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ABSTRACT 
Our group DUT-NLP-EN participated in the TID subtask (English) 
of NTCIR-12 Temporalia and submitted three runs. The temporal 
intent probability distribution of four categories (past, recency, 
future and atemporal) for the 300 test queries are predicted through 
logistic regression model in all the three runs. In RUN1, four groups 
of features are used including trigger word, word POS, explicit time 
gap, temporal probability of words. Implicit time gap is added in 
the form of rule-based time gap in RUN2 and in the form of time-
series statistics in RUN3.  RUN2 performs slightly better than the 
rest two runs with AvgCosine of 0.732 and AvgAbsLoss of 0.210.   
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1. INTRODUCTION 
The temporal intent of a query is crucial in Information Retrieval. 
According to Nunes [1] who samples the AOL query dataset, only 
about 1.5% queries are explicit temporal queries, meaning that they 
contain explicit temporal expressions, such as “Poland 1940s”, 
“Olympics 2008” or “top movies 2000s”. Thus it is challenging to 
discover the underlying temporal intents. 

NTCIR Temporalia task deals with four temporal intents, i.e. 
atemporal, past, recency, future. The Temporal Query Intent 
Classification (TQIC) subtask of NTCIR-11 aims to estimate the 
only best temporal intent of a query [2]. But one best is not an 
appropriate solution because many queries are ambiguous, so the 
Temporal Intent Disambiguation (TID) subtask of NTCIR-12, an 
upgraded task from TQIC, asks participants to estimate not only the 
temporal intent categories but also the distribution among the four 
temporal intent categories for a given query. TID can handle the 
ambiguous queries better. Further details can be referred to in the 
overview paper [3]. The potential applications may lie in search 
engines where queries are treated accordingly to the underlying 
distribution of the temporal categories and presented with the most 
temporally-related documents.   

2. RELATED WORK 
Comprehensive overviews of the existing literature on temporal 
information retrieval have been conducted [4][5]. Here we 
summarize several works related to TQIC in  NTCIR-11. 

From the results of the test collection of TQIC [2], the most difficult 
category to classify is recency, and the easiest one is past. It is also 
noticed that (1) atemporal queries are likely to be misclassified as 
either recency or past queries (16.7% and 9.6%, respectively); (2) 
past queries are likely to be misclassified as atemporal queries 
(13.1%); (3) recency queries are likely to be misclassified as future 
(28.2%) or atemporal (13.5%) queries; (4) future queries tend to be 
misclassified as recency queries (25.9%). 

Yu et al. [6] submitted 3 runs for the TQIC subtask utilizing three 
types of features: time gap features, verb tense features and lemmas 
and named entities. In run-1 and run-2, they used Logistic 
Regression classifier with different Model parameters. In run-3, 
they used SVMlin classfiier with additional data from AOL dataset. 
A comparative run also was provided. Run-1 got the highest overall 
score and the highest future score. And run-3 got the highest past 
score following by Run-1 and Run-2. But the 3 runs both had low 
recency score. 
Hasanuzzaman et al. [7] submitted 2 runs and both perform best in 
recency classification. They built an ensemble learning paradigm 
using eight different classifiers, namely Support Vector Machines, 
Naive Bayes, Multilayer Perceptron, Locally Weighted Learning, 
LogitBoost, Decision Tables, Hybrid Learning and Random 
Forests. It reduces bias by combining multiple classifiers instead of 
a single one. 
Shah et al. [8] submitted 3 runs with different classifiers by using 
Naive Bayes Classifier in run-1, SVM classifier in run-2, and 
combined Naive Bayes, SVM and Decision Tree in run-3. Run-1 
outperforms the other participants in terms of atemporal. 

