

L3S at NTCIR-12 Temporalia

Zeon Fernando, Jaspreet Singh, Avishek Anand singh@l3s.de

Temporal Intent Disambiguation Task (TID)

- **Objective:** To estimate a probability distribution of the query intent across four temporal classes: *past, recency, future* and *atemporal*.
- ► We are given a query string and submission date as input.
- ► We are allowed to use any external resources to complete the task.

Conclusion

Introduction Subtopic Classification Temporal Relevance Retrieval Methods Results Conclusion

Sample Query

```
<query>
  <id>033</id>
 <query_string>weather in London</query_string>
 <query_issue_time>May 1, 2013 GMT+0</query_issue_time>
 <probabilities>
   <Past>0.0</Past>
   <Recency>0.9</Recency>
   <Future>0.1</Future>
   <Atemporal>0.0</Atemporal>
 </probabilities>
</query>
<query>
 <id>035</id>
 <query_string>value of silver dollars 1976</query_string>
 <query_issue_time>May 1, 2013 GMT+0</query_issue_time>
 <probabilities>
   <Past>0.727</Past>
   <Recency>0.273</Recency>
   <Future>0.0</Future>
   <Atemporal>0.0</Atemporal>
 </probabilities>
</query>
```

3

Rule Based Voting

- Each rule is made based on a feature. If the rule is obeyed by a temporal
- class then it is awarded one vote
- Votes are normalized across the classes to get a probability distribution
- ► Features used:
 - **Temporal Distance**
 - Linguistic Features like verb tense and modality
 - N-grams

Feature Description

Temporal Features: Temporal Distance directly from the query or using GTE

Linguistic feature: Verb tense of the predicate verb

N-gram: Prior probability of unigrams and bigrams per class

Procedure

Decision tree trained using only n-grams to predict the temporal class of a query.

Verb tense of the query counts as a single vote. If no verb tense is detected then the atemporal class is awarded a vote.

 \blacktriangleright Class of the time mention in the query gets a vote.

If the standard deviation is low then temporal distance is used as the deciding vote.

Results

Run	Average Absolute Loss	Cosine
RBV	0.2031	0.
N-gram	0.2452	0

Table 1: Evaluation Results of TID Formal Runs

Similarity .7307 .6673

7

Introduction Subtopic Classification Temporal Relevance Retrieval Methods Results Conclusion

Temporally Diversified Retrieval Task (TDR)

We have to build temporal retrieval models for each temporal class: *past*, recency, future and atemporal.

Produce a list of results diversified over the 4 temporal classes

• Given a topic, description and an indicative search question (subtopic) for each temporal class

Introduction Subtopic Classification Temporal Relevance Retrieval Methods Results Conclusion

Query Topic Example

```
<topic>
```

```
<id>001</id>
```

```
<title>Earthquakes</title>
```

<description>I suspect that these days the intensity of harsh weather conditions such as earthquakes is increased when compared to the past. In order to make sure I need to collect information on earthquake, their past occurrences, and future forecasts, etc.</description>

```
<query issue time>Mar 29, 2013 GMT+0:00</query issue time>
```

<subtopics>

```
<subtopic id="001a" type="atemporal">What is an earthquake and how severe it can be?</subtopic>
<subtopic id="001p" type="past">What past earthquakes were most deadly?</subtopic>
<subtopic id="001r" type="recency">What was the latest earthquake in Asia?</subtopic>
<subtopic id="001f" type="future">What are predictions regarding the occurrence of earthquakes in the
near future?</subtopic>
```

```
</subtopics>
```

</topic>

Introduction Subtopic Classification Temporal Relevance Retrieval Methods Results Conclusion

Subtopic Classification

Multi-Class SVM - Greedy Selection

past

recency

future

atemporal

Web Science – Investigating the Future of Information and Communication Introduction Subtopic Classification Temporal Relevance Retrieval Methods Results Conclusion

