *
↑

N i

SYM-1 SYM-2 PATH COUNT
V!⇡ V!i # 1
V!⇡ = ! 1
= N!2 ! 1
N!2 * " 1
N!2 M!()2x1 ! 1
M!()2x1 V!N · 1
V!N V!i (1
V!⇡ N!2 !! 1
= * !" 1
...

...
...

...
V!⇡ V!i !!! · (1

(a) Formula and Symbol Layout Tree (b) Symbol Pair Tuples

Fig. 1. Indexing a Symbol Layout Tree (SLT) obtained from Presentation MathML. (b) shows SLT symbol pairs
at different depths with corresponding counts. For SLTs with tree height 2 symbols at the end of writing
lines are also indexed (e.g., 2, N , and i). Formula index sizes: Wiki 580.5 MB, arXiv 8.3 GB on disk.

NTCIR-12 MATHIR TASKS [4]
Tangent was used in three of the four MathIR Tasks.

arXiv Main Task. 29 formula and keyword queries for 100,000 technical articles (from
www.arxiv.org) broken into fragments ranging from two words to multiple paragraphs.
The 8,301,578 document fragments contain 39,008,971 unique formulae.

Wikipedia Main Task. 30 queries containing keywords and math expressions for
30,000 English Wikipedia articles containing more than 500,000 formulas.

Wikipedia Formula Browsing Task. 40 queries containing isolated formulae. The first
20 are concrete (without wildcards), while the remaining 20 are constructed by deleting
or replacing subexpressions with wildcards in the concrete queries.

MATH. INFORMATION RETRIEVAL WITH TANGENT-3
Mathematical Information Retrieval (MIR [1,4,5]) is concerned with finding infor-
mation on mathematical topics, using a combination of keywords and formulae.
Information needs for MIR differ with users’ mathematical expertise [1,4,5], e.g.,
queries to define unfamiliar notation, vs. queries for properties of mathematical objects.

The Tangent-3 math-aware search engine [2,3,6] processes queries as in the following.
1. Text (T) retrieved using Solr
2. Formulae (F) retrieved via symbol pairs and their spatial relationships. Matching

formulae ranked by approx. Dice coefficient of symbol pair matches: 2RP/(R+P)
• Best formula match used to score each document for a formula query; for

multiple query formulae use a linear combination of best match scores
• Optional re-ranking of top-k (for NTCIR-12, k = 1000)

3. Final score (↵T + (1� ↵)F): linear combination of Text and Formulae scores

Parameters Explored
1. Text vs. Formula score weighting (↵, uniform vs. proportional to query tokens)
2. Multiple query formula weighting (uniform vs. size-proportional)
3. Formula hit re-ranking
4. Wildcard matching (symbol vs. subexpression), Unification (none vs. num + id)

TANGENT-3 AT THE NTCIR-12 MATHIR TASK
KENNY DAVILA,1 RICHARD ZANIBBI,1 ANDREW KANE,2 AND FRANK WM. TOMPA2

1ROCHESTER INSTITUTE OF TECHNOLOGY, USA {KXD7282,RLAZ}@CS.RIT.EDU 2UNIVERSITY OF WATERLOO, CANADA {ARKANE,FWTOMPA}@UWATERLOO.CA

FORMULA MATCHING USED IN RE-RANKING

QUERY

x

2 + y

2 = ⇤
MATCH

↵

2+�2=�2

Case Query Match

Unrestricted x + ⇤
x+1
x+y + z + sin(x)
y + x+z = ⇡

4
e

⇤
f(x) = e

x+1 + 2

Children ⇤2+1
x

2 + y

2+1
x

2 + y+1
x

2 + (y + z)2+1

Binding ⇤1⇤2+⇤1⇤+1
x

2+x+1
(x + 1)2+(x + 1)+1
x

2+y+1

Fill right
x + ⇤+1

x+y+1
x+y+z + 1
x+y � z+1
x+ 1

2+y

� 3z+1

Fill left ⇤+1
x + y + z+1
↵ = f(x + y+1, x2)
f (x, y) = 1

x+y+1

(a) Query match with identical symbols (blue), (b) Wildcard expansion. Wildcards are matched
wildcard match (red), and unification (orange). after identical symbols and relationships

Numbers and identifiers are unified. are found, using the cases above.

Fig. 2. Formula Matching with Wildcard Expansion and Unification. For re-ranking, a greedy algorithm
locates the best matching subexpression (i.e., connected component) on a candidate formula.