3. METHODOLOGY 
Given a search query, the task is to estimate a distribution of the 
four temporal intent categories. Generally, a category distribution 
prediction is one the many steps of a classification model, therefore 
we handle the task as a classification problem. A temporal intent 
classification model is trained based on feature construction and 
supervised learning on the given query collection. Then, the same 
feature construction is applied to a new query, and the model is used 
to predict the temporal intent category distribution for a new query 
of interest. The architecture is showed in Figure 1.  
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Figure 1. The architecture of modelling temporal intent 

category distribution  
The following parts will illustrate pre-processing, feature 
construction, and supervised learning in detail. 

3.1 Pre-processing 
The pre-processing consists of NLP pre-processing and Google 
Trends1 preprocessing. For NLP pre-processing, we use Stanford 
CoreNLP Package [9] for tokenization, lemmatizing, POS tagging, 
parsing, and temporal expression recognition. Temporal 
expressions are recognized by SUTime in CoreNLP, a rule-based 
temporal tagger. The temporal type and value corresponds to the 
TIMEX3 standard. We focus on the three temporal types (TIME, 
DURATION, and DATE) and list the corresponding examples as 
follows.  

1. Bear night 1974, <Timex tid="t1" type = "TIME"> 
1974TNI </Timex> 

2. Election Day, <Timex tid="t3" type = 
"DURATION"> P1D </Timex> 

3. Howard Stern Jesse Ventura 2016, <Timex tid="t18" 
type="DATE">2016</Timex> 

We also automatically crawled search frequency data from Google 
Trends for all the queries. Google Trends is a public web facility 
that shows how often a particular search query is entered relative to 
the total search volume across various regions and in various 
languages. Each query corresponds to a csv file with time axis and 
frequency axis. The granularity for the time axis is one week, and 
the range for the frequency axis is 0 – 100. We call this original 
data Time Doman Data (TDD). Then we use the periodogram [10] 
function in TSA package in R language to generate the csv file of 
power spectrum, which describes the distribution of frequency 
components composing the signal that generates the corresponding 
TDD. The horizontal axis is frequency (in Hz), the vertical axis is 
the spectral density at corresponding frequencies. We call the 
power spectrum data Frequency Domain Data (FDD). FDD can be 
used to find the “hidden period” of the TDD. See examples in 
Figure 2. 

3.2 Feature Description 
As we only have a small training data, the traditional widely-used 
features such as bag-of-word, n-gram do not work well in the task 
due to data sparsity. We propose the following five groups of 
features. 

Trigger word. By manually analyzing some samples, we find that 
queries containing some specific words tend to be frequently used 
in specific scenarios and queries containing these words are also 
easy to classify for human. For example, when people search 

                                                                 
1 http://www.google.com/trends 

“exchange rate” they want to know the current exchange rate, not 
the past one, therefore the queries containing “exchange rate” are 
often classified to recency without much ambiguity. We design four 
features in this group: whether_past, whether_recency, 
whether_future, whether_atemporal. The value for the four 
features are all boolean type. If a target query contains words in 
past trigger word set, then whether_past is set TRUE; if a target 
query contains words in recency trigger word set, then 
whether_recency is set TRUE; if a target query contains words in 
future trigger word set, then whether_future is set TRUE; if a target 
query contains words in atemporal trigger word set, then 
whether_atemporal is set TRUE. A strict set of trigger words is 
selected for each of the four categories, which contains 53 words. 
Aho–Corasick algorithm [11] is employed to match the query with 
the trigger word sets.  

Word POS. The abundant inflectional changes in English helps to 
discover temporal information. In the sample query set, the intent 
category of many queries can be manually inferred with word POS 
information only. By analyzing the syntax parsing of the 93 
samples in the dry run, we find that 81% have noun head and noun 
head queries tend to be atemporal, while 19% have verb head, the 
intent category of verb head can be easily classified according to 
verb tense. See Table 1. 

