
A Document Retrieval System for Math Queries

Abhinav Thanda, Ankit Agarwal, Kushal Singla, Aditya Prakash, Abhishek Gupta
Samsung R&D Institute India, Bangalore

{abhinav.t89, ankit.ag, kushal.s, abhishek.gu}@samsung.com

ABSTRACT
We present and analyze the results of our Math search sys-
tem in the MathIR tasks in the NTCIR-12 Information Re-
trieval challenge.
The Math search engine in the paper utilizes the co-occurrence

finding technique of LDA and doc2vec to bring more con-
textual search. Additionally, it uses common patterns to
improve the search output. To combine various scoring al-
gorithms, it uses hybrid ranking mechanism to re-rank the
documents retrieved from Elastic Search. In this paper, we
evaluate the results from these algorithms and present pos-
sible future work for further improvements.

Team Name
SMSG5

Subtasks
MathIR arXiv Main Task (English), optional MathIRWikipedia
Task (English)

Keywords
NTCIR, text search, math formula search

1. INTRODUCTION
In contrast to normal keyword-based search engines, Math

search engine poses unique set of challenges. This is due to
the fact that a query can contain formula in i) its exact
form ii) exact form but in different variable representation
iii) different ordering of operator and/or variables and iv)
partial form. As a result of these, additional complexity is
required in the system to handle such cases.
NTCIR [6] gives its participants a unique opportunity to

solve such challenges through Math Information Retrieval
task. In particular, NTCIR-12 provided two different types
of datasets: ArXiv dataset consisting of more than 100,000
files from arxiv website (with 60M formulae) and Wikipedia
dataset with more than 300, 000 articles from Wikipedia
website (with more than 500, 000 formulae). The initial
processing of documents was done by NTCIR organizers
and dataset was provided in the form of xhtml files having
math equations in three Math formats. In all, 50 evalua-
tion queries for ArXiv dataset and 30 queries for Wikipedia
dataset were published which contained queries from varied
domain of Mathematics and contained both keyword and
formula queries with formula being in different forms, as

discussed earlier. For each query, it is expected to retrieve
1000 responses from the system.

SMSG5 group participated for both the datasets but due
to time constraint (our late entry into NTCIR-12 compe-
tition) and unavailability of appropriate infrastructure, we
could not complete the ArXiv dataset according to the orig-
inally planned four runs and could submit only one run re-
sults within the stipulated deadline. For Wikipedia dataset,
all the four planned runs were submitted, the details of each
of them will be discussed in subsequent sections.

2. THE MATH SEARCH SYSTEM
We created a Math Search Engine with the capability of

both formula as well as keyword search. The novelty of our
search engine lies in:

• First use of Doc2Vec for Math formulae

• Using contextual information (formula+keyword) by
exploiting Latent Dirichlet Allocation’s (LDA) co-occurrence
finding algorithm

• Use of pattern-based approach for common patterns

• Borda count based hybrid ranking system

We first process the data to extract useful information
& carry out appropriate formula representation. We then
use Elastic Search to index documents which act as a base
ranking mechanism. Re-ranking of documents is achieved
by using Borda Count-based hybrid ranking over a number
of scoring mechanisms: Doc2Vec-based scoring, LDA-based
scoring, and Pattern-based scoring along with ES scoring.
Both the datasets (ArXiv and Wikipedia) were handled in
the similar fashion and hence, a common description is given.
In subsequent sections, we describe the overall processing
and ranking mechanism.

2.1 Data Processing
Most of the initial processing of datasets is done by NTCIR-

12 and represent them in xhtml files with formula being rep-
resented in three different formats: Presentation MathML,
Content MathML and LATEX . For our search engine, we
used Presentation MathML format because of its simplistic
representation compared to other two formats. In the ap-
proach we adopted, we removed unnecessary information in
the presentation MathML like“< mathdisplay = “inline”id =
“3D projection : 1” >” and filtered all the formulae with

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

346

only relevant MathML form like “< math >”. IN NTCIR-
12 dataset, it is observed that some of the formulae are rep-
resented in nested MathML form. This affects identifica-
tion and matching with query formula. Hence, we identified
such cases and re-processed them to represent them in useful
form, as shown in fig. 1.