Subtopic Classification Features

- **Verb Tense:** Determine the verb tense of the subtopic using the Stanford POS tagger;
 - **E.g.:** "was" in "When was the first Olympics held?" is an indicator of past intent
 - Subtopics can have *multiple verbs* so we use a parser to determine the main verb, which is the uppermost verb in the parse tree (E.g. "What were Apple company's strategies *behind* the development of iPhone 5?")
- **Temporal feature:** We compute the *average temporal distance* for the subtopic from the top 20 pseudo relevant documents that were retrieved

Web Science – Investigating the Future of Information and Communication Introduction Subtopic Classification Temporal Relevance Retrieval Methods Results Conclusion

Subtopic Classification Features

Dictionary feature: We identified certain words from *dry run queries* which

frequently occurred for certain temporal intents and built a *dictionary*.

Future	future, forecast, will, would, should, shall, next, expected possibility, scheduled
Past	past, history, were, origin, did, been, previous, earlier, fo
Recent	recent, present, current, latest, recently, trendy, now, too

Verb tense feature

Average Expected Temporal Distance: top 20 documents

d, soon, projected,

rmer, historical day

Subtopic Classification **Temporal Relevance** Retrieval Methods Results Introduction Conclusion

Temporal Relevance of Document

- Temporal relevance is used to estimate the *focus time* of a document using the temporal distribution of time expressions in the content:
- Each document d is annotated with normalized time expressions $(\tau(d))$.
- We map each time expression t_{ρ} in d to a time interval [b,e) at day granularity (e.g.:

May 2014 to [01/05/2014, 31/05/2014)).

> We then determine the temporal distribution of time expressions in a document at month granularity, i.e., each d has a set $\tau_m(d)$ of monthly time intervals $[t_{mb}, t_{me})$.

2006	2007
	1

Subtopic Classification **Temporal Relevance** Retrieval Methods Results Introduction Conclusion

Temporal Relevance of Document

We have intent specific filters for *recency*, *past* and *future* that are modeled as Past exponential distributions:

- temporal expressions close to t_q have a higher probability than older temporal expressions for recency filter,
- while for *past* and *future* filter temporal expressions further away from t_q have a high probability.

Subtopic Classification Temporal Relevance Retrieval Methods Results Introduction Conclusion

Temporal Relevance of Document

We use the intent specific filters to transform the temporal distribution of time references in a document as follows:

$$h(t_e) = egin{cases} w(t_e) * f(t_e) * |t_q - t_e|, & \mathcal{P} \ \& \ \mathcal{F} \ w(t_e) * f(t_e) * rac{1}{|t_q - t_e|}, & \mathcal{R} \end{cases}$$

The *expected distance* of the document with respect to the query hitting time, i.e., temporal relevance score is:

$$E(d) = \frac{1}{|\tau_m(d)|} \sum_{t_e \in \tau_m(d)} h(t_e)$$

Introduction Subtopic Classification Temporal Relevance Retrieval Methods Results Conclusion

Subtopic Classification

Multi-Class SVM - Greedy Selection

past

recency

future

atemporal

Retrieval Approach

Top-k Results

Diversified Top-k Results

Earth Movers Distance

Web Science – Investigating the Future of Information and Communication Introduction Subtopic Classification Temporal Relevance **Retrieval Methods** Results Conclusion

Parameterized Sum Method

- For all our experiments, we determine a set R of pseudo relevant documents (|R| =1000) using the unigram language model with Dirichlet smoothing ($\mu = 2000$).
- Then re-rank the documents using the scores obtained from the linear combination of the temporal relevance and topical relevance score:

$R_f = \lambda E(d) + (1 - \lambda)R_c, \quad 0 \le \lambda \le 1$

where λ is tunable parameter and R_c is relevance score of language model

Introduction Subtopic Classification Temporal Relevance Retrieval Methods Results Conclusion

Learning to Rank Approach

Introduction Subtopic Classification Temporal Relevance **Retrieval Methods** Results

Learning to Rank Features **Verb Tense:** We split the document into two sentence types: S_{noun} those that contain

at least a noun search term and $S_{non-noun}$ those that don't contain any noun seach term.