Table 1. Temporal intent distribution for queries with noun 
head or verb head in the 93 samples 

Type  P R F A Total 

Noun head 16 18 16 25 75 

Verb head 5 4 3 6 18 

We design two features head_word_POS and verb_tense, and adapt 
the Stanford POS tag set to represent the feature values. For head 
word POS, we take the word in the ROOT dependency relation as 
the head word. For verb tense, we take as the target verb the root 
node of the maximum subtree that has a verb root node.  
Word temporal probability. We assume that for the word 
temporal intent category distribution the training data is the same 
with the test data. Given a word, the probability of the four temporal 
intent categories can be inferred through Bayesian Probability: 

 

, ,  is intent category,  is the sample 
number, is the count of queries of category , is the count 
of word w in queries of category , is the count of all the words 
in queries of category .  
We assume that the probability of a temporal intent category for a 
query is the corresponding probability sum of all the constitute 
words, therefore the temporal intent category distribution of a query 
can be presented as follows: 

 

Explicit time gap. Only 9 queries in the 93 samples have explicit 
temporal expressions. The categories of all these queries conform 
to the dates that the temporal expressions indicate. We can see the 
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explicit temporal expression is a high-quality but low-coverage 
indicator for temporal intent classification. We design three 
features, namely explicit_time_gap_past, 
explicit_time_gap_recency, explicit_time_gap_future, with 
boolean feature value. For each query, we extract the temporal 
expression (if has) from the pre-processed XML, and transfer it to 
the standardized date format. Then the time gap is computed by 
subtracting the standardized date from the issue date of the query. 
Finally, if time gap > 2 weeks, for example, the feature values of 
explicit_time_gap_past will be assigned TURE, 
explicit_time_gap_recency assigned FALSE, and 
explicit_time_gap_future assigned FALSE. If there is no explicit 
temporal expression, the three feature values are assigned FALSE. 
Implicit time gap (Time-series). Implicit time gap is a supplement 
feature to explicit time gap. As most queries do not contain explicit 
temporal expressions, it is almost the most challenging work in TID 
task. Previous researches have extracted implicit temporal 
expressions from the snippets of search results, the related Wiki 
pages, or sometimes Wiki Infobox etc. Yet extracting temporal 
information from unstructured texts does not guarantee the 
recognition of the true date of the queries, and structured texts like 
Wiki Infobox suffer from low coverage of queries. We propose a 
novel way – to extract implicit temporal expression from search 
frequency data of queries. Google Trends is a good choice because 
of its high coverage of market and easy access.  
We find that user search behaviors reflect the development trend of 
an event. For example in Figure 2, the event in query “end of 
twinkies” occurs in November 2012, and the peak of the 
corresponding TDD is also around November 2012; the NBA 
playoff in query “nba playoff’s scores” occurs every May of a year, 
and people mostly search the related words around May; query 
“when was America discovered” describes a historical fact and thus 
is not time-sensitive, and the curve is rather flat and with no 
extreme value. 
We design two groups of features for implicit time gap. The first 
one is rule-based time gap, which is similar to explicit time gap, 
also rule_based_past, rule_based_recency, rule_based_future, 

with boolean feature value. Our hypothesis is that we can 
discriminate periodical, occasional and time-insensitive queries 
through TDD and TDD of query collection. If it is periodical, the 
maximum point in one period near the issue date can be detected; 
if it is occasional, the peak point can also be detected. Finally, the 
time gap for periodical or occasional query is computed by 
subtracting the date of the detected point from the issue date. The 
algorithm is showed in Figure 3. The parameters are set as 
follows:  ,

, , 
,  , 

. 

Due to the difficult tuning process of prior parameters, we also 
propose another group of features, i.e. time-series statistics, 
including max, mean, variation, sr, mr, stridency for both TDD and 
FDD. Their feature values are real number type.  max, mean, and 
variation are commonly-used features. sr, mr ,and stridency are 
adapted from [12] as follows: 

 

 

 

where  is the length of a time-series,  is an adjustment 
parameter and  means the duration of a spike,  is an adjustment 
parameter to control the cutoff level (  here).  

