UT Dialogue System at NTCIR-12 STC

Shoetsu Sato¹, Shonosuke Ishiwatari¹, Naoki Yoshinaga², Masashi Toyoda², Masaru Kitsuregawa^{2,3}

The University of Tokyo, ²IIS, the University of Tokyo, ³NII, Japan

A lot of dialogue systems that can chat have appeared

Siri (Apple)

Cortana (Microsoft)

しゃべってコンシェル (NTT Docomo)

http://www.idownloadblog.com/ http://techcrunch.com/2015/01/05/facebook-wit-ai/ http://ameblo.jp/cos-120/entry-11748747974.html

Recent approaches for chatting dialogue systems

 Data-driven approaches using dialogue data from social media are promising [Ritter+, '10]

U: Utterance

R: Response

U: また残業か・・・

R: 生き残ろうな・・

U: あの人どう思う?

R: ああいう人間ほんと嫌い

U: 魚介嫌いでした?

R: そんなこと無いですよ。

Challenge we have tackled in STC task

 The diversity of domains (topics, speaking styles, etc...) makes it difficult to learn

U: Utterance

R: Response

U: また**残業**か・・・

R: 生き残ろうな・・

U: あの人どう思う?

R: ああいう人間ほんと嫌い

U: **魚介**嫌い**でした?**

R: そんなこと無いですよ。

Goal: building a domain-aware dialogue model

Idea: Divide conversation data into domain-consistent subsets to train multiple specific LSTM-based dialogue models

Evaluation: response selection from candidates

Does domain consistence compensate for reduction of training data per a model?

RELATED WORK

Recent promising approach to generate responses

 We employed recent promising Long-Short Term Memory based Recurrent Neural Network (LSTM-RNN) dialogue model [Vinyals+, '14]

Predicting and Eliciting Addressee's Emotion in Online Dialogue [Hasegawa+, '13]

 Generate a response that elicits a specific emotion in the addressee's mind

Overview of the related work and target of our method

Point

- General LSTM based methods employed a single model trained from all data
- It is impossible to enumerate all domains in human dialogues

Purpose

 Capture the difference of domains automatically as clusters and train multiple models

Our approach: K-cluster model (1/2)

 Cluster the dialogues for each of the unlabeled domain, and train multiple models

Our approach: K-cluster model (2/2)

Utterance

就職したくない・・

U: また**残業**か・・・

U: あの人どう思う?

U: **魚介**嫌い**でした?**

Response

市民、労働は義務です。

How to automatically handle the domains in each utterance (1/2)

 Apply k-means clustering to the utterance vectors and regard clusters as subsets of the training data

How to automatically handle the domains in each utterance (2/2)

- Represent each utterance as a vector built from word embeddings [Mikolov+, '13]
- The density of word embeddings would solve sparseness problems in short texts compared with Bag-of-Words

Response candidate filtering

- In response selection task from many candidates, our model's high computational cost causes a problem
- To reduce the number of candidates into 500,
 we employed a fast SVM classifier [Yoshinaga+, '10]

EXPERIMENTS

3 experiments we did

- Experiment 1: Small response selection task
 - Evaluate how our method effects in response selection
 - Select response from 20 candidates without filtering

- Experiment 2: Filtering performance
 - Evaluate to what extent our filter can select proper candidates

- Experiment 3: NTCIR-12 formal run
 - Evaluate whole performance of our system (clustered-LSTM, and filter)

Experiment 1 : small response selection task

Dataset: Twitter

Utterance-response (tweet-reply) pairs crawled from Twitter: **100K** for training, **1K** for test

Provided for NTCIR-12 Short Text Conversation Japanese Task
 [Shang+, '16]

Evaluation: Response selection

The proportion of test tweets where we succeeded to select the correct (actually replied) response from randomly chosen **20 candidates**

Evaluation detail

Utterance

発表つらいんだけど

Correct Response

We defined it as success if the **top-3 responses** include the correct response

Ranked 20 Response Candidates

1 わかる

② 自分の研究を知って もらう良い機会だと思うよ

③ 今完全に鬱だよ

4 その店美味いよね

② くあwせdrftg

Results of K-cluster model

 We compared 1, 10, 20, and 40 cluster models increasing number of clusters until the accuracy was saturated

Examples of clusters we labeledby hand from their frequent utterances

13 models out of 20 cluster got improved

Game Eating Greeting Society Follow, RT Anime **The state of the state of the

Moaning

Number

frequency

Examples of the selected responses

(1)

Utterance	あ、見るの忘れてた。おめでとう!
Proposed	ありー! 見直してくれてありがとう!
Baseline	今年は1年ありがとうございました

(2)

Utterance	カントリーマァムのドリンクのやつが 見つかりません。
Proposed	ローソン限定じゃなかったっけ?
Baseline	先輩、おはよーございます♪

Our proposed model tends to stop selecting typical responses

Experiment 2: Filtering performance

 Evaluate the filter by recall, whether top-N filtered candidates include the correct response

Filtering effectively reduced the number of candidates

Experiment 3: NTCIR-12 STC Japanese Task

Model: 20 cluster model

The best one evaluated at experiment 1, 20 cluster model trained from 100k utterance-response pairs

Evaluation:

- For the 204 provided test utterances, select responses from 500k candidates
- responses are assigned scores of 0 (inappropriate),
 1 (appropriate in some context), 2 (appropriate)
 by human annotators

Accuracies of selected top-1 responses at NTCIR-12 STC Japanese Task

Ours-R1: Filtering + 20-cluster LSTM model

Ours-R2: Filtering only

Our system selected better responses from filtered candidates

Summary

By response selection test we confirmed the effect of cluster-based **domain-aware** dialogue model

 Domain-consistent training subsets made better results in spite of reduction of training data

 By filtering candidates, our system could effectively select responses

RESULTS FOR EACH CLUSTER

Results in each cluster (20-cluster model)

domain	$\# { m elems}$		#corr		improvement
(topics, wording, writing style)	train	test	ours	baseline	$\frac{\Delta \# corr}{\# elems (test)}$
-	11801	108	38	27	10.19%
-	11524	124	37	32	4.03%
politics, economics, social matters	10294	130	48	38	7.69%
-	9743	94	32	23	9.57%
animation, comics	6747	56	11	10	1.79%
-	6552	66	24	23	1.52%
game	5677	50	13	5	16.00%
-	5627	45	14	13	2.22%
end with '?' r '!'	5190	63	17	15	3.17%
moaning (esp., sleepy, weary)	5064	52	17	21	-7.69%
-	4908	50	22	24	-4.00%
numbers	3803	31	5	7	-6.45%
eating	2630	16	6	4	12.50%
frank acknowledgment (follow, RT)	2252	33	29	30	-3.03%
end with '!!!'	1869	17	8	8	0.00%
polite acknowledgement (follow, RT)	1553	13	12	12	0.00%
greetings	1537	21	7	6	4.76%
end with \cdots	1326	12	3	2	8.33%
polite morning greetings	1174	13	9	6	23.08%
shouting with word lengthing or repetition	729	6	2	2	0.00%
	100000	1000	354	308	4.60%