
 Using Time-Series for Temporal Intent Disambiguation in
NTCIR-12 Temporalia

Dan Li , Xiaoxia Liu , Yunxia Zhang , Degen Huang , Jingxiang Cao
School of Foreign Languages, Dalian University of Technology

Department of Computer Science and Technology, Dalian University of Technology
No.2 Linggong Road, Gaoxinyuan District, 116024 Dalian, China

linda_2013, liuxxivy, zhangyunxia@mail.dlut.edu.cn, huangdg, caojx@dlut.edu.cn

ABSTRACT
Our group DUT-NLP-EN participated in the TID subtask (English)
of NTCIR-12 Temporalia and submitted three runs. The temporal
intent probability distribution of four categories (past, recency,
future and atemporal) for the 300 test queries are predicted through
logistic regression model in all the three runs. In RUN1, four groups
of features are used including trigger word, word POS, explicit time
gap, temporal probability of words. Implicit time gap is added in
the form of rule-based time gap in RUN2 and in the form of time-
series statistics in RUN3. RUN2 performs slightly better than the
rest two runs with AvgCosine of 0.732 and AvgAbsLoss of 0.210.

Team Name
DUT-NLP-EN

Subtasks
Temporal Intent Disambiguation (TID) (English)

Keywords
Temporal Intent, Query Classification, Time-Series, Bayesian
Probability

1. INTRODUCTION
The temporal intent of a query is crucial in Information Retrieval.
According to Nunes [1] who samples the AOL query dataset, only
about 1.5% queries are explicit temporal queries, meaning that they
contain explicit temporal expressions, such as “Poland 1940s”,
“Olympics 2008” or “top movies 2000s”. Thus it is challenging to
discover the underlying temporal intents.

NTCIR Temporalia task deals with four temporal intents, i.e.
atemporal, past, recency, future. The Temporal Query Intent
Classification (TQIC) subtask of NTCIR-11 aims to estimate the
only best temporal intent of a query [2]. But one best is not an
appropriate solution because many queries are ambiguous, so the
Temporal Intent Disambiguation (TID) subtask of NTCIR-12, an
upgraded task from TQIC, asks participants to estimate not only the
temporal intent categories but also the distribution among the four
temporal intent categories for a given query. TID can handle the
ambiguous queries better. Further details can be referred to in the
overview paper [3]. The potential applications may lie in search
engines where queries are treated accordingly to the underlying
distribution of the temporal categories and presented with the most
temporally-related documents.

2. RELATED WORK
Comprehensive overviews of the existing literature on temporal
information retrieval have been conducted [4][5]. Here we
summarize several works related to TQIC in NTCIR-11.

From the results of the test collection of TQIC [2], the most difficult
category to classify is recency, and the easiest one is past. It is also
noticed that (1) atemporal queries are likely to be misclassified as
either recency or past queries (16.7% and 9.6%, respectively); (2)
past queries are likely to be misclassified as atemporal queries
(13.1%); (3) recency queries are likely to be misclassified as future
(28.2%) or atemporal (13.5%) queries; (4) future queries tend to be
misclassified as recency queries (25.9%).

Yu et al. [6] submitted 3 runs for the TQIC subtask utilizing three
types of features: time gap features, verb tense features and lemmas
and named entities. In run-1 and run-2, they used Logistic
Regression classifier with different Model parameters. In run-3,
they used SVMlin classfiier with additional data from AOL dataset.
A comparative run also was provided. Run-1 got the highest overall
score and the highest future score. And run-3 got the highest past
score following by Run-1 and Run-2. But the 3 runs both had low
recency score.
Hasanuzzaman et al. [7] submitted 2 runs and both perform best in
recency classification. They built an ensemble learning paradigm
using eight different classifiers, namely Support Vector Machines,
Naive Bayes, Multilayer Perceptron, Locally Weighted Learning,
LogitBoost, Decision Tables, Hybrid Learning and Random
Forests. It reduces bias by combining multiple classifiers instead of
a single one.
Shah et al. [8] submitted 3 runs with different classifiers by using
Naive Bayes Classifier in run-1, SVM classifier in run-2, and
combined Naive Bayes, SVM and Decision Tree in run-3. Run-1
outperforms the other participants in terms of atemporal.