FORMULA STRUCTURE REPRESENTATION

⇡i = 2⇤
�N
i

�
5/6/15, 10:24 PMexpression

Page 1 of 1file:///Users/rlaz/Desktop/Research/Tangent_0.3/tangent-03/tangent/CIKM_paper/Figures/NTCIR11-Math-94_query.svg

()2x1

π =

i

↓
2

 *
↑

N i

SYM-1 SYM-2 PATH COUNT
V!⇡ V!i # 1
V!⇡ = ! 1
= N!2 ! 1
N!2 * " 1
N!2 M!()2x1 ! 1
M!()2x1 V!N · 1
V!N V!i (1
V!⇡ N!2 !! 1
= * !" 1
...

...
...

...
V!⇡ V!i !!! · (1

(a) Formula and Symbol Layout Tree (b) Symbol Pair Tuples

Fig. 1. Indexing a Symbol Layout Tree (SLT) obtained from Presentation MathML. (b) shows SLT symbol pairs
at different depths with corresponding counts. For SLTs with tree height 2 symbols at the end of writing
lines are also indexed (e.g., 2, N , and i). Formula index sizes: Wiki 580.5 MB, arXiv 8.3 GB on disk.

NTCIR-12 MATHIR TASKS [4]
Tangent was used in three of the four MathIR Tasks.

arXiv Main Task. 29 formula and keyword queries for 100,000 technical articles (from
www.arxiv.org) broken into fragments ranging from two words to multiple paragraphs.
The 8,301,578 document fragments contain 39,008,971 unique formulae.

Wikipedia Main Task. 30 queries containing keywords and math expressions for
30,000 English Wikipedia articles containing more than 500,000 formulas.

Wikipedia Formula Browsing Task. 40 queries containing isolated formulae. The first
20 are concrete (without wildcards), while the remaining 20 are constructed by deleting
or replacing subexpressions with wildcards in the concrete queries.

MATH. INFORMATION RETRIEVAL WITH TANGENT-3
Mathematical Information Retrieval (MIR [1,4,5]) is concerned with finding infor-
mation on mathematical topics, using a combination of keywords and formulae.
Information needs for MIR differ with users’ mathematical expertise [1,4,5], e.g.,
queries to define unfamiliar notation, vs. queries for properties of mathematical objects.

The Tangent-3 math-aware search engine [2,3,6] processes queries as in the following.
1. Text (T) retrieved using Solr
2. Formulae (F) retrieved via symbol pairs and their spatial relationships. Matching

formulae ranked by approx. Dice coefficient of symbol pair matches: 2RP/(R+P)
• Best formula match used to score each document for a formula query; for

multiple query formulae use a linear combination of best match scores
• Optional re-ranking of top-k (for NTCIR-12, k = 1000)

3. Final score (↵T + (1� ↵)F): linear combination of Text and Formulae scores

Parameters Explored
1. Text vs. Formula score weighting (↵, uniform vs. proportional to query tokens)
2. Multiple query formula weighting (uniform vs. size-proportional)
3. Formula hit re-ranking
4. Wildcard matching (symbol vs. subexpression), Unification (none vs. num + id)

blue: exact match, red: wildcard
match; orange: unification.

Examples: Formula Re-ranking

Figure 1: Tangent-3 Formula Retrieval Model. System parameters include maximum symbol pair distance
(window size w), how end-of-line symbols are indexed (EOL), and the number of hits to return (k).

Table 1: Top-5 Results for Tangent-3 (k=100). As-
terisks represent wildcards (e.g., * or *1*).

Query 1: f⇤(z) = z

2 + c

Initial Ranking Re-ranked (MSS)

1. f

c

(z) = z

2 + c f

c

(z) = z

2 + c

2. f

c

(z) = z

2 + c. P

c

(z) = z

2 + c

3. f(z) = z

2 + c f

c

(x) = x

2 + c

4. f0(z) = z

2
f

c

(z) = z

2 + c.

5. f

c

(z) = z ⇤ z + c f(z) = z

2 + c

Query 2:
P⇤1⇤

⇤2⇤ ⇤ =
P⇤1⇤

⇤2⇤ ⇤

Initial Ranking Re-ranked (MSS)

1. E =
P

N

i

E

i

P
d

i=1 a

i

=
P

d

i=1 b

i

2. G

net

=
P

i

P
N

i=1

P
N

i=1 d

i

=
P

N

i=1 �

i

.