 

 

Figure 2. Examples of pairs of TDD (first line) and FDD (second line). The horizontal axis of TDD is time (in week), and 
the vertical axis is standardized search frequency from 0 to 100. The horizontal axis of FDD is frequency (in Hz), and the 
vertical axis is the spectral density at corresponding frequencies. The three query examples are “end of twinkies”, “nba 
playoff’s scores”, and “when was America discovered”. 
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Figure 3. The algorithm to compute implicit time gap. Input: 
TDD and FDD of a query. Output: time gap of a query.  
 

3.3 Classification Model 
We use Scikit-learn machine learning package2 in Python to train 
our model. Five classifiers are applied in the dry run including 
SVM with linear kernal, SVM with Gaussian kernel, logistic 
regression, random forest, and decision tree, while logistic 
regression based method is submitted in the formal run.  

4. EXPERIMENTS & DISCUSSION 
4.1 Data 
The training data includes 93 samples from the dry run of NTCIR-
12 Temporalia and 300 samples from the formal run of NTCIR-11 
Temporalia. As samples in NTCIR-12 are tagged as temporal intent 
probability distribution, we transfer them into the NTCIR-11-style-
like format as the input of the classifiers. The trained models are 
tested on the 300 queries of formal run in NTCIR-12.  

4.2 Runs 
We submitted three runs in the formal run by employing logistic 
regression model. In RUN1, four groups of features are used 
including trigger word, word POS, explicit time gap, word temporal 
probability. In RUN2, we add feature rule-based time gap based on 
                                                                 
2 http://scikit-learn.org/ 

RUN1. In RUN3, we replace feature rule-based time gap with time-
series statistics. 

Table 2 shows the results of the three runs. We can see there is no 
significant difference among the three runs, which indicates the 
feature time-series statistics and rule-based time gap do not take 
much effect here. But this is against our intuition because when 
manually tagging the formal run samples we often need to refer to 
the search frequency data of Google Trends in which the periodical 
pattern of the data conforms to the real world with high probability. 
The reason may be that the two features are so rough that they 
cannot catch the hidden periodical patterns well. All in a nutshell, 
it is a challenge but a chance to improve time-series features in the 
future.  

Table 2. Average cosine and average absolute loss for RUN1, 
RUN2, and RUN3 

 AvgCosine AvgAbsLoss 

RUN1 0.728 0.208 

RUN2 0.732 0.210 

RUN3 0.727 0.212 

Table 3. Confusion matrix for RUN1, RUN2, RUN3 and 
manual results compared with the standard result 

 
 

STANDARD 
P R F A 

 
RUN1 

 
 

P 34 2 10 25 
R 4 18 6 25 
F 1 4 39 14 
A 5 10 8 95 

 
RUN2 

 
 

P 33 3 11 32 
R 4 17 6 33 
F 1 4 39 13 
A 6 10 7 81 

 
RUN3 

 

P 34 2 11 32 
R 4 17 5 25 
F 1 4 40 14 
A 5 11 7 88 

 
MANUAL 

 

P 42 3 3 15 
R 0 23 6 8 
F 0 3 37 6 
A 2 5 17 130 

To further investigate the results generated from different runs and 
our manually tagged result, we calculate the confusion matrix as 
shows in Table 3. The confusion matrix is calculated by mapping 
the probability distribution to the category of highest probability 
and counting the category-category pair numbers respectively. The 
baseline is the manually tagged result. The bold numbers are 
queries right classified, and the numbers of grey shadow are 
wrongly classified.   We can see that human tagged result highly 
conforms to the standard reference, indicating TID task is 
reasonable and meanwhile there is still improvement for automatic 
TID task. However, human also misunderstand atemporal as past, 
or future as atemporal. This problem is even worse for the three 
runs. Besides, the three runs tend to classify future as past, recency 
as atemporal. We can see three out of four of the major errors are 
related to atemporal category, inspiring us to classify atemporal 

RuleBasedTIMEGAP(tdd_list, fdd_list): 

T, P = DETECTPERIOD(tdd_list, fdd_list) 
if len(P) > 0: 

time_gap = COMPUTEMAXIMUMPOINT(tdd_list, T) 
elif mean(fdd_list.spec) < FDD_MEAN_THLD and 

mr(tdd_list.freq) > TDD_MR_THLD: 
time_gap = COMPUTEPEAKPOINT(tdd_list) 

    return time_gap 

DETECTPERIOD (tdd_list, fdd_list) 
P = [] 
for item in fdd_list: 

if item.f > FDD_FREQUENCY_THLD and 
item.spec > FDD_SPEC_THLD: 
P.append(item) 

    T = 1/P[0].f 
return T, P 

COMPUTEMAXIMUMPOINT(tdd_list, T) 
Q = tdd_list[-T:0] tdd_list[-2T:-T] tdd_list[-

3T:-2T] 

phase = mean(argmax(q.freq).week - q[0].week for 
q in Q) 

if PMQ_UP <= phase: 

time_gap = T – phase 

elif PMQ_DOWN <= phase <= PMQ_UP: 

time_gap = -phase 

elif phase < PMQ_DOWN: 

time_gap = 0 

return time_gap 

COMPUTEPEAKPOINT(tdd_list) 
peak_point = argmax(tdd_list) 
time_gap = tdd_list[-1].week-peak_point.week 
return time_gap 
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from temporal in the first step and handle the rest three categories 
later.  

Table 4. Classification errors in RUN1  

 System Standard  

Query P R F A P R F A 

wind turbine 0.04 0.02 0.89 0.05 0.00 0.00 0.00 1.00 

civil action 0.91 0.03 0.02 0.03 0.00 0.00 0.00 1.00 

what time is 
inauguration 0.73 0.05 0.03 0.19 0.00 0.40 0.40 0.20 

When Is 
Thanksgiving 0.79 0.02 0.13 0.06 0.00 0.00 0.90 0.10 

famous events 
in the 20th 
century 

0.09 0.50 0.12 0.29 1.00 0.00 0.00 0.00 

life in the 
future 0.09 0.51 0.16 0.24 0.00 0.00 0.70 0.30 

We list some samples with the cosine value less than 0.25 in Table 
4. “wind turbine” and “civil action” are wrongly classified because 
of the misleading value of feature word temporal probability. The 
training data is so sparse that it makes the probability distribution 
of “wind” and “civil” biased to specific samples like “weather for 
tomorrow wind” and “when did civil war end” in training data, 
whereas “turbine” and “action” are out-of-vocabulary words. For 
“what time is inauguration”, feature trigger_word_atemporal is 
right assigned “TRUE”, verb_tense right assigned “VBZ”, and for 
“When Is Thanksgiving”, feature explicit_time_gap_future is right 
assigned “TRUE”, but the results are also affected by stop words 
“in” and “is” etc. in feature word temporal probability. The 
situation is similar to the rest two examples “famous events in the 
20th century” and “life in the future”.  It indicates that word 
temporal probability is a high-quality feature only on the condition 
of large samples and removing stop words. 

5. CONCLUSION  
We participated in the TID subtask of the NTCIR-12 Temporalia 
task and submitted three runs. The temporal intent probability 
distribution of the four categories of the 300 test queries are 
predicted through logistic regression in all the three runs. In RUN1, 
four groups of features are used including trigger word, word POS, 
explicit time gap, temporal probability of words. Implicit time gap 
is added in the form of rule-based time gap in RUN2 and in the 
form of time-series statistics in RUN3.  RUN2 performs slightly 
better than the rest two runs with AvgCosine of 0.732 and 
AvgAbsLoss of 0.210. 

We discovered two promising features for TID, i.e. temporal 
probability of words and query search time-series. The future work 
may lie in three directions.  The first direction is to discriminate the 
atemporal queries with temporal ones in the early step and then to 
classify the rest three one. Currently, temporal probability of words 
is limited by small training data, causing too much bias to training 
samples and too many out-of-vocabulary words.  We may solve the 
problem by extending the probability distribution of a word to that 

of its synonyms using methods like WordNet or word embedding. 
Finally, the time-series data of queries need to be preprocessed such 
as removing long-term trends and seasonal changes. 
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