3. METHODOLOGY
Given a search query, the task is to estimate a distribution of the
four temporal intent categories. Generally, a category distribution
prediction is one the many steps of a classification model, therefore
we handle the task as a classification problem. A temporal intent
classification model is trained based on feature construction and
supervised learning on the given query collection. Then, the same
feature construction is applied to a new query, and the model is used
to predict the temporal intent category distribution for a new query
of interest. The architecture is showed in Figure 1.

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

267

Figure 1. The architecture of modelling temporal intent

category distribution
The following parts will illustrate pre-processing, feature
construction, and supervised learning in detail.

3.1 Pre-processing
The pre-processing consists of NLP pre-processing and Google
Trends1 preprocessing. For NLP pre-processing, we use Stanford
CoreNLP Package [9] for tokenization, lemmatizing, POS tagging,
parsing, and temporal expression recognition. Temporal
expressions are recognized by SUTime in CoreNLP, a rule-based
temporal tagger. The temporal type and value corresponds to the
TIMEX3 standard. We focus on the three temporal types (TIME,
DURATION, and DATE) and list the corresponding examples as
follows.

1. Bear night 1974, <Timex tid="t1" type = "TIME">
1974TNI </Timex>

2. Election Day, <Timex tid="t3" type =
"DURATION"> P1D </Timex>

3. Howard Stern Jesse Ventura 2016, <Timex tid="t18"
type="DATE">2016</Timex>

We also automatically crawled search frequency data from Google
Trends for all the queries. Google Trends is a public web facility
that shows how often a particular search query is entered relative to
the total search volume across various regions and in various
languages. Each query corresponds to a csv file with time axis and
frequency axis. The granularity for the time axis is one week, and
the range for the frequency axis is 0 – 100. We call this original
data Time Doman Data (TDD). Then we use the periodogram [10]
function in TSA package in R language to generate the csv file of
power spectrum, which describes the distribution of frequency
components composing the signal that generates the corresponding
TDD. The horizontal axis is frequency (in Hz), the vertical axis is
the spectral density at corresponding frequencies. We call the
power spectrum data Frequency Domain Data (FDD). FDD can be
used to find the “hidden period” of the TDD. See examples in
Figure 2.

3.2 Feature Description
As we only have a small training data, the traditional widely-used
features such as bag-of-word, n-gram do not work well in the task
due to data sparsity. We propose the following five groups of
features.

Trigger word. By manually analyzing some samples, we find that
queries containing some specific words tend to be frequently used
in specific scenarios and queries containing these words are also
easy to classify for human. For example, when people search

1 http://www.google.com/trends

“exchange rate” they want to know the current exchange rate, not
the past one, therefore the queries containing “exchange rate” are
often classified to recency without much ambiguity. We design four
features in this group: whether_past, whether_recency,
whether_future, whether_atemporal. The value for the four
features are all boolean type. If a target query contains words in
past trigger word set, then whether_past is set TRUE; if a target
query contains words in recency trigger word set, then
whether_recency is set TRUE; if a target query contains words in
future trigger word set, then whether_future is set TRUE; if a target
query contains words in atemporal trigger word set, then
whether_atemporal is set TRUE. A strict set of trigger words is
selected for each of the four categories, which contains 53 words.
Aho–Corasick algorithm [11] is employed to match the query with
the trigger word sets.

Word POS. The abundant inflectional changes in English helps to
discover temporal information. In the sample query set, the intent
category of many queries can be manually inferred with word POS
information only. By analyzing the syntax parsing of the 93
samples in the dry run, we find that 81% have noun head and noun
head queries tend to be atemporal, while 19% have verb head, the
intent category of verb head can be easily classified according to
verb tense. See Table 1.