3.
P

N1
i

p

i

=
P

N2
j

p

j

P1
n=0 a

�(n) =
P1

n=0 a

n

.

4.
P

n

i=1 x

i

k

i

=
P

n

i=1 x

i

P
N1
i

p

i

=
P

N2
j

p

j

5. =
P

n

k=1 a

k

P1
n=0 a

n

=
P

n2N

a

n

.

w) and whether to include tuples for symbols at the end of
writing lines (EOL).

After parsing, the first retrieval stage (the core engine)
ranks a given number of expressions k by matching query
tuples, using an inverted index mapping symbol pair rela-
tionships to expressions and counts (see Section 5). Tuples
with one wildcard are expanded, but tuples with two wild-
cards are ignored for e�ciency. Iterator trees are used to
process postings quickly. The initial ranking weighs matched
vs. unmatched symbol pairs in the query and candidates.
The second (re-ranking) stage re-scores matches using an
approximate best matching subtree for the query in each
candidate (see Section 6), addressing limitations of symbol
pair-based retrieval described in the previous section.

Illustration. Table 1 shows queries processed using our
two-stage method. For query 1, using MSS for re-ranking
produces top-5 hits matching the query formula exactly af-
ter unifying identifiers (before re-ranking, only the top-3
match). For query 2, the numbered wildcards *1* and *2*
should be identical when repeated. Before re-ranking only
one hit matches the query exactly (rank 4), but after re-
ranking the top-3 are exact matches for the query, and the
remaining two hits are strong partial matches.

4. FORMULA STRUCTURE MODEL
The Tangent formula search engines use a Symbol Layout

Tree (SLT) to represent formula appearance (see Figure 2).

Whereas Tangent-2 based its encoding on a two-dimensional
interpretation of formulas on a page, expressing symbol po-
sitions in terms of horizontal and vertical o↵sets (see Section
2), this revised SLT representation provides greater consis-
tency and expressivity in representing relationships between
symbols. In our representation, matrices are an integral part
of their containing formulas rather than auxiliary relational
structures. Tangent-3 also includes a unified representation
of all parenthesized subexpressions regardless of their inter-
pretation (for example, as function arguments vs. parenthe-
sized matrices). We also add a crude representation of type,
which is critical for re-ranking using Maximum Subtree Sim-
ilarity. We describe these in more detail below.
Node Labels and Types. Nodes in an SLT represent

individual symbols and visually explicit aggregates, such as
fractions, matrices, function arguments, and parenthesized
expressions. More specifically, SLT nodes represent:

• typed mathematical symbols: numbers (N!n); identi-
fiers such as variable names (V!v); text fragments, such
as lim, otherwise, and such that (T!t)

• fractions (F!)
• container objects: radicals (R!); matrices, tabular struc-

tures, and parenthesized expressions (M!frxc)
• explicitly specified whitespace (W!)
• wildcard symbols (*w)
• mathematical operators
Because of their visual similarity, all tabular structures,

including matrices, binomial coe�cients, and piecewise de-
fined functions are encoded using the matrix indicator M!.
If a matrix-like structure is surrounded by fence charac-
ters, then those symbols are indicated after the exclama-
tion mark. Finally, the indicator includes a pair of numbers
separated by an x, indicating the number of rows and the
number of columns in the structure. For example, M!2x3
represents a 2x3 table with no surrounding delimiters and
M!()1x5 represents a 1x5 table surrounded by parentheses.
Importantly, all parenthesized subexpressions are treated

as if they were 1x1 matrices surrounded by parentheses, and,
in particular, the arguments for any n-ary function are rep-
resented as a 1xn matrix surrounded by parentheses.
Every node has a label, and a node’s type (number, vari-

able, operator, etc.) is reflected in its label. If a node’s label
includes an exclamation mark (e.g., V!), the type is the label
prefix up to the (first) exclamation mark. Node labels start-
ing with an asterisk (*) have type wildcard, and other node
labels without exclamation marks have type operator. Cur-
rently all identifiers have type V!, allowing many different
mathematical objects (e.g. function names and variables) to
be unified.
Spatial Relationships. Labeled edges in the SLT cap-

Unifiable Types
• identifier
• number
• groupings (e.g., matrix)

Identifiers
• Variables
• Function Names
• etc.

