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B A lot of dialogue systems that can chat
BB have appeared
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B Recent approaches for chatting
Bl dialogue systems

® Data-driven approaches using dialogue data
from social media are promising [Ritter+, 10]
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.= Challenge we have tackled in STC task

® The diversity of domains (topics, speaking
styles, etc...) makes it difficult to learn
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=m OVERVIEW




B Goal: building a domain-aware
BE dialogue model

Idea: Divide conversation data into domain-consistent
subsets to train multiple specific LSTM-based dialogue models

Evaluation: response selection from candidates
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== RELATED WORK




B Recent promising approach to generate
BB responses

® \We employed recent promising Long-Short Term Memory
based Recurrent Neural Network (LSTM-RNN)

dialogue model [Vinyals+, ‘14]
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B Predicting and Eliciting Addressee’s Emotion
BB in Online Dialogue [Hasegawa+, “13]

® Generate a response that elicits a specific
emotion in the addressee’s mind
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B Overview of the related work and
B target of our method

Point

— General LSTM based methods employed a single
model trained from all data

— It is impossible to enumerate all domains in human
dialogues

Purpose

— Capture the difference of domains automatically as

clusters and train multiple models
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.= Our approach: K-cluster model (1/2)

® Cluster the dialogues for each of the
unlabeled domain, and train multiple models
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.= Our approach: K-cluster model (2/2)

Utterance
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B How to automatically handle
B the domains in each utterance (1/2)

® Apply k-means clustering to the utterance vectors
and regard clusters as subsets of the training data
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B How to automatically handle
B the domains in each utterance (2/2)

® Represent each utterance as a vector
built from word embeddings [Mikolov+, ‘13]

® The density of word embeddings would solve sparseness
problems in short texts compared with Bag-of-Words
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.= Response candidate filtering

® |n response selection task from many candidates,
our model’s high computational cost causes a

problem

® To reduce the number of candidates into 500,
we employed a fast SVM classifier [Yoshinaga+, ‘10]
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== EXPERIMENTS




.= 3 experiments we did

® Experiment 1: Small response selection task
— Evaluate how our method effects in response selection

— Select response from 20 candidates without filtering

® Experiment 2: Filtering performance

— Evaluate to what extent our filter can select proper
candidates

® Experiment 3: NTCIR-12 formal run

— Evaluate whole performance of our system
(clustered-LSTM, and filter)




.= Experiment 1 : small response selection task

® Dataset: Twitter

Utterance-response (tweet-reply) pairs crawled from
Twitter: 100K for training, 1K for test

— Provided for NTCIR-12 Short Text Conversation Japanese Task
[Shang+, ‘“16]

® Evaluation: Response selection

The proportion of test tweets where we succeeded
to select the correct (actually replied) response
from randomly chosen 20 candidates




.= Evaluation detail

Ranked 20 Response
Utterance Candidates
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.= Results of K-cluster model

® \We compared 1, 10, 20, and 40 cluster models increasing
number of clusters until the accuracy was saturated
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Our best 20-cluster model outperformed baseline at 4.6%



B Examples of clusters we labeled
BB by hand from their frequent utterances

® 13 models out of 20 cluster got improved

Improvement rate
A
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.= Examples of the selected responses

(1) |Utterance »H. RD2DENTIZ, HHTED!
Proposed HO—IBELTNTHDOHED!

Baseline SE(F1EHLDODNEDSTVNFEUE
(2) Utterance B> BU— 7 LD RYUIDDH
EOMOFEEFA-
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Baseline HEE BEEL—2VWFEIr

Our proposed model tends to stop selecting
typical responses




.= Experiment 2: Filtering performance

® Evaluate the filter by recall, whether top-N filtered
candidates include the correct response

Recall
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.= Experiment 3 : NTCIR-12 STC Japanese Task

® Model: 20 cluster model
The best one evaluated at experiment 1, 20 cluster
model trained from 100k utterance-response pairs

® Evaluation:

— For the 204 provided test utterances, select responses
from 500k candidates

— responses are assigned scores of 0 (inappropriate),

1 (appropriate in some context), 2 (appropriate)
by human annotators




B Accuracies of selected top-1 responses
BE 3t NTCIR-12 STC Japanese Task

Ours-R1: Filtering + 20-cluster LSTM model
Ours-R2: Filtering only
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.= Summary

By response selection test we confirmed the effect
of cluster-based domain-aware dialogue model

® Domain-consistent training subsets made better
results in spite of reduction of training data

® By filtering candidates, our system could
effectively select responses




m RESULTS FOR EACH
BEC|LUSTER




B Results in each cluster
BE (20-cluster model)

domain F#elems Fcorr improvement

(topics, wording, writing style) train  test | ours baseline #eﬁi’fsc‘zf;st)

- 11801 108 38 27 10.19%

- 11524 124 37 32 4.03%

politics, economics, social matters 10294 130 48 38 7.69%

- 9743 94 32 23 9.57%

animation, comics 6747 56 11 10 1.79%

- 6552 66 24 23 1.52%

game 5677 50 13 5 16.00%

- 5627 45 14 13 2.22%

end with ‘77 r ‘I’ 5190 63 17 15 3.17%

moaning (esp., sleepy, weary) 5064 52 17 21 -7.69%

- 4908 50 22 24 -4.00%

numbers 3803 31 5 7 -6.45%

eating 2630 16 6 4 12.50%

frank acknowledgment (follow, RT) 2252 33 29 30 -3.03%

end with ’!II’ 1869 17 8 8 0.00%

polite acknowledgement (follow, RT) 1553 13| 12 12 0.00%

greetings 1537 21 7 6 4.76%

end with ‘-’ 1326 12 3 2 8.33%

polite morning greetings 1174 13 9 6 23.08%
shouting with word lengthing or repetition 729 6 2 2 0.00%

100000 1000 | 354 308 4.60%