Table 1. Temporal intent distribution for queries with noun
head or verb head in the 93 samples

Type P R F A Total

Noun head 16 18 16 25 75

Verb head 5 4 3 6 18

We design two features head_word_POS and verb_tense, and adapt
the Stanford POS tag set to represent the feature values. For head
word POS, we take the word in the ROOT dependency relation as
the head word. For verb tense, we take as the target verb the root
node of the maximum subtree that has a verb root node.
Word temporal probability. We assume that for the word
temporal intent category distribution the training data is the same
with the test data. Given a word, the probability of the four temporal
intent categories can be inferred through Bayesian Probability:

, , is intent category, is the sample
number, is the count of queries of category , is the count
of word w in queries of category , is the count of all the words
in queries of category .
We assume that the probability of a temporal intent category for a
query is the corresponding probability sum of all the constitute
words, therefore the temporal intent category distribution of a query
can be presented as follows:

Explicit time gap. Only 9 queries in the 93 samples have explicit
temporal expressions. The categories of all these queries conform
to the dates that the temporal expressions indicate. We can see the

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

268

explicit temporal expression is a high-quality but low-coverage
indicator for temporal intent classification. We design three
features, namely explicit_time_gap_past,
explicit_time_gap_recency, explicit_time_gap_future, with
boolean feature value. For each query, we extract the temporal
expression (if has) from the pre-processed XML, and transfer it to
the standardized date format. Then the time gap is computed by
subtracting the standardized date from the issue date of the query.
Finally, if time gap > 2 weeks, for example, the feature values of
explicit_time_gap_past will be assigned TURE,
explicit_time_gap_recency assigned FALSE, and
explicit_time_gap_future assigned FALSE. If there is no explicit
temporal expression, the three feature values are assigned FALSE.
Implicit time gap (Time-series). Implicit time gap is a supplement
feature to explicit time gap. As most queries do not contain explicit
temporal expressions, it is almost the most challenging work in TID
task. Previous researches have extracted implicit temporal
expressions from the snippets of search results, the related Wiki
pages, or sometimes Wiki Infobox etc. Yet extracting temporal
information from unstructured texts does not guarantee the
recognition of the true date of the queries, and structured texts like
Wiki Infobox suffer from low coverage of queries. We propose a
novel way – to extract implicit temporal expression from search
frequency data of queries. Google Trends is a good choice because
of its high coverage of market and easy access.
We find that user search behaviors reflect the development trend of
an event. For example in Figure 2, the event in query “end of
twinkies” occurs in November 2012, and the peak of the
corresponding TDD is also around November 2012; the NBA
playoff in query “nba playoff’s scores” occurs every May of a year,
and people mostly search the related words around May; query
“when was America discovered” describes a historical fact and thus
is not time-sensitive, and the curve is rather flat and with no
extreme value.
We design two groups of features for implicit time gap. The first
one is rule-based time gap, which is similar to explicit time gap,
also rule_based_past, rule_based_recency, rule_based_future,

with boolean feature value. Our hypothesis is that we can
discriminate periodical, occasional and time-insensitive queries
through TDD and TDD of query collection. If it is periodical, the
maximum point in one period near the issue date can be detected;
if it is occasional, the peak point can also be detected. Finally, the
time gap for periodical or occasional query is computed by
subtracting the date of the detected point from the issue date. The
algorithm is showed in Figure 3. The parameters are set as
follows: ,

, ,
, ,

.

Due to the difficult tuning process of prior parameters, we also
propose another group of features, i.e. time-series statistics,
including max, mean, variation, sr, mr, stridency for both TDD and
FDD. Their feature values are real number type. max, mean, and
variation are commonly-used features. sr, mr ,and stridency are
adapted from [12] as follows:

where is the length of a time-series, is an adjustment
parameter and means the duration of a spike, is an adjustment
parameter to control the cutoff level (here).

Figure 2. Examples of pairs of TDD (first line) and FDD (second line). The horizontal axis of TDD is time (in week), and
the vertical axis is standardized search frequency from 0 to 100. The horizontal axis of FDD is frequency (in Hz), and the
vertical axis is the spectral density at corresponding frequencies. The three query examples are “end of twinkies”, “nba
playoff’s scores”, and “when was America discovered”.