Re-Rank Scoring
From best subexpression

Results

Participated in three tasks:

1. Wikipedia Formula Browsing Task
2. arXiv Main Task
3. Wikipedia Main Task

Index Sizes and Retrieval Times

SIMILARITY METRICS

D - Approximated Dice Coefficient. Global Dice coefficient for
matching symbol pairs between expressions; wildcards match
individual symbols. *Produces Top-1000 hits for re-ranking.
Wildcards: single symbols, Unification: none

D + DS - Dice Coefficient for Best Matching Subexpression.
Rerank by local Dice coefficient for best matching subexpression
(connected component-based), wildcards match subexpressions.
Wildcards: subexpressions, Unification: none

D + DSU - Dice Coefficient with Unification. Rerank per DS,
but with symbol unification, scoring unified matches lower than
exact matches.
Wildcards: subexpressions, Unification: num + id

D + MSU - Maximum Subtree Similarity (MSS) [6]. Rerank
by harmonic mean of query symbol and relationship matches;
penalize unmatched symbols, then prefer identical symbols.
Wildcards: subexpressions, Unification: num + id

REFERENCES

[1] AIZAWA, A., KOHLHASE, M., OUNIS, I.,
AND SCHUBOTZ, M. NTCIR-11 Math-2 task
overview. In NTCIR (2014), pp. 88–98.

[2] PATTANIYIL, N., AND ZANIBBI, R. Combin-
ing TF-IDF text retrieval with an inverted in-
dex over symbol pairs in math expressions:
The Tangent math search engine at NTCIR
2014. In NTCIR (2014), pp. 135–142.

[3] STALNAKER, D., AND ZANIBBI, R. Math
expression retrieval using an inverted index
over symbol pairs. In DRR (2015), vol. 9402,
pp. 940207–1–12.

[4] ZANIBBI, R., AIZAWA, A., KOHLHASE, M.,
OUNIS, I., TOPIĆ, G., AND DAVILA, K.
NTCIR-12 mathir task overview. In NTCIR

(2016), National Institute of Informatics (NII).

[5] ZANIBBI, R., AND BLOSTEIN, D. Recognition
and retrieval of mathematical expressions. IJ-

DAR 15, 4 (2012), 331–357.

[6] ZANIBBI, R., DAVILA, K., KANE, A., AND
TOMPA, F. Multi-stage math formula search:
Using appearance-based similarity metrics at
scale. SIGIR (2016).

CONCLUSIONS

Q1. How should query text vs. formula matches be weighted?
A. Don’t use independent indices and weight match scores. Consider
interactions between text and formulas in context.

Q2. Should larger query formulae have higher weight?
A. Query formula relevance appears to be independent of size.

Q3. Is the global Dice coefficient over identical symbol pairs effective?
A. Produces an initial Top-1000 with high recall. Good for ranking
exact matches and partial matches with many missing terms.

Q4. Does subexpression-based scoring affect Dice coefficient rankings?
A. Good partial matches are lost due to current subexpression matching
method (connected component-based).

Q5. Does unification affect the perceived similarity of formula hits?
A. Unified matches perceived as good when result matches query;
constraints needed (e.g., prevent sin unifying with x).

Q6. How do Dice coefficient-based rankings compare with Maximum
Subtree Similarity (MSS)?
A. Overall MSS produced best avg. P@k metrics; however global Dice
best for P.Rel concrete, local Dice re-ranking best for Rel. wildcard. Dif-
ferences may be due to constrained matching and unification.

LINKS
CODE: cs.rit.edu/~dprl/Software.html
DPRL LAB: cs.rit.edu/~dprl

ACKNOWLEDGEMENTS
This material is based upon work supported by the

National Science Foundation (USA) under Grant No.

IIS-1016815 and HCC-1218801. Financial support from

the Natural Sciences and Engineering Research Council

of Canada under Grant No. 9292/2010, Mitacs, and the

University of Waterloo is gratefully acknowledged.

RESULTS
Table 1. Wikipedia Formula Browsing Task Results. Avg. Precision@K shown for Top-20
hits provided. Each formula hit rated by two students (MSc + ugrad). Re-Rank Upper Bound:

P@k results from sorting initial Top-1000 hits (ranked by D) in decreasing order of rating.

Table 2. Retrieval Times for Single Threaded
Execution. System: Ubuntu Linux 14.04, 24 In-
tel Xeon 2.93 GHz Processors, 96 GB RAM.

RELEVANT PARTIALLY RELEVANT
QUERIES (40) SUBMISSION P@5 P@10 P@15 P@20 P@5 P@10 P@15 P@20

CONCRETE
(20)

Run-1, D 0.4800 0.3550 0.2900 0.2375 0.9400 0.8850 0.8267 0.7950
Run-2, D + DS 0.4200 0.3300 0.2667 0.2300 0.9200 0.8550 0.8000 0.7700
Run-3, D + DSU 0.5200 0.3500 0.2933 0.2500 0.9100 0.8600 0.8133 0.7750
Run-4, D + MSU 0.5300 0.3700 0.3167 0.2775 0.9100 0.8250 0.8067 0.7700
Re-rank Upper Bound 0.7200 0.5400 0.4167 0.3375 1.0000 1.0000 0.9800 0.9325

WILDCARD
(20)

Run-1, D 0.3800 0.3250 0.2967 0.2525 0.7400 0.6750 0.6800 0.6500
Run-2, D + DS 0.4700 0.4050 0.3533 0.3075 0.7900 0.7700 0.7667 0.7575
Run-3, D + DSU 0.4600 0.4000 0.3633 0.3125 0.8400 0.7750 0.7533 0.7375
Run-4, D + MSU 0.4500 0.3800 0.3267 0.3100 0.8900 0.8250 0.8000 0.7825
Re-rank Upper Bound 0.7700 0.5850 0.4700 0.4025 1.0000 0.9850 0.9567 0.9425

RETRIEVAL TIMES (SECONDS)
TASK µ min max median

ARXIV MAIN 27.54 2.77 178.51 16.014
WIKI MAIN 37.83 1.33 176.06 33.84

WIKIPEDIA FORMULA BROWSING
D (Core, Top-1k) 2.67 0.10 64.13 1.07

D + DS 12.75 0.17 109.61 3.61
D + DSU 45.26 0.58 1032.39 8.58
D + MSU 29.80 0.18 718.70 4.67

Concr. (20) 13.05 1.26 66.97 4.50
Wild. (20) 46.55 0.18 718.70 4.82

Wikipedia Formula Browsing Task. Submitted Top-20 D + MSU P@5 of Rel 49.0% P.Rel 90.0%, vs. best (MCAT) Rel 51.5% P.Rel 93.0%. Tangent
is faster than the MCAT system, and uses only symbol layout. Re-ranking may be improved (see Re-rank Upper Bound in Table 1).

arXiv Main Task. 2nd-place P@5 for submitted Top-20. Rel 26.2% P.Rel 54.5%, vs. best (MCAT) Rel 30.0% P.Rel 57.9%. Run-2, using D + DSU
re-ranking, equal text and formula weights, equally weighted query formulae. Note: arXiv ‘documents’ contain little text.

Wikipedia Main Task. 4th-place P@5, for submitted Top-20 Rel 25.3% P.Rel 49.3%, vs. best (ICST) Rel 47.3% P.Rel 85.3% (same condition as
above). Integrating text and formula retrieval, and representing referencing within and between articles produces better results.

Note: Core formula engine implemented in C++;
re-ranking functions in Python (4-10 times slower)

Wiki formula index: 580.5 MB arXiv formula index: 8.3 GB

Single Threaded Execution

Ubuntu Linux 14.04
24 Intel Xeon 2.93 GHz Processors
96 GB RAM

Tangent-2: >3 mins
for each arXiv query at
NTCIR-11, parallel retrieval
over 9 shards.

Wiki Formula Browsing Task

nodes from T2 such that for every edge (n
a

, n
b

) 2 T1, there
is a corresponding edge (f(n

a

), f(n
b

)) 2 T2 that has the
same label. (Note that node labels in aligned trees need not
match.) For N a subset of nodes in T1, we define f(N) =
{f(n) | n 2 N}.

Approximate matches might also involve simple replace-
ments of symbols in one SLT by alternative symbols (e.g.,
x for y or 3 for 2). Naturally, a wildcard symbol can be
replaced by any symbol.

Definition (unified nodes): Node n1 in SLT T1 can be
unified with node n2 in SLT T2, denoted n1 99K n2, if any
of the following conditions holds:

• Both n1 and n2 have type variable name (V!),
• Both n1 and n2 have type number (N!),
• Both n1 and n2 have type matrix (M!),
• n1 has type wildcard (*), or
• �(n1) = �(n2).

Next, when matching T1 with T2 and allowing substituted
symbols, it is important that the substitutions are consistent
when determining that T1 and T2 match approximately. We
start by identifying candidate sets of nodes in T1 that can
be consistently relabelled.

Definition (alignment partition): Given T1 and T2, two
aligned SLTs with isomorphism f from T1 to T2, an align-
ment partition is a subset of nodes N in T1 such that (x 2
N ^ y 2 N)) (�(x) = �(y) ^ x 99K f(x) ^ y 99K f(y) ^
�(f(x)) = �(f(y))) (i.e., the nodes have identical labels and
their unified images have identical labels or identical SLTs).
For node n 2 T1, we define P (n) to be the alignment par-
tition containing n if it exists and ; otherwise. (Note that
n 2 P (n) , n 99K f(n).) For alignment partition A, �(A)
denotes the label that is common to all nodes in A and
�(f(A)) denotes the label that is common to all nodes in
f(A).

We can now choose a set of partitions that are consistent
in their relabelling of nodes.

Definition (matched set of nodes): Given aligned SLTs
T1 and T2 with isomorphism f from T1 to T2 and the set of
all corresponding alignment partitions, we define a matched
set of nodes M as

M = {n 2 T1 | n 2 P (n) ^ 8n0 2 M

([�(n0) = �(n) _ �(f(n0)) = �(f(n))]) n0 2 P (n))}

In preparation to preferring matches of large connected parts
of SLTs, let E(M) = {(n1, n2) | n1 2 M ^ n2 2 M ^
(n1, n2) 2 T1}, the set of edges induced by M .

Note that there may be many possible matched sets of
nodes for a given alignment, depending on which alignment
partitions are chosen to be included.

Because the SLT for an arbitrary query formula will not
necessarily align with the SLT for an arbitrary candidate
match formula, we need to consider subtrees of the SLTs
that can be aligned. In so doing, we need to allow (but pe-
nalize) situations in which superfluous or mismatched sym-
bols might appear in the query or in the candidate match.
We wish to balance the amount of structural match with the
number of symbols that are identically preserved.

We suggest the following properties for a scoring function,
as illustrated in Figure 3: alignments with more matched
symbols, and especially identical symbols, in close proximity

(1, 0, 3) (1, 0, 2) (1, -1, 2) (0.6, 0, 2) (0.6, -1, 2)

Figure 3: MSS Scoring for Query S(k). Rank-
ing triples contain MSS (1), and the number of
query symbols that are unmatched (2) and exactly
matched (3). Parentheses count as one symbol.

to each other score higher than those with fewer matched
symbols or more disconnected matches; if two candidates
score equally with respect to matched symbols and their
proximity, the one with fewer superfluous symbols scores
higher; and everything else being equal, alignments with
more matched symbols that are identical scores higher. We
employ such a scoring function:

Definition (SLT score): Given a query SLT T
q

, an SLT
T
c

for a candidate match, and two aligned SLTs T1 and T2

where T1 is a subtree of T
q

and T2 is a subtree of T
c

, let
M be a matched set of nodes for T1 and T2. Let S be the
harmonic mean of the fraction of nodes from T

q

preserved
by M and the fraction of edges preserved by E(M), i.e.,
S = 2

|T
q

|
|M| +

|T
q

|�1
max(|E(M)|,0.5)

if |M | > 0, otherwise 0; this is a

measure of the size of the consistent structural part of the
match. The score of T

c

with respect to T
q

, T1, T2, and
M is denoted s(T

q

, T
c

;T1, T2,M) and defined as the tuple
composed of the following parts:

1. structural match: S (favor large matches).
2. unmatched : the negation of the number of unmatched

nodes in T
c

, i.e., |M |� |T
c

|.
3. exact match: |{n 2 M | �(n) = �(f(n))}|.

Scores assigned to any two candidate matches are compared
lexicographically to determine which candidate ranks higher.

For aligned SLTs T1 and T2 with isomorphism f from T1

to T2 and the set of all corresponding alignment partitions,
we want to choose a matched set of nodes M that produces
a high score, but evaluating all matched sets induced by an
alignment is too expensive. Therefore we use a greedy algo-
rithm to select which partitions to include in the matched
set of nodes, based on the properties used for scoring.

Algorithm 1 Greedy selection of matching subtree M

1. Let A0 be the alignment partition that contains the
most nodes; or if more than one partition has the most
nodes, then let A0 be one of those partitions for which
�(A0) = �(f(A0)) if it exists; otherwise let A0 be any
of the largest alignment partitions. Initialize M to
include all nodes in A0.

2. Repeatedly identify the largest alignment partition A
i

such that �(A
i

) is not the label of any node in M
and �(f(A

i

)) is not the label of any node unified with
a node in M , choosing A

i

to be one where �(A
i

) =
�(f(A

i

)) if it exists; replace M by M [A
i

.
3. Stop when no more alignment partitions can be in-

cluded in M .

If hash tables are used to record which node labels have
been included in M and in f(M), checking for duplicate
labels can be performed in O(1) time. Partitions can be
considered one by one in decreasing order of size, which re-
quires O(|T

q

| log(|T
q

|)) time to initialize and then O(|T
q

|) to

MSS Scoring for Query S(k). Ranking triples contain MSS (1), and the number of candidate
symbols that are unmatched (2) and exactly matched (3). Parentheses count as one symbol.

Formula Similarity Metrics
1. Core Engine: Dice Coefficient of Symbol Pairs, 2RP/(R+P)
2. Core + Dice Coefficient for best subexpression
3. Core + Dice Coefficient for best subexpression w. unification
4. Core + Maximum Subtree Similarity (MSS) Vector w. unification

 MSS: Dice Coeff. for SLT symbol and edge recall: 2RsRe/(Rs+Re)

Formula Browsing Task Results (40 queries)

Relevant Partially-Relevant

P@5 P@10 P@15 P@20 P@5 P@10 P@15 P@20
MCAT 0.5150 0.4050 0.3450 0.3000 0.9300 0.8650 0.8300 0.8012
Core (Dice Coeff.) 0.4300 0.3400 0.2933 0.2450 0.8400 0.7800 0.7533 0.7225
Core + Subexp. Dice 0.4450 0.3675 0.3100 0.2687 0.8550 0.8125 0.7833 0.7638
Core +SDice+Unif. 0.4900 0.3750 0.3283 0.2812 0.8750 0.8175 0.7833 0.7563
Core + MSS 0.4900 0.3750 0.3217 0.2937 0.9000 0.8250 0.8033 0.7762
Upper Bound (Top-1k) 0.7450 0.5625 0.4433 0.3700 1.0000 0.9925 0.9683 0.9375

Ideal Pool (all sys.) 0.7900 0.6400 0.5383 0.4725 1.0000 1.0000 0.9933 0.9800

Note: If we break apart 20 queries with from 20 queries without wildcards,
Core + MSS is not always the best ranking procedure.

Overall, subexpression-based ranking, subexpression wildcards and unification help.

ArXiv/Wikipedia Main Tasks

Fixed formula similarity metric
Core + Dice Coefficient for best subexpression w. Unification

Keyword vs. Math score weighting
Uniform (50-50)
Dynamic (proportional to number of query terms)

Multiple query formulae weighting
Uniform
Proportional to query formula sizes (# symbols)

*Total of 4 weighting combinations per task (4 runs)

ArXiv Main Task Results (29 Queries)
Relevant Partially-Relevant

P@5 P@10 P@15 P@20 P@5 P@10 P@15 P@20
MCAT 0.2897 0.2448 0.2276 0.2000 0.5793 0.5552 0.5402 0.5121

Uniform, Pr.Size 0.2552 0.2000 0.1586 0.1345 0.5517 0.4517 0.3908 0.3483

Uniform, Uniform 0.2621 0.2000 0.1632 0.1362 0.5448 0.4552 0.3908 0.3517

Pr.Terms, Pr.Size 0.1862 0.1552 0.1425 0.1259 0.5448 0.4931 0.4575 0.4414

Pr.Terms, Uniform 0.1862 0.1586 0.1425 0.1276 0.5310 0.5034 0.4644 0.4448

Ideal Pool 0.6966 0.5586 0.4644 0.4086 0.9655 0.9552 0.9172 0.8828

For Relevant hits, uniform weighting of query terms and combined text and
math scores works best.

For Partially Relevant hits, proportional weighting for text/math or
query formula sizes obtain best results at different ranks.

Wikipedia Main Task Results (30 Queries)
Relevant Partially-Relevant

P@5 P@10 P@15 P@20 P@5 P@10 P@15 P@20
ICST 0.4733 0.3767 0.2978 0.2617 0.8533 0.79 0.7133 0.66

Uniform, Pr.Size 0.2467 0.2333 0.2156 0.2050 0.4933 0.4900 0.5000 0.4850

Uniform, Uniform 0.2533 0.2500 0.2200 0.2050 0.4933 0.4933 0.4867 0.4767

Pr.Terms, Pr.Size 0.1600 0.1267 0.1222 0.1250 0.3867 0.3667 0.3689 0.3567

Pr.Terms, Uniform 0.1533 0.1400 0.1289 0.1250 0.3800 0.3667 0.3600 0.3550

Ideal Pool 0.8400 0.6967 0.5956 0.5133 0.9467 0.9400 0.9289 0.9217

Systems that use text features/context performed much better on this task,
due to the text available in the full articles.

Similar result; uniform weightings do best at higher ranks.

Conclusion

What worked…and what did not.

Summary: Our Observations
Don’t use independent indices for text and math. Consider
interactions between text and formulas in context.

Query formula relevance appears to be independent of size.

Core formula retrieval results produce an initial Top-1000 with
high recall. Good for ranking exact matches and partial matches
with many missing terms; room to improve re-ranking.

Scoring formulae using subexpression matching helps, but good
partial matches missed by our subexpression matching
method (connected component-based).

Unified formula matches ‘good’ when candidates are very
similar to query; constraints needed (e.g., sin unifies with x).

Overall MSS reranking produced best Wiki Formula Browsing
results, but Core results best for P.Rel concrete, local Dice re-
ranking best for Rel. wildcard queries. Differences may be due to
constrained matching and unification.

Thank you.

This material is based upon work supported by the National Science
Foundation (USA) under Grants No. IIS-1016815 and HCC-1218801.

Financial support from the Natural Sciences and Engineering Research
Council of Canada under Grant No. 9292/2010, Mitacs, and the University of
Waterloo is gratefully acknowledged.

Source code: www.cs.rit.edu/~dprl/Software.html

Formula Browsing Task Results (20 concrete queries)

Relevant Partially-Relevant

P@5 P@10 P@15 P@20 P@5 P@10 P@15 P@20
Core (Dice Coeff.) 0.4800 0.3550 0.2900 0.2375 0.9400 0.8850 0.8267 0.7950
Core + Subexp. Dice 0.4200 0.3300 0.2667 0.2300 0.9200 0.8550 0.8000 0.7700
Core + Sub Dice + Unif. 0.5200 0.3500 0.2933 0.2500 0.9100 0.8600 0.8133 0.7750
Core + MSS 0.5300 0.3700 0.3167 0.2775 0.9100 0.8250 0.8067 0.7700
Upper Bound (Top-1k) 0.7200 0.5400 0.4167 0.3375 1.0000 1.0000 0.9800 0.9325

Ideal Pool (all sys.) 0.7300 0.5800 0.4733 0.4000 1.0000 1.0000 0.9967 0.9800

Formula Browsing Task Results (20 wildcard queries)

Relevant Partially-Relevant

P@5 P@10 P@15 P@20 P@5 P@10 P@15 P@20
Core (Dice Coeff.) 0.3800 0.3250 0.2967 0.2525 0.7400 0.6750 0.6800 0.6500
Core + Subexp. Dice 0.4700 0.4050 0.3533 0.3075 0.7900 0.7700 0.7667 0.7575
Core + Sub Dice + Unif. 0.4600 0.4000 0.3633 0.3125 0.8400 0.7750 0.7533 0.7375
Core + MSS 0.4500 0.3800 0.3267 0.3100 0.8900 0.8250 0.8000 0.7825
Upper Bound (Top-1k) 0.7700 0.5850 0.4700 0.4025 1.0000 0.9850 0.9567 0.9425

Ideal Pool (all sys.) 0.8500 0.7000 0.6033 0.5450 1.0000 1.0000 0.9900 0.9800

Tangent-3 Formula Retrieval
Step 1. Core Engine (Candidate Hit Generation)

• Retrieves based on all symbol pairs; ranked via symbol pair Dice coefficient
(harmonic mean: 2RP/(R+P))

• Top-k unique formulae returned as candidates.
• Wildcards treated as single symbols.

Step 2 (Optional). Re-rank Formula Hits
• Detailed Matching

• Wildcards may match subexpressions
• Support unification of numbers, identifiers
• Find best subexpression matching the query

• Scoring vector (variety of similarity metrics considered)

Step 3. Produce ‘Math Score’ for Documents
• Lookup documents corresponding to matched formulae.
• Use best match for each query formulae on a document for scoring.
• Match scores linearly combined to produce ‘math score.’

Tangent-3 Formula Retrieval Model

After final rankings for all query formula hits, complete Step 3
(score docs via linear comb. of best match scores for query formulae)