- the ratio of past, present and future tense w.r.t S_{noun}
- the ratio of past, present and future tense w.r.t $S_{non-noun}$

Topical Features: These include four similarity based features using jaccard similarity between:

- search topic and document title _
- search topic and document content
- search subtopic and document title
- search subtopic and document content

Document relevance score between query and document is also used as a feature.

Web Science – Investigating the Future of Information and Communication Subtopic Classification Temporal Relevance **Retrieval Methods** Results Conclusion

Introduction

Learning to Rank Features

- **Temporal Features:** These include two features based on the temporal expressions of the document.
 - temporal relevance score of a document as described previously
 - *temporal density score* which is the ratio of the number of temporal expressions to the length of the document. This feature helps differentiate between atemporal and temporal documents

Retrieval Approach

Subtopic Past RM Classification **Recent RM** Query **Future RM Atemporal** RM Learning To Rank Param. Sum

Top-k Results

Diversified Top-k Results

Earth Movers Distance

Web Science – Investigating the Future of Information and Communication Introduction Subtopic Classification Temporal Relevance **Retrieval Methods** Results Conclusion

Earth-Movers Distance for Diversification

The *earth mover's distance* is a measure of distance between two probability distributions, that is the minimum cost required to transform one probability distribution to another.

Intuition. Get a set of documents that have *diverse temporal distributions* which would in turn give us a temporally diversified set.

We use candidate document sets R_i from the top 100 documents retrieved for each temporal intent using the above ranking approaches.

Select documents that greedily maximise earth movers distance (* 1/rank) between the diversified list and the new document to be added.

Subtopic Classification Temporal Relevance **Retrieval Methods** Results Introduction

Experimental Setup

> We used Lucene to build the *index* for the "LivingKnowledge news and blogs annotated" subcollection" corpus which comprised of 3.8 million documents. The *query* is constructed from the topic and subtopic, and then searched against the title and content fields of the documents.

► Training data.

10 dry run topics and 50 formal run topics of previous years task along with the *qrels* are used to generate the training set for the learning to rank approaches.

Conclusion

Experimental Setup

- ► We created separate training datasets for each temporal class as follows:
 - The constructed query is used to retrieve top 1000 pseudo relevant documents using the language model,
 - From this we select, relevant and irrelevant documents in the ratio 1:2. The relevance judgments in the *qrels* are of the order 2 (really relevant), 1 (relevant) and 0 (irrelevant).
 - Each temporal class-specific training dataset is used to learn a ranking model so as to predict document ranking for a unseen subtopic of the same class.
 - List-wise L2R with AdaRank (RankLib)

Conclusion

Introduction Subtopic Classification Temporal Relevance Retrieval Methods Results Conclusion

Results

Run	NDCG@20			
Ttull	Atemporal	Future	Past	Re
Manual L2R	0.7264	0.6511	0.7005	0.
Auto Param. Sum	0.6109	0.6932	0.7127	0.
Auto L2R	0.7299	0.6508	0.6998	0.
Auto LM	0.7052	0.7151	0.7297	0.

P@20				
Atemporal	Future	Past	Recency	All
0.7960	0.7360	0.7710	0.7970	0.7750
0.7330	0.7790	0.8000	0.7760	0.7720
0.7960	0.7360	0.7700	0.7930	0.7737
0.7690	0.7850	0.7940	0.7580	0.7416

Run	D#-NDCG@20
Manual L2R	0.8262
Auto Param. Sum	0.6852
Auto L2R	0.8423

Take-Aways

- Joint classification approach for subtopic classification does well.
- We are good at recency and atemporal!
- The nDCG(a)20 performance for the *atemporal* class is poor for parameterized sum method when compared to learning to rank by about 19%.
- The nDCG(a)20 performance for the *future* intent is higher using parameterized sum method than using learning-to-rank approach by about 7%.
- All our models perform better than the baseline in terms of rank insensitive metric P(a)20. However, in terms of nDCG(a)20 the performance for *future* and *past* class of the baseline outperforms all our models.

Questions?

singh@l3s.de @movedthecheese

