[

A 4

Zeon Fernando, Jaspreet Singh, Avishek Anand
singh@I3s.de

—

r
- /--
-
-
-
~ . -



mailto:singh@l3s.de

Neb ience — Investiaatina the Future of Information and Communication

/ ,,7 Introduction Subtopic Classification Temporal Relevance Retrieval Methods Results Conclusion

Temporal Intent Disambiguation Task (TID)

P Objective: To estimate a probability distribution of the query intent across

four temporal classes: past, recency, future and atemporal.
» We are given a query string and submission date as input.

» We are allowed to use any external resources to complete the task.
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Sample Query

<query>
<1d>033</1id>
<query_string>weather in London</query_string>
<query_issue_time>May 1, 2013 GMT+@</query_issue_time>
<probabilities>
<Past>0.0</Past>
<Recency>0.9</Recency>
<Future>0.1</Future>
<Atemporal>0.0</Atemporal>
</probabilities>
</query>
<query>
<1d>035</1id>
<query_string>value of silver dollars 1976</query_string>
<query_issue_time>May 1, 2013 GMT+@</query_issue_time>
<probabilities>
<Past>0.727</Past>
<Recency>0.273</Recency>
<Future>0.0</Future>
<Atemporal>0.0</Atemporal>
</probabilities>
</query>
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Rule Based Voting

» Each rule is made based on a feature. If the rule is obeyed by a temporal
class then it is awarded one vote

» VVotes are normalized across the classes to get a probability distribution
» Features used:

» Temporal Distance

» Linguistic Features like verb tense and modality
» N-grams




Feature Description

» Temporal Features: Temporal Distance

directly from the query or using GTE

» Linguistic feature: Verb tense of the

predicate verb

» N-gram: Prior probability of unigrams
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Procedure

» Decision tree trained using only n-grams to predict the temporal class of

a query.

» Verb tense of the query counts as a single vote. If no verb tense is

detected then the atemporal class is awarded a vote.

P Class of the time mention in the query gets a vote.

» |If the standard deviation is low then temporal distance is used as the

deciding vote.
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Run Average Absolute Loss | Cosine Similarity
RBV 0.2031 0.7307
N-gram 0.2452 0.6673

Table 1: Evaluation Results of TID Formal Runs
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Temporally Diversified Retrieval Task (TDR)

» We have to build temporal retrieval models for each temporal class: past,

recency, future and atemporal.

» Produce a list of results diversified over the 4 temporal classes

» Given a topic, description and an indicative search question (subtopic) for

each temporal class
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Query Topic Example

<topic>
<id>001</1d>
<title>Earthquakes</title>

<description>I suspect that these days the intensity of harsh weather conditions such as earthquakes 1s increased
when compared to the past. In order to make sure I need to collect information on earthquake, their past
occurrences, and future forecasts, etc.</description>

<query 1ssue time>Mar 29, 2013 GMT+0:00</query 1ssue time>

<subtopics>
<subtopic 1d="001a" type="atemporal">What is an earthquake and how severe it can be?</subtopic>
<subtopic 1d="001p" type="past">What past earthquakes were most deadly?</subtopic>
<subtopic 1d="001r" type="recency">What was the latest earthquake 1in Asia?</subtopic>

<subtopic 1d="0011" type="future">What are predictions regarding the occurrence of earthquakes in the
near future?</subtopic>

</subtopics>

</topic>

Dry Run Queries: 10; Formal Run Queries: 50
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Subtopic Classification

Subtopics Intents

Subtopic A past

Subtopic B recency

Subtopic C o future

Subtopic D atemporal

Multi-Class SVM - Greedy Selection

10
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Subtopic Classification Features

» Verb Tense: Determine the verb tense of the subtopic using the Stanford
POS tagger;

- E.g.: “was” 1n “When was the first Olympics held? " 1s an indicator of past intent

- Subtopics can have multiple verbs so we use a parser to determine the main verb,

which 1s the uppermost verb in the parse tree (E.g. “What were Apple company’s
strategies behind the development of 1iPhone 57”)

» Temporal feature: We compute the average temporal distance for the

subtopic from the top 20 pseudo relevant documents that were retrieved

11



Neb ience — Investiaatina the Future of Information and Communication

Introduction  Subtopic Classification Temporal Relevance Reftrieval Methods Results Conclusion

Subtopic Classification Features

» Dictionary feature: We 1dentified certain words from dry run queries which

frequently occurred for certain temporal intents and built a dictionary.

Future | future, forecast, will, would, should, shall, next, expected, soon, projected,
possibility, scheduled

Past past, history, were, origin, did, been, previous, earlier, former, historical
Recent | recent, present, current, latest, recently, trendy, now, today

» Verb tense feature

P Average Expected Temporal Distance: top 20 documents

12



Neb ience — Investiaating the Future of Information and Communication

Introduction  Subtopic Classification Temporal Relevance Retrieval Methods Results Conclusion

Temporal Relevance of Document

Temporal relevance 1s used to estimate the focus time of a document using the temporal
distribution of time expressions in the content:

» Each document d is annotated with normalized time expressions (z(d)).
» We map each time expression ¢, in d to a time interval [b,e) at day granularity (e.g.:

May 2014 to [01/05/2014, 31/05/2014 )).

» We then determine the temporal distribution of time expressions in a document at

month granularity, 1.e., each d has a set 7,,(d) of monthly time intervals [z, ¢,.).
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Temporal Relevance of Document

» We have intent specific filters for recency, past and future that are modeled as
Past

exponential distributions: | 9
Ae -A |distace| ° o8}
0.6 Future .
Ae A |distace| |
N 0.2}
o 0 © T | | | | % 2 1 ) 1 2 3
» Intuition: T : 1 |

- temporal expressions close to 7, have a higher probability than older temporal expressions for

recency filter,

- while for past and future tilter temporal expressions further away from 7, have a high

probability.

14
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Temporal Relevance of Document

P We use the intent specific filters to transform the temporal distribution of time
references in a document as follows:

w(te) * f(te) * [tqg —te|, P & F
Alte) = {w(te) x fte) * —2

ot R

» The expected distance of the document with respect to the query hitting time, 1.¢.,
temporal relevance score 1s:

E(d) = |Tm1(d)| Z h(te)

le €Tm (d)

15
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Subtopic Classification

Subtopics Intents
Subtopic A past
Subtopic B recency
Subtopic C future
ubtopic ® o
Subtopic D l atemporal
-9

Multi-Class SVM - Greedy Selection

jnication

Conclusion
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Retrieval Approach

Top-k Results

lJ_
SUthpiC Past RM > E
Classification —
— Diversified Top-k
— Results
R Recent RM - | = =
Query — > —
\ |J_ : -_
Future RM . —
|J_
Atemporal > | =
RM —

Earth Movers Distance

Learning To Rank

17
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Parameterized Sum Method

» For all our experiments, we determine a set R of pseudo relevant documents (|R|

1000) using the unigram language model with Dirichlet smoothing (u = 2000)

» Then re-rank the documents using the scores obtained from the linear combination of
the temporal relevance and topical relevance score

R =AE(d)+(1—MR., 0<A<1

where A is tunable parameter and R is relevance score of language model

18
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Learning to Rank Features
» Verb Tense: We split the document into two sentence types: S, those that contain

noun

at least a noun search term and § those that don’t contain any noun seach term.

non-noun

- the ratio of past, present and future tense w.r.t §

noun

- the ratio of past, present and future tense w.r.t §

non-noun

» Topical Features: These include four similarity based features using jaccard
similarity between:
- search topic and document title
- search topic and document content
— search subtopic and document title
— search subtopic and document content

Document relevance score between query and document 1s also used as a feature.

20
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Learning to Rank Features

» Temporal Features: These include two features based on the temporal expressions

of the document.

- temporal relevance score of a document as described previously

- temporal density score which is the ratio of the number of temporal expressions to the
length of the document. This feature helps differentiate between atemporal and temporal

documents

21
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Retrieval Approach

Top-k Results

lJ_
SUthpiC Past RM > E
Classification —
— Diversified Top-k
— Results
R Recent RM - | = =
Query — > —
\ |J_ : -_
Future RM . —
|J_
Atemporal > | =
RM —

Earth Movers Distance

Learning To Rank
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Earth-Movers Distance for Diversification

The earth mover s distance 1s a measure of distance between two probability distributions, that

1s the minimum cost required to transform one probability distribution to another.

» Intuition. Get a set of documents that have diverse temporal distributions which would 1n

turn give us a temporally diversified set.

» We use candidate document sets R, from the top 100 documents retrieved for each temporal

intent using the above ranking approaches.

» Select documents that greedily maximise earth movers distance (* 1/rank) between the
e, R AR e

23
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Experimental Setup

» We used Lucene to build the index for the “LivingKnowledge news and blogs annotated
subcollection” corpus which comprised of 3.8 million documents.
» The guery 1s constructed from the topic and subtopic, and then searched against the title and

content fields of the documents.

» Training data.
— 10 dry run topics and 50 formal run topics of previous years task along with the grels are

used to generate the training set for the learning to rank approaches.

25
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Experimental Setup

» We created separate training datasets for each temporal class as follows:
— The constructed query 1s used to retrieve top 1000 pseudo relevant documents using the

language model,

- From this we select, relevant and 1rrelevant documents 1n the ratio 1:2. The relevance

judgments 1n the grels are of the order 2 (really relevant), 1 (relevant) and O (irrelevant).

- Each temporal class-specific training dataset 1s used to learn a ranking model so as to

predict document ranking for a unseen subtopic of the same class.

— List-wise L2R with AdaRank (RankLib)

26
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Results
Run NDCGQ20
Atemporal | Future Past Recency All
Manual L2R 0.7264 0.6511 | 0.7005 | 0.7151 | 0.6983
Auto Param. Sum 0.6109 0.6932 | 0.7127 0.6758 0.6731
Auto L2R 0.7299 0.6508 | 0.6998 0.7116 0.6980
Auto LM 0.7052 0.7151 | 0.7297 | 0.6865 | 0.7076
P@20
Atemporal | Future Past Recency All
0.7960 0.7360 | 0.7710 | 0.7970 | 0.7750
0.7330 0.7790 | 0.8000 | 0.7760 0.7720
0.7960 0.7360 | 0.7700 0.7930 0.7737
0.7690 0.7850 | 0.7940 0.7580 0.7416

27
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Run | D#-NDCG@20 | I-rec@20
Manual L2R 0.8262 | 0.9850
Auto Param. Sum 06852 . 0.9900
Auto L2R 0.8423 0.9850

28
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Take-Aways

~ Joint classification approach for subtopic classification does well.

- We are good at recency and atemporal!

~The nDCG@20 performance for the atemporal class 1s poor for parameterized sum
method when compared to learning to rank by about 19%.

o The nDCG@20 performance for the future intent 1s higher using parameterized sum
method than using learning-to-rank approach by about 7%.

~ All our models perform better than the baseline in terms of rank insensitive metric

P@20. However, 1n terms of nDCG@20 the performance for future and past class of
the baseline outperforms all our models.

29
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Questions?

singh@l3s.de

@movedthecheese
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