Figure 1: Nested MathML issue in NTCIR-12
dataset

Once a formula is appropriately modified, we represent
each of the formula in two forms: specialized form with for-
mula in exact version (ex- < math >< mi > U < /mi ><
/math >) and generalized form with its generalized version
(ex- < math >< mi > ∗ < /mi >< /math >). For gen-
eralized form, all the formulae having any identifier in the
< mi > tag is replaced by “*”. This feature assures that
the matching happens for those formulae which are same in
meaning but different in syntax. As an example, a2 = b2+c2

& x2 = y2 + z2 are same because they represent the same
equation using different syntax. Hence, we convert the two
equations in single format: ∗2 = ∗2 + ∗2. Additionally, due
to complexity of formulae, the two forms are stored in en-
coded form: P + Si, where P is a fixed prefix for all formu-
lae (choice of these prefixes is arbitrary but it ensures that
the combination P + Si is unique throughout the corpus;
Ex- htam) and Si is the ith formula in the corpus, being
encoded in base 26 (Ex- for i = 28, Si = AB and hence,
P + Si = htamAB). The corresponding files containing the
formula are also modified.

2.2 Elastic Search (ES): Indexing and Scoring

2.2.1 Indexing
The modified files (with encoded formulae) are indexed

with keyword and formulae. We create two levels of in-
dexes: Level 1 and Level 2. Level 1 index contains < P +

S; formula > where key is P + S and value is formula. It
is created separately both for specialized [ES INDX1] and
generalized forms [ES INDX2] of the formula. This would
be used later for searching the query formula for top best
matches and identifying its encoded form. For LDA pur-
pose, it would be used to fetch best match formula and
for ES to get top N matching results. Level 2 index con-
tains: < P + S; filename, formula id >. It is also created
separately both for specialized [ES INDX3] and generalized
[ES INDX4] forms of the formula. This would be useful to
retrieve the file names and formula id for the top N formulae
retrieved (their encoded forms) from Level 1 for the query.

For the formula field to store mathematical formula, we
use custom analyzer for elastic search, as shown in fig. 2.

Figure 2: Custom ES analyzer

For keyword index [ES INDX5], we use standard stopword
list to remove high frequency words. In addition to stop-
words, we also removed encoded formula: P+S. After clean-
ing the textual part, we then index into elastic search for key-
words using normal ES mechanism: < filename; file content >.

2.2.2 Elastic Search-based Scoring
The NTCIR-12 queries are pre-processed in a similar fash-

ion as that for documents: Presentation MathML, stop-
words etc.. After query pre-processing, we generate internal
queries for the five ES indexes (ES INDX1 · · · ES INDX5)
using multi-search query mechanism of ES, corresponding
to terms in the query for each index. One of the reasons
of using elastic search is that it supports partial matches
and also assigns score to each result depending upon the ex-
tent of match. As an example, for user query: x + y Mean
Arithmetic, we generated the following set of ES queries:
[ES INDX1] x+y (in MathML), [ES INDX2] ∗+∗ (in MathML),
[ES INDX3] <spec encoded formula>, [ES INDX4]
<gen encoded formula>, [ES INDX5]mean arithmetic.

ES search is carried out in phases depending on its require-
ment for LDA or for ranking of documents/formulae. For
LDA, we are interested in the best match formula because
LDA does not support partial matching and it models only
over the existing formulae in the corpus. Hence, the need
for obtaining top best match formula corresponding to the
input query formula. In the other phase, we use ES query
for ranking of documents and formulae separately. Both of
the query phases are similar, the only difference being the
number of results retrieved: in first phase, we retrieve top-
most result and in other, top N results and hence, we discuss
the two phases commonly.

We consider following points while generating ES query:

1. We use a Boolean query. That is, a query encompass-
ing multiple sub-queries within.

2. Amongst the 3 sub-queries embodied inside the ES
query, one of them is Match Phrase query. This query
matches the exact mathematical string, if present. The

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

347

boost value associated with this query is kept the high-
est (10.0).

3. Next is a Match query with “AND” type. This gives a
match, only if all the tokens (given in the query) are
present in an index of elastic search. Its boost is kept
the second highest (5.0).

4. Lastly, we use a Match query with “OR” type. It pro-
duces results ranked (boost value = 1.0) as per the
number of tokens matched in any of the elastic search
index.

5. Also, we use a notable parameter: “SLOP”. If in a
query, two subsequent tokens occur with S tokens in
between, then it will be considered as a match only
if SLOP value is greater than S. In other words, the
value of slop decides upto what gap two subsequent
token in a query can have in the match. In our case,
we use S = 30.0.

We use default scoring mechanism of ES to score formulae
and documents retrieved from ES. For formulae, we use ex-
act match and partial exact match boosting to give higher
score to specialized match formulae.

2.3 Doc2Vec-based Scoring
Paragraph vectors or doc2vec models are a class of algo-

rithms which use neural networks to construct distributed
representations of arbitrarily long sentences. [4] discusses
the application of doc2vec to retrieval of text documents. In
this section we explore the application of doc2vec algorithm
to MIR. A specific variant of doc2vec algorithm called the
distributed bag of words (PV-DBOW) model is used. We
extend the DBOWmodel to represent 2-d expression trees in
the form of real valued dense vectors such that structurally
similar formulae appear closer in the vector space.

2.3.1 Paragraph Vector
One of the approaches for paragraph vector is distributed

bag of words model (PV-DBOW) algorithm where each para-
graph is represented by a unique vector which needs to be
learned. The vectors are represented as column matrix D.
In each iteration of the stochastic gradient descent learning
algorithm, a window of text is sampled. From this window a
word is sampled randomly. The network is forced to predict
the sampled word with the paragraph vector as input.
The model is trained by maximizing the average log prob-

ability of a word given the paragraph/document vector as
input. The objective function can be written as

J(θ) =
1

|D|
∑
d∈D

∑
w∈d

log(P (w|d)) (1)

where D is the set of documents, w is a word in document
d. In order to speed up the training, hierarchical soft-max
algorithm [4][5] is used.

Inferencing
During test time, a new document or paragraph is presented.
The paragraph vector for the new document is obtained by
performing an inference step using the trained model. The
inference step involves adding an additional column to the
paragraph matrix D and running the gradient-descent al-
gorithm on the new document. During test time only the

paragraph matrix is updated while the rest of the parame-
ters are left unchanged.

Application of PV-DBOW to Math formulae
Mathematical formulae have 2-dimensional structures and
can be represented in the form of expression trees (as shown
in fig. 3) with operators occupying non-leaf nodes and operands
occupying leaf nodes. We define a token as a set of nodes
containing a single operator and its immediate child nodes.

In the PV-DBOW model for formulae, each formula is
represented by a unique vector. A formula is composed of
tokens where each token is mapped to a unique id (uid). The
tokens for formula in fig. 3 are listed in Table 1. In each
iteration of the learning algorithm for the formula model,
we sample a window of tokens and train the model similar
to the procedure discussed earlier, with formula vector as
input instead of paragraph vector.

Figure 3: A binary expression tree representation

Table 1: Tokens of formula in fig. 3
Token Unique Id
{x, ∧, 3} uid1
{1, +, x} uid2
{uid2, ∧, 2} uid3
{uid1, +, uid3} uid4

2.3.2 Detailed Description
Offline System

Offline system in fig. 4 performs formula and text data prepa-
ration, tokenization and generalization of math formulae,
training PV-DBOWmodels for formulae and documents and
indexing of formula and document vectors. The training
dataset for document vectors consists of text of the docu-
ment with all its formulae replaced by their unique ids. All
the models are trained using Gensim’s doc2vec module.

Figure 4: Offline system for Math IR using doc2vec

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

348

Generalization
Generalization is the process of modification of a math for-
mula so that all the variables in the formula are replaced by
generic variables. This enables the system to match those
formulae which are same in all aspects except for the vari-
ables. Note that generalization here is different from gen-
eralization discussed in earlier sections: here each unique
variable is represented by an“id”which is incremented when-
ever new variable is encountered, with constants being un-
changed. Equation 2 gives an example of the generalization
form.

x2 + y2 = z2

=⇒ id20 + id21 = id22

a2 + b2 = c2 (2)

Tokenization
Tokenization is performed by traversing the formula tree
recursively (in-order), with the concept of token being same
as discussed in previous section. Each new token is indexed
along with a unique token id. Tokenization is performed over
both generalized as well as the original specialized formula
tree. The two sets of tokens are indexed separately.

Formula model training
A map of formula ids and tokens of the formula is created
during tokenization process. The Two models are trained
separately for generalized and specialized formulae. Each
formula is represented by a 100 dimensional real vector. The
window size being 3 and the initial learning rate is set to
0.025. The PV-DBOW model training is run for 50 itera-
tions.

Document model training
A map of file names and their corresponding text is created
during data preparation. The PV-DBOW model is trained
for fifty iterations. Each document is represented by a real
valued vector of 300 dimensions. The window size being 8
and the initial learning rate is set to 0.025.

Online System
The online system is depicted in fig. 5. Generalization and
tokenization steps are same as that in the offline case. The
formula models are used to generate a real valued vector
for the formulae in the query and is referred as inferencing,
as described earlier. The inferred vectors are then used to
fetch the most similar formulae from the indexed formulae
using cosine similarity score. The most similar formulae are
mapped to their corresponding documents. The formula in
the query is replaced by id of the highest scoring formula
obtained from the formula model. The complete query in-
cluding the text and formula is fed to the document model
and most similar documents are retrieved. Finally, the doc-
uments retrieved from the formula and document models are
ranked using Borda ranking algorithm to get final scores of
retrieved documents.

Ranking
Borda count method is used to rank the results obtained
from formula and document models. The Borda method
[2] is based on the Borda count voting method where each

Figure 5: Online system for Math IR using doc2vec

search engine is seen as a voter. Each voter ranks a fixed
number c of candidates, where the first candidate is given
a score of c, the second c − 1, and so on. If there are any
candidates left unranked by the voter, the remaining points
are evenly distributed among them:

sτ (x) =

{
1− τ(x)−1

|Ωτ | , if x ∈ Ωτ

|Ω|−|Ωτ |+1
2∗|Ω| , otherwise

(3)

where
Ω: the universe of information objects to be ranked.
P : the set of rank sources to be combined.
τ : a rank source τ ∈ .
Ωτ : the set of items Ωτ ⊂ Ω returned by τ .
τ(x): given x ∈ Ωτ , τ(x) is the position of x in the ranking
returned by τ .
sτ (x): the normalized score for x corresponding to τ .
sp(x): the final combined score for x.

2.3.3 Discussion
Tables 6(a) and 6(b) show the formulae retrieved from

the specialized formula model for two different queries. We
observe that our technique performs a basic form of “nor-
malization”, especially in case of simpler formulae (row 1
of table 6(a)). Also partial matches corresponding to the
query formulae are retrieved (row 3). However, this normal-
ization is not consistent across all formulae. Furthermore,
formulae with same tree structure but containing different
variables (leaf nodes) are not retrieved. This necessitated
the use of separate models for generalized and specialized
formulae. The results along with generalized formulae show
an improvement, as shown in last 3 rows of table 6(a) and
table 6(b). However, we observed that sometimes the results
retrieved are completely unrelated to the query (row 3 of ta-
ble 6(b)). Hence, in order to make the results more reliable,
we use doc2vec along with elastic search rather than as a
standalone system.

The document model trained on text and formulae com-
bined performs as expected. Figure 7 shows a plot of a sub-
set of documents chosen randomly from seven topics where
the topics & corresponding documents were obtained by
parsing wikipedia category pages (For example- https://

en.wikipedia.org/wiki/Category:Algebra). The dimen-
sions are reduced from 300 to 2 using t-SNE algorithm [3].
Documents related to similar topics appear together.

2.4 LDA-based Scoring
As discussed earlier, corresponding to query formula, we

retrieve topmost match (representative)formula from ES, en-

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

349

(a) Query: x2 + y2 = z2 (b) Query: 2F1(a, b; c; z)

Figure 6: Nearest formulae and their cosine distances

Figure 7: Subset of documents plotted in 2D. Doc-
uments of similar topics appear together

code the formula, combine it with query keywords and use
the complete formed query text for LDA inferencing. In the
offline part, we use the prepared document files (with en-
coded formula) and use them to generate two different LDA
models: specialized LDAmodel and generalized LDA model.
We use Gensim’s online LDA to create these LDA models
and also, for inferring topics of the query.
Apart from the two models, we also generate two files

which list down the topics of each cleaned file after querying
from respective model files and index these topics into ES
in the format: < Id;Topicprob, Topic > where Id is the file
name, Topicprob is the ordered(descending) list of all topics
& their probabilities for that document and Topic is the list
of top 10 topic ids for that document.
LDA processing is based on the assumption that we could