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

269

Figure 3. The algorithm to compute implicit time gap. Input:
TDD and FDD of a query. Output: time gap of a query.

3.3 Classification Model
We use Scikit-learn machine learning package2 in Python to train
our model. Five classifiers are applied in the dry run including
SVM with linear kernal, SVM with Gaussian kernel, logistic
regression, random forest, and decision tree, while logistic
regression based method is submitted in the formal run.

4. EXPERIMENTS & DISCUSSION
4.1 Data
The training data includes 93 samples from the dry run of NTCIR-
12 Temporalia and 300 samples from the formal run of NTCIR-11
Temporalia. As samples in NTCIR-12 are tagged as temporal intent
probability distribution, we transfer them into the NTCIR-11-style-
like format as the input of the classifiers. The trained models are
tested on the 300 queries of formal run in NTCIR-12.

4.2 Runs
We submitted three runs in the formal run by employing logistic
regression model. In RUN1, four groups of features are used
including trigger word, word POS, explicit time gap, word temporal
probability. In RUN2, we add feature rule-based time gap based on

2 http://scikit-learn.org/

RUN1. In RUN3, we replace feature rule-based time gap with time-
series statistics.

Table 2 shows the results of the three runs. We can see there is no
significant difference among the three runs, which indicates the
feature time-series statistics and rule-based time gap do not take
much effect here. But this is against our intuition because when
manually tagging the formal run samples we often need to refer to
the search frequency data of Google Trends in which the periodical
pattern of the data conforms to the real world with high probability.
The reason may be that the two features are so rough that they
cannot catch the hidden periodical patterns well. All in a nutshell,
it is a challenge but a chance to improve time-series features in the
future.

Table 2. Average cosine and average absolute loss for RUN1,
RUN2, and RUN3

 AvgCosine AvgAbsLoss

RUN1 0.728 0.208

RUN2 0.732 0.210

RUN3 0.727 0.212

Table 3. Confusion matrix for RUN1, RUN2, RUN3 and
manual results compared with the standard result

STANDARD
P R F A

RUN1

P 34 2 10 25
R 4 18 6 25
F 1 4 39 14
A 5 10 8 95

RUN2

P 33 3 11 32
R 4 17 6 33
F 1 4 39 13
A 6 10 7 81

RUN3

P 34 2 11 32
R 4 17 5 25
F 1 4 40 14
A 5 11 7 88

MANUAL

P 42 3 3 15
R 0 23 6 8
F 0 3 37 6
A 2 5 17 130

To further investigate the results generated from different runs and
our manually tagged result, we calculate the confusion matrix as
shows in Table 3. The confusion matrix is calculated by mapping
the probability distribution to the category of highest probability
and counting the category-category pair numbers respectively. The
baseline is the manually tagged result. The bold numbers are
queries right classified, and the numbers of grey shadow are
wrongly classified. We can see that human tagged result highly
conforms to the standard reference, indicating TID task is
reasonable and meanwhile there is still improvement for automatic
TID task. However, human also misunderstand atemporal as past,
or future as atemporal. This problem is even worse for the three
runs. Besides, the three runs tend to classify future as past, recency
as atemporal. We can see three out of four of the major errors are
related to atemporal category, inspiring us to classify atemporal

RuleBasedTIMEGAP(tdd_list, fdd_list):

T, P = DETECTPERIOD(tdd_list, fdd_list)
if len(P) > 0:

time_gap = COMPUTEMAXIMUMPOINT(tdd_list, T)
elif mean(fdd_list.spec) < FDD_MEAN_THLD and

mr(tdd_list.freq) > TDD_MR_THLD:
time_gap = COMPUTEPEAKPOINT(tdd_list)

 return time_gap

DETECTPERIOD (tdd_list, fdd_list)
P = []
for item in fdd_list:

if item.f > FDD_FREQUENCY_THLD and
item.spec > FDD_SPEC_THLD:
P.append(item)

 T = 1/P[0].f
return T, P

COMPUