
ITNLP: Pattern-based Short Text Conversation System at
NTCIR-12

Yang Liu
Harbin Institute of Technology,

China
yliu@insun.hit.edu.cn

Chengjie Sun
Harbin Institute of Technology,

China
cjsun@insun.hit.edu.cn

Lei Lin
Harbin Institute of Technology,

China
linl@insun.hit.edu.cn

Xiaolong Wang
Harbin Institute of Technology,

China
wangxl@insun.hit.edu.cn

ABSTRACT
This paper describes the ITNLP system participated in the
Short Text Conversation (STC Chinese subtask) of the NTCIR-
12. We employed a Logistic Regression Model combined
with pattern-based matching features to solve the STC prob-
lem. Deep learning methods were also tried in our experi-
ment. Out of the 44 submitted runs our best performance
run ITNLP-C-R3 ranked 8th(Mean nDCG@1),12th(Mean
P+) and 9th(Mean nERR@10) respectively [4].

Team Name
ITNLP

Subtasks
Short Text Conversation System (Chinese)

Keywords
artificial intelligence, dialogue systems, natural language pro-
cessing

1. INTRODUCTION
Building an open-domain system that can communicate

with humans using natural language has always been a dream
of scientists and researchers. And it is still a difficult prob-
lem to solve in AI area. Although much efforts have been
devoted in this problem, little progress was made. As large
volume conversation data become possible to obtain on so-
cial media, which makes it possible to explore new solutions.
In NTCIR-12, given a large repository of short text conver-
sation data, the objective of Short Text Conversation (STC)
is to build an IR system that can effectively reuses past com-
ments to respond to a post [3].

As the task description mentioned, we took the idea of
taking STC as an IR problem. Our method has two stages:
first, we use Lucence system to retrieve 50 candidate answers
for each given question. Then we rank the answers according
to the matching score given by our models, keeping the top
ten answers as final results. We mainly refer to paper [5],
our work could be regarded as a simplified version of their
original work with only some minor changes. As we can
see, the official results again proved the effectiveness of this
method.

It is worth mentioning that our efforts mainly focused on
the second stage. That is to say, the information retrieval
part automatically done by the Lucene system, we only care
about whether the retrieved answers match the given ques-
tion. In other words, we treated this task as a classification
problem.

2. SYSTEMOVERVIEW
Figure 1 shows an overview of our system. First, we ex-

tract appropriate patterns based on the conversation repos-
itory. At the same time, Lucene retrieve candidate answers
for each question. We then generate features for training
set and test set according to patterns. Logistic Regression
model and Multi Layer Perceptron were both tried in our ex-
periments. We will discuss them in details in the following
sections.

 Data Preprocessing

Patterns Extraction

Patterns Filtration

Lucene Preparation

Candidate Answers
Retrieve

Feature Generation

Rank by model

Figure 1: System Overview

3. LUCENE SYSTEM
The method that searching answers for each given test

question in the repository of short text conversation data one

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

499

Table 1: Pattern examples
Pattern Counts
like China 2156
climb Great Wall 1245
winter snow 5412

by one would be most labor intensive and time consuming.
So, we used the information retrieval system Apache Lucene
to help us. As to similarity, we used the BM25Similarity
score function to rank. For each question, we retrieved the
most similar 50 questions in repository and collect their cor-
responding answer as candidate answers. Then we rank the
answers according to the matching score given by our mod-
els, only keep the top ten answers in final estimation.

Actually, we also tried other number of candidate answers
as well (20 and 100 etc.). After comparison on randomly
selected sentence pairs according to human judgements, we
decided to choose the number 50. When we judge the appro-
priateness of the retrieved responses, we mainly considered
the four facets provided by the organizers: Logic Consis-
tency, Semantic Relevance, Scenario Dependence and Re-
peating Opinions.

4. DATA AND EVALUATION METRICS
The data set used in this task comes from Weibo Corpus.

The organizers provided a large repository of conversation
data which include more than 5 million pairs and a addi-
tional training set contains thousands of pairs. Actually,
as the size of the given training set is to small, it was not
used in our experiments, we build training set based on the
repository. In this task, the official metrics include: Mean
nDCG@1, Mean P+, Mean nERR@10 More details about
the data and metrics please refer to [4].

5. FEATURE ENGINEERING
In our approach, features are the generated patterns, ex-

amples are shown in Table 1 (Already translated into En-
glish).In the following, we will explain these patterns in de-
tail.

5.1 Pattern Extraction
We removed English words, messy codes and punctuation

in sentences as preprocessing.In order to generate these pat-
terns, word segmentation is needed. In our experiment, we
used the popular Chinese word segmentation tool JIEBA1

to segment the sentences. . After tokenization, for each pair
of matched sentences, we connect each token appeared in
question and every token in corresponding answer with an
underline. Though this, patterns were generated. This way,
369337081 patterns in total were generated.

5.2 Pattern Filtration
Apparently, not all of these patterns are appropriate, some

patterns appeared only once, which makes it nearly impos-
sible to be hit. Spelling mistakes, duplicates or some other
reasons also make some patterns redundant and indiscrim-
inate. So we want to get rid of these patterns, only turn
suitable patterns to be features. But due to the limitation

1http://lucene.apache.org/
2https://github.com/fxsjy/jieba/tree/jieba3k

Table 2: Results of our three submitted runs
RunID nDCG@1 P+ nERR@10

R3 0.3067 0.4445 0.4186
R2 0.2900 0.4320 0.4123
R1 0.1033 0.2495 0.2354

of the time, some simple operations were applied to filter
patterns. We removed the patterns which contain Chinese
stop words, this operation makes the number of patterns
fell a great deal. Then, we removed the patterns appears
only once. In the end, the total number of kept patterns is
13493613.

5.3 Feature Generation
Once the filtered patterns were given, features are easy to

generate. We generate the features according to the follow-
ing steps:
1. Build a look-up dictionary.
2. For each pair of sentences, extract patterns contained in
it.
3. For every extracted pattern, check the look-up dictionary,
set one in the position if the pattern in it (same pattern ap-
peared several times also regarded as one), otherwise zero.

After these steps, a very sparse feature vector was formed.
Based on these feature vectors, another set of features were
generated to feed Neural networks.

Due to the limitation of the computing resources, the
number of features is so huge that our computer’s memory
can not load all the training examples (The configuration
of our computer is: Intel Core i5 Processor, 16GB RAM,
Microsoft Windows 7 Professional x64 SP1). So, we have
a compromise proposal which can be regarded as a tradeoff
between the number of features and the correctness of the
hit patterns. To be specific, the strategy is that for every
consecutive 50000 features, we form a new feature to replace
them, which is the sum of these features’ values. As to the
number 50000, we also tried 10000, 20000, and 100000 re-
spectively, and choosing the number in terms of the new
features’ size and performance. Intuitively, a non-zero new
feature means this ’part’ of old features are hit. On the
other side, the larger the summation, the more possible the
sentence is appropriate.

6. EXPERIMENTS
In the final estimation, we submitted three runs: ITNLP-

C-R1, ITNLP-C-R2 and ITNLP-C-R3 respectively. The
first two runs we used a logistic regression model to com-
bine these features, while the ITNLP-C-R3 we employed a
multiple layer perceptron model instead. We listed the re-
sults on Table 2.

6.1 Negative Example Generation
The only difference between the first two runs is the train-

ing data used to train the models is different while the fea-
tures and model used in third model was different from the
first two runs. Precisely, when creating training sets for each
model, the proportions of negative examples and positive ex-
amples are different, as shown in Table 3.

To generate negative examples, we adopted the same meth-
ods proposed in [5]. We randomly select several responses

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

500

Table 3: Positive/Negtive Ratio
RUN-ID Positive-ratio Negative-ratio

ITNLP-C-R3 10.0% 90.0%
ITNLP-C-R2 16.7% 83.3%
ITNLP-C-R1 33.3% 66.7%

as negative examples. Since the repository is so large that
there is even an outside chance that a randomly selected re-
sponse is suitable. Considering the way we created them,
there is another way to explain the percentages: in the data
sets, each positive example was followed by 9/5/2 negative
examples.

6.2 Logistic Regression Model
We use the Logistic Regression model with L2 regulariza-

tion, and the regularization makes a big difference maybe
for the reason that the features were so sparse. Actually,
we compared the performance of L1 regularization and L2,
with human evaluation on some randomly selected system
output.Finally, we decided to use L2 regularization in our
submission.

In terms of implementation, we used LIBLINEAR to do
the prediction which is an open source library for large-scale
linear classification. [2]

As mentioned before, we treated this task as classification
problem, and then rank candidate answers according to their
confidence of match.

6.3 Multiple Layer Perceptron model
We also tried one deep learning method, but the result

is not very good. we used open-source deep learning frame-
work theano to realize the function. [1] Because of the lack of
experience, many parameters in the network were are ran-
domly set without fine tuning. We implement the model
based on multiple layer perceptron code on tutorial. The
architecture of the network is shown in Figure 2

270

200

100

30

2

Figure 2: DNN Architecture

As the figure shows, we have 270 input nodes,200 units in
the first hidden layer (tanh active function), 100 units in the
second hidden layer, 30 in the third hidden layer, and two
in the output layer.

7. CONCLUSIONS AND FUTURE WORK
3https://www.csie.ntu.edu.tw/ cjlin/liblinear/
4http://deeplearning.net/software/theano/
5http://lucene.apache.org/

Table 4: Parameter setting in MLP
Parameters Learning rate batch size

Values 0.01 100
Parameters n epoches patience

Values 1000 400000
Parameters patience increase L2 reg

Values 40 0.0001

In our work of NTCIR-12, we employed a simple logis-
tic regression model to match past comments to respond
to a post. The official results demonstrate the effectiveness
of the solution. The patterns are the core of this method,
extracting effective patterns would be the most important
part in this solution. In addition, we can know from the ex-
periment results that the positive/negative ratio in training
set also matters a lot in final estimation. In failure analysis
part, we found that our patterns can not accurately repre-
sent some sentences whose meaning depends on long-term
dependency. We planed to handle this problem using re-
sults of dependency parser later. Due to the limitation of
time, there were still many work to be done and many ideas
needed to try in future. Our future work include: try some
other more sophisticated methods to filter patterns. Append
more complicated patterns (such as syntax-based patterns).
Change the similarity metrics used in Lucene system. Di-
rectly represent the sentences in semantic space and combine
these representations with deep learning.

8. ACKNOWLEDGMENT
The authors would like to thank the NTCIR-12 task or-

ganizers for their hard work. We also thank Yizhong Hu for
his contribution on pattern extraction and data preparation.

9. ADDITIONAL AUTHORS

10. REFERENCES
[1] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra,

I. Goodfellow, A. Bergeron, N. Bouchard,
D. Warde-Farley, and Y. Bengio. Theano: new features
and speed improvements. arXiv preprint
arXiv:1211.5590, 2012.

[2] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and
C.-J. Lin. Liblinear: A library for large linear
classification. The Journal of Machine Learning
Research, 9:1871–1874, 2008.

[3] L. Shang, Z. Lu, H. Li, and T. Sakai. Ntcir-12 pilot
task: Short text conversation (stc). Call for
Participation to the NTCIR-12 Kick-Off Event, 2015.

[4] L. Shang, T. Sakai, Z. Lu, H. Li, R. Higashinaka, and
Y. Miyao. Overview of the NTCIR-12 short text
conversation task. In Proceedings of NTCIR-12, pages
1–10, 2016.

[5] M. Wang, Z. Lu, H. Li, and Q. Liu. Syntax-based deep
matching of short texts. arXiv preprint
arXiv:1503.02427, 2015.

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

501