always retrieve a best match formula (corresponding to the
query) from ES Index. This requirement comes from the
fact that LDA’s co-occurrence works when the query token
already appears in the LDA model (the corresponding doc-
ument(s) used for model generation). After receiving the
query, we infer topics of the query for each form using the
two LDA models generated. Once topics for the query are
inferred, the probability distribution of query’s topics is used

to compare (using a similarity match) with that of probabil-
ity distribution of documents in ES, to find the ranked list
of documents. For this, we consider top 10 topics of query
and these topics are queried into elastic search index to find
matched docs. An example of the ES query used to retrieve
all query topic matching documents is given in fig. 8.

Figure 8: Sample ES query to retrieve documents
matching query topics

The retrieved documents from ES are ranked by com-
paring the topic probability distribution of query and the
retrieved documents. We use similarity metric based on
Jensen-Shannon divergence. The resulting similarity score
then becomes the LDA-based document score. The similar-
ity metric is given as

Simlda = 1− JSD(P (QT)||P (DT
i)) (4)

where P (QT) is the probability distribution for query topics,
P (DT

i) is the topic probability distribution for ith retrieved
document (from ES) and JSD(P ||Q) is the Jensen-Shannon
divergence between P & Q and is given as

JSD(P ||Q) =
1

2
D(P ||R) +

1

2
D(Q||R), R =

P +Q

2
(5)

where D(X||Y) is KL-divergence between the two random

variablesX & Y and is given asD(X||Y) =
∑

i X(i)loga
X(i)
Y (i)

.

Note that in Eqn. 4, JSD is computed for log to the base 2
(i.e., a = 2) and hence, JSD ∈ [0, 1].

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

350

Figure 9: Example analysis of LDA algorithm of two
NTCIR-12 queries

Discussion
Figure 9 shows the top topic results for the two NTCIR-12
queries on the formula form for Pythagorean Theorem. As
can be seen, for both the queries, Elastic search was able
to retrieve correct match for both the specialized as well as
generalized case. For the first query, the top topic’s sur-
rounding words are related in case of specialized model but
partially related in case of generalized model. Similar is the
interpretation for second query, except for its generalized
case where it actually considered top topic corresponding to
word “proof” rather than considering contextual part also:
the query formula. These observations are a consequence of
below limitations which when resolved would improve the
overall performance of LDA-based scoring. These limita-
tions could not be resolved in the current setup due to in-
frastructure issues and time concerns, as discussed earlier.

1. The number of LDA topics are too low (topics = 500)
for the amount of data considered. Once an appropri-
ate topic count is considered (using perplexity score),
one would expect “proof” & “x2 + y2 = z2” to come
under same topic

2. Both specialized as well as generalized forms to be con-
sidered under single LDA model. This would increase
the co-occurrence of similar structure formulae thereby
giving better results for generalized form

2.5 Pattern-based Scoring
We observe in NTCIR-12 dataset that certain NLP-based

patterns are frequently repeated and hence, applied pattern-
based approach to identify such patterns. The pattern-based
approach is similar to [1] but differs in its usage. Of all the
patterns, we identified two prominent patterns from dataset
based on the techniques discussed later in this section.
In the offline part, we develop NLP rules based on Stan-

ford Dependency and POS (Stanford core NLP v3.5.2 pack-
age) parsers for mapping the mathematical equation to its
definition. We then index the definition to equation map-
ping in the elastic search in an equation-definition index
([ES INDX6]). Finally, [ES INDX6] index is used for ex-
panding the initial query before the expanded query is given
to the other ES indexes ([ES INDX1 · · · ES INDX5) for
fetching ranked documents.

2.5.1 Identified Patterns
We identified two patterns to identify the mapping of

mathematical equation to definition.

1. Nsubj based pattern: In this pattern, if a token is as-
sociated as a dependent in an nsubj relation and the
governor of the nsubj relation (which is an equation) is
also the governor of a copula relation, the governor of
the nsubj relation is the extracted mathematical equa-
tion and the dependent of the nsubj relation is its def-
inition. Definition is filtered using POS tag. It should
be a noun phrase like (NN, NNS, NNP, and NNPS).
An example is shown in fig. 10.

Figure 10: Nsubj based pattern

2. NSubjPass based pattern: In this pattern, if a token is
associated as a dependent in an nsubjpass relation and
the governor of nsubjpass relation is also the governor
of an nmod agent relation whose dependent is an equa-
tion then the dependent of the nmod agent relation is
the extracted mathematical equation and the depen-
dent of the nsubjpass relation is its definition. Again
the definition is filtered using POS tag .It should be
a noun phrase like (NN, NNS, NNP, and NNPS). An
example is shown in fig. 11.

Figure 11: NSubjPass based pattern

2.5.2 Pattern Indexing and Scoring
We index the equation and its definition in the elastic

search. The both definition as well as equation are stored
as an indexable string which is analyzed using a regular ex-
pression (“<.*?>|[∧<∧>]+”, acts as a tokenizer to create
sub-components from a mathml expression) and filtered us-
ing a “lowercase” filter.

Once the expanded query is generated (using the method
described earlier), it is used to retrieve ranked list of docu-
ments from other ES indexes with default ES scoring. The
scored documents then become pattern-based scored docu-
ments.

2.6 Document Re-Ranking
Having obtained different document scores each from dif-

ferent scoring mechanisms, we require a method to re-rank
the documents to obtain a consolidated ranking of docu-
ments. We use Borda count based ranking mechanism (as
discussed earlier) to re-rank the documents. Figure 12 de-
picts the complete re-ranking system. NTCIR requires scor-
ing for both documents as well as formulae. We individually

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

351

Figure 12: Re-ranking System

describe, in subsequent subsections, the scoring mechanism
of each of them.

2.6.1 Document Scoring
The ranking formula used for re-ranking of documents is:

Document Ranking = BC(SES , SD2V , SP , SLDA) (6)

where BC(.) is the Borda Count Ranking and SES , SD2V ,
SLDA, SP , are scores of Elastic Search, Doc2Vec, LDA and
Pattern respectively and are given as

SES = BC(SK , SS , SG) (7)

where SK is the ES score corresponding to Keyword Index,
SS is ES score corresponding to Specialized Index and SG is
ES score corresponding to Generalized Index.

SD2V = BC(SF , SD) (8)

where SD is Doc2Vec score and SF is formula vector score.

SP = BC(SEK , SES , SEG) (9)

where SEK is the extended ES score corresponding to Key-
word Index for extended query, SES is ES score correspond-
ing to extended Specialized Index and SEG is ES score cor-
responding to extended Generalized Index.

SLDA = BC(SLS , SLG) (10)

where SLS is scoring corresponding to specialized LDAmodel
and SLG is scoring corresponding to generalized LDA model.
Depending on the scoring algorithms used, document rank-
ing formula changes (Ex- for ES+D2V, formula becomes
Document Ranking = BC(SES , SD2V).
Since ES contains index of formula rather than documents,

we converted the scoring of formula to scoring of documents.
During ES scoring, we were boosting the score for exact
match and hence, we first normalize the score by using:
ES Score/Max ES Score and denote it by FR(formula Rel-
evance). For document scoring, we do the following:

DSd =

N∑
i

(1 + FRi)
log(1+FFi) (11)

where DSd is the document score for document d, FRi (>
0 and ≤ 1) is the formula relevance score (normalized ES
score) for ith matched result out of r formula retrieved re-
sults and FFi is the frequency of that formula in file d. The
choice of formula for formula-to-document scoring is based
on the following requirement:

1. High FR and high FF => Highest rank for that doc-
ument

2. High FR and low FF =>Medium-to-low rank for that
document

3. Low FR and high FF => Low-to-medium rank for
that document

4. Low FR and low FF => Lowest rank for that docu-
ment

2.6.2 Formula Scoring
Formula scoring is obtained by applying Borda Count-

based Ranking over Doc2Vec (for formula) and ES scores as
follows:

Formula Ranking = BC(SES , SF2V) (12)

3. RESULTS & EVALUATION

3.1 System Setup
We use a basic set up of three normal desktop PCs with

one PC handling LDA and ES internal queries, another for
doc2vec internal queries and the third one for re-ranking,
result generation & also, acts as a spring framework server
for the queries. Because of this minimal infrastructure, the
response time for all the NTCIR-12 queries both for ArXiv
as well as Wikipedia dataset is high. We expect it to reduce
to acceptable figures once it is deployed in a distributed
environment.

