
ICL00 at the NTCIR-12 STC Task: Semantic-based
Retrieval Method of Short Texts

Weikang Li.ICL00
Key Laboratory of

Computational Linguistics
(Peking University),
Ministry of Education
wavejkd@163.com

Yixiu Wang.ICL00
Key Laboratory of

Computational Linguistics
(Peking University),
Ministry of Education
labyrinth@pku.edu.cn

†Yunfang Wu.ICL00
Key Laboratory of

Computational Linguistics
(Peking University),
Ministry of Education
wuyf@pku.edu.cn

ABSTRACT
We take part in the short text conversation task at NTCIR-12. We
employ a semantic-based retrieval method to tackle this problem,
by calculating textual similarity between posts and comments.
Our method applies a rich-feature model to match post-comment
pairs, by using semantic, grammar, n-gram and string features to
extract high-level semantic meanings of text.

Team Name
ICL00

Subtasks
STC (Chinese)

Keywords
textual similarity, short text, semantic meaning computation

1. INTRODUCTION
We participate in the Chinese subtask at NTCIR12, which aims to
solve the problem called Short Text Conversation (STC). Our
registered name is "ICL00".

Our task aims at finding corresponding comments of a given post
from a huge corpus of Chinese Weibo. We model the post-
comment pairs mapping problem to a calculating of textual
similarity, due to the following reasons: posts and corresponding
comments usually share the similar topic; the corresponding
comments are more similar with the post than other comments.

The research on textual similarity is a life-long topic, in which
researchers have proposed many methods [1][2][3][4][5]
[6][7][8][9][10][11]. In this paper, we use word embedding to
represent words of text. In order to apply syntactic information,
we employ features of word order [12], information of
dependencies [13] [14] [15] and semantic role [16] which are used
in many other systems. Besides, we also make use of features like
n-gram [17] and string, which are common in other systems.
This paper is organized as follows. We give detailed description
of various features in Section 2, show our experiment and results
in Section 3, and make a conclusion in Section 4.

2. FEATURES
Our method transfers the calculation of textual similarity to a
classification problem. We train a SVM model based on various
features between two sentences, and the output of classification
probability (0.0 – 1.0) is regarded as the similarity score.

Table 2.1 Classification Features

No. Category Feature
1 Lexical word embedding
2 Structure dependency
3

N-gram

character unigram
4 character bigram
5 word unigram
6 word bigram
7 word trigram
8

String
Levenshtein distance

9 common word order

2.1 Lexical Features
Word embedding is widely applied in many task of NLP. Word
and phrase embedding, when used as the underlying input
representation, have been shown to boost the performance in NLP
tasks such as syntactic parsing and sentiment analysis [19].
We use word2vec to train word embedding based on the corpus
“repos” given by the organizers, and we set the dimension of
vector to 100.
For sentence S-A and sentence S-B, we would calculate the
semantic similarity of each word in sentence S-A with sentence S-
B by Equation 1. Words’ similarity is computed using cosine.

),(maxarg),(s '
'

wwsimSwim
Sw 

 (1)

We would take the average value gotten by the similarity value
between words of one sentence and another respectively as
semantic similarity of word embedding.

)(
))(*),(()B-,A-(score

widf
widfBSwsimSS

ASw

ASw
we








 (2)

))-,B-()-,-((
2
1)-,-(sim ASSscoreBSASscoreBSAS wewewe 

(3)
The corpus to train word embedding has a direct influence on the
performance of syntactic features. Besides, segmentation tool is
an important impact element of word embedding, because the
inputs of word2vec are words segmented by segmenter. We use
Stanford’s segmenter to deal with task of segmentation in the
paper.

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

531

https://en.wikipedia.org/wiki/Syntactic_parsing
https://en.wikipedia.org/wiki/Sentiment_analysis


2.2 Structure Features
Some significant information may be lost if we only use words’
lexical knowledge, so we would take full advantage of
depedndency knowledge to dig more features.
Stanford Parser is used to analyze dependencies of Chinese corpus
to get structure of dependencies. We want to calculate syntactic
information with the help of subject-predicate relationship and
predicate-object relationship. The way referred to the paper [15]
[16] is that extracting relationship of predicate-subject and
predicate-object from the information of nsubj (nominal subject),
nsubjpass (passive nominal subject), and dobj (direct object)
produced by Stanford Parser.
For sentence S-1 sentence S-2, we can get many pairs of PS and
PO for that one sentence can be consist of several small sentences
in Chinese corpus. We assume that S-1 has PS1 and PO1, S-2 has
PS2 and PO2.

 mpspsps 112111 ...,PS  (4)

 '112111 ...,PO mpopopo (5)

 npspsps 222212 ...,PS  (6)

 'n222212 ...,oPO popop (7)

For PS1 and PS2, the similarity based on word embedding is the
product of predicate and subject. And the situation is the same to
PO1 and PO2.

),(),())(,)((sim 212121 jijiji sssimppsimpsps  (8)

),(),())(,)o((sim 212121 jijiji oosimppsimpop  (9)

We take the most similar pair in PS1 and PS2, which is also
applicable to PO1 and PO2.

))(,)((maxargsc 21
, '' ji

njmi
ps pspssimore


 (10)

))(,)((maxargsc 21,o jinjmip poposimore


 (11)

The average value of PS similarity score and PO similarity score
is taken as the dependencies similarity.

)(
2
1sim popsdep scorescore  (12)

2.3 Features of N-gram
We have tried features of unigram, bigram, trigram in our
experiment.

Table 2.2 Feature of N-gram

Name Unit n

word unigram word 1

word bigram word 2

word trigram word 3

char unigram character 1

char bigram character 2

char trigram character 3

2.4 Features of String

2.4.1 Levenshtein Distance
In many NLP’s tasks, corpus from website has noise interference
to deal with more or less. Inspired by the paper [1] [15], we take
Levenshtein distance as the standard of evaluating the difference
between strings. The Levenshtein distance between two sentences
is the minimum number of single-word edits (i.e. insertions,
deletions or substitutions) required to change one sentence into
the other.

2.4.2 Common Word Order
We take features of common word order to our method with
reference to the paper [1]. We assume that sentence S-1 and S-2
has word’s order of },...,,{ m21 www and },...,,{ n21 www
respectively. Then we would find same words to form words’
order. If there are same words, words’ order can be represented

as },...,,{X 21 xxx and },...,,{Y 21 yyy . ix and iy mean
one same word’s location in 1-S and 2-S . The similarity of
common word order can be calculated according to Equation 13.

1121

2211

...
...

1s
yxyxyx
yxyxyx

im orderword 













(13)

3. EXPERIMENT
3.1 Data Preprocessing
The given corpus contains redundant information, and informal
using of punctuations. We used following steps of preprocessing
to achieve better performance:
(1) Convert Punctuation
(2) Delete Redundant Punctuation
(3) Delete Stop Words
(4) Generalize Place Names(NS) : we use a NS entity recognizer
developed in our previous work.
(5) Generalize URL
(6) Convert Tradition Chinese to Simplified Chinese

3.2 Experiment Settings
We use the tool LIBSVM to train our SVM model. In the given
training corpus, those post-comment pairs with scores 1 and 2 are
regarded as positive cases and others as negative cases.
Given a new post, we adopt two steps to find the appropriate
comments:
(1) Exploit Lucene to search for comments in the given

comment archive, and keep the top 100 ones as the candidate
comments;

(2) Compute the textual similarity between post and candidate
comments, and rank them to find the most appropriate
comment.

We adopt different experiments to find the best combination of
features, as shown in Table 3.1.

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

532



Table 3.1 Feature Setting

3.3 Evaluation Result
We use P@K method to evaluate our results on the given training
data. The results are as follows:

Table 3.2 Experiment results
Name P@1 P@5

Baseline 0.076 0.236

Lab 0 0.107 0.287
Lab 1 0.080 0.234

Lab 2 0.077 0.213

As shown in Table 3.2, the features combination of Lab 0 gets the
best result in the training data.
There are three metrics in the overview paper to evaluate
submitted results. Averagely, we have a middle rank in all results
submitted [18].

Table 3.3 Evaluated results by the organizer

Name nDDG@1 P+ nERR@10

Baseline 0.2633 0.4359 0.4066

3.4 Analysis of Results
From the above results, the combination of features in Lab 0 is
useful to the task. We will give analysis of different features.
Lexical feature: word embedding has a significant influence on
improving the accuracy of classifier.
Structure feature: structure features do not work well in this task.
One main reason is that the performance of dependency parsing
drops largely on the short text.
N-gram feature: Generally, this kind of features has a better
performance on this task. N-gram features will capture some valid
phrases, which might be left out by Stanford segmenter. The
performance of segmentation also drops a lot on short texts like
Weibo.

String Feature: This feature is not efficient enough. Although
Levenshtein distance and common word order usually are
efficient features in calculating similarity, they do not work well
in computing the relation of post-comment pairs.
Our experimental results show that the combination features of
word embedding and n-gram are most suitable for finding
corresponding relationships between posts and comments.
Dependent tree and string features are usually efficient in
calculating similarities, but are not very valid for post-comment-
pairs retrieval.
Although our method is simple and straightforward, it gets
promising result in the official test. The experimental results show
that there exist semantic similarities between some post-comment
pairs. Of course, the limitation of our method is obvious. When
the post-comment pair shows no similarity in surface form, our
method doesn’t work.

4. CONCLUSION
We adopt a semantic-based retrieval method to tackle the post-
comment mapping problem at NTCIR-12 STC task. We train a
SVM model to compute the similarities between posts and
comments, integrating multi-level text information including word
embedding, dependency, n-gram and string information. In the
future, we will put up new ways to cope with those post-comment
pairs that have no similarity in surface form.

Acknowledgement
We thank Tianyu Zhao for his previous work on computing
textual similarity. This work is supported by National Natural
Science Foundation of China (61371129), National High
Technology Research and Development Program of China
(2015AA015403) and Key Program of Social Science foundation
of China (12&ZD227).

REFERENCES
[1] Islam A, Inkpen D. Semantic text similarity using corpus-

based word similarity and string similarity[J]. ACM
Transactions on Knowledge Discovery from Data (TKDD),
2008, 2(2): 10.

[2] Landauer T K, Foltz P W, Laham D. An introduction to
latent semantic analysis[J]. Discourse processes, 1998, 25(2-
3): 259-284.

[3] Lund K, Burgess C. Producing high-dimensional semantic
spaces from lexical co-occurrence[J]. Behavior Research
Methods, Instruments, & Computers, 1996, 28(2): 203-208.

[4] Mihalcea R, Corley C, Strapparava C. Corpus-based and
knowledge-based measures of text semantic
similarity[C]//AAAI. 2006, 6: 775-780.

[5] Turney P. Mining the web for synonyms: PMI-IR versus
LSA on TOEFL[J]. 2001.

[6] Leacock C, Chodorow M. Combining local context and
WordNet sense similarity for word sense identification.
WordNet, An Electronic Lexical Database[J]. 1998.

[7] Lesk M. Automatic sense disambiguation using machine
readable dictionaries: how to tell a pine cone from an ice
cream cone[C]//Proceedings of the 5th annual international
conference on Systems documentation. ACM, 1986: 24-26.

[8] Wu Z, Palmer M. Verbs semantics and lexical
selection[C]//Proceedings of the 32nd annual meeting on

Name Features

Baseline cosine similarity weighted by tf-idf

Lab0:
Lexical+N-gram

sentence’s length, word embedding,
word’s unigram/bigram/trigram,
character’s bigram

Lab1:
Lexical+N-
gram+Struc

sentence’s length, word embedding,
dependencies, word’s
unigram/bigram/trigram, character’s
bigram

Lab2:
Seman+N-
gram+Struc+Str
ing

sentence’s length, word embedding,
dependencies, word’s
unigram/bigram/trigram, character’s
unigram/bigram, levenshtein distance,
common word order

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

533



Association for Computational Linguistics. Association for
Computational Linguistics, 1994: 133-138.

[9] Resnik P. Using information content to evaluate semantic
similarity in a taxonomy[J]. arXiv preprint cmp-lg/9511007,
1995.

[10] Lin D. An information-theoretic definition of
similarity[C]//ICML. 1998, 98: 296-304.

[11] Jiang J J, Conrath D W. Semantic similarity based on corpus
statistics and lexical taxonomy[J]. arXiv preprint cmp-
lg/9709008, 1997.

[12] Li Y, McLean D, Bandar Z A, et al. Sentence similarity
based on semantic nets and corpus statistics[J]. Knowledge
and Data Engineering, IEEE Transactions on, 2006, 18(8):
1138-1150.

[13] Mohler M, Bunescu R, Mihalcea R. Learning to grade short
answer questions using semantic similarity measures and
dependency graph alignments[C]//Proceedings of the 49th
Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies-Volume 1.
Association for Computational Linguistics, 2011: 752-762.

[14] Šarić F, Glavaš G, Karan M, et al. Takelab: Systems for
measuring semantic text similarity[C]//Proceedings of the
First Joint Conference on Lexical and Computational
Semantics. Association for Computational Linguistics, 2012:
441-448.

[15] Zhu T T, Lan M. Measuring short Text Semantic Similarity
using multiple measurements[C]//Machine Learning and
Cybernetics (ICMLC), 2013 International Conference on.
IEEE, 2013, 2: 808-813.

[16] Oliva J, Serrano J I, del Castillo M D, et al. SyMSS: A
syntax-based measure for short-text semantic similarity[J].
Data & Knowledge Engineering, 2011, 70(4): 390-405.

[17] Malandrakis N, Iosif E, Potamianos A. DeepPurple:
Estimating sentence semantic similarity using n-gram
regression models and web snippets[C]//Proceedings of the
First Joint Conference on Lexical and Computational
Semantics. Association for Computational Linguistics, 2012:
565-570.

[18] Lifeng Shang, Tetsuya Sakai, Zhengdong Lu, Hang Li,
Ryuichiro Higashinaka, Yusuke Miyao. Overview of the
NTCIR-12 Short Text Conversation Task. NTCIR-12. 2015.

[19] Socher, Richard; Perelygin, Alex; Wu, Jean; Chuang, Jason;
Manning, Chris; Ng, Andrew; Potts, Chris (2013). Recursive
Deep Models for Semantic Compositionality Over a
Sentiment Treebank. EMNLP.

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

534

http://nlp.stanford.edu/~socherr/EMNLP2013_RNTN.pdf
http://nlp.stanford.edu/~socherr/EMNLP2013_RNTN.pdf
http://nlp.stanford.edu/~socherr/EMNLP2013_RNTN.pdf