3.2 Results Analysis
As discussed earlier, our ArXiv submission was partial

due to time and infrastructure constraints. We submitted
top 1000 results from the output of only Elastic Search index
for all the 50 queries. As can be seen from fig. 13 for the
best comparison results, the performance of ES alone is fairly
good, as far as partially relevant results are concerned. In
contrast to other systems, the performance of ES does not
degrades much as the precision@N increases.

For Wikipedia task, we submitted four runs each with top
1000 results: (i) ES only (ii) ES and Doc2Vec(D2V) (iii) ES,
D2V and Pattern(P) and (iv) ES+D2V+P+LDA. Figure 14
shows the comparison for all the four variants. We observe
that ES+D2V+P performs best followed by ES+D2V. It
clearly shows that ES alone cannot assist in retrieving rel-
evant results though it does help in increasing the number
of partial results (fig. 15), an observation similar to ArXiv
dataset. Additional ranking systems do assist in improving
the overall rank of the relevant documents.

One of the reasons why variant with LDA did not perform
as good as other variants is because of the choice of the
number of topics. Because of infrastructure limitations, we
use 500 topics which is way too less as compared to the
number of topics usually used (2000-10000 topics or more
depending on the vocabulary size) to give better granularity
to topics. Additionally, some parameter tweaking is required

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

352

Figure 13: Comparison among the 5 systems for
their best results for partial relevance using treceval

Figure 14: Comparison among the four variants of
our Math search engine for relevant results using
treceval

to achieve best performance. For our case, we considered the
LDA parameters as: α = 0.1, β = 0.1, chunksize = 5000,
passes = 5 under Gensim tool. It is also observed that
for some queries, ES’s top most result was partially relevant
which indicates some improvements are required in ES’s best
result retrieval mechanism.
The observation somewhat changes in case of partially rel-

evant results. As can be seen from fig. 15, ES performs way
much better as compared to ES+D2V+P. It indicates that
in general, ES performs well when it comes to retrieving
partially relevant results and requires other systems to im-
prove its relevant result score. One of the reasons why we
think ES works well for partial relevance is in its capabil-
ity of partial matches for formulae and tf-idf based keyword
match scoring.

4. CONCLUSION & FUTURE WORK
In this paper, we present a Math Search engine by con-

sidering the co-occurrence of formula and keywords. We
use Borda count-based ranking system to re-rank the docu-
ments.
As part of the future work, we plan to work on the follow-

ing:

1. Introduce normalization: apply operator and/or vari-

Figure 15: Comparison among the four variants of
our Math search engine partially relevant results us-
ing treceval

able ordering to improve results

2. Improve the infrastructure to get better query response
time, consider higher LDA topics and improve doc2vec
models

3. Consider Content MathML instead of Presentation MathML
as it has been shown that in general, Content MathML
performs better

4. Our choice of (nested) Borda count-based re-ranking is
based on its simplicity and faster re-ranking capability.
Though it works well, weights across different scoring
mechanisms are treated equally. That is, the differ-
ent knowledge bases are considered equally important
which may not be the case always. For example, in
some queries, it is found the keywords are not that
relevant whereas in others, they help in retrieving the
documents. Hence, a machine learning approach like
RankSVMwould help in further improving the systems
performance.

5. REFERENCES
[1] A. Aizawa and et al. Extracting textual descriptions of

mathematical expressions. In Proceedings of Scientific
Papers D-Lib Magazine, 2014.

[2] J. A. Aslam and M. Montague. Models for metasearch.
In 24th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval,
pages 276–284, 2001.

[3] V. der Maaten, Laurens, and G. Hinton. Visualizing
data using t-sne. In Journal of Machine Learning
Research 9.2579-2605 (2008): 85, 2008.

[4] Le, Q. V., and T. Mikolov. Distributed representations
of sentences and documents. In arXiv preprint
arXiv:1405.4053, 2014.

[5] M. Tomas and et al. Distributed representations of
words and phrases and their compositionality. In
Advances in neural information processing systems,
2013.

[6] R. Zanibbi, A. Aizawa, M. Kohlhase, I. Ounis,
G. Topić, and K. Davila. NTCIR-12 mathir task
overview. In NTCIR. National Institute of Informatics
(NII), 2016.

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

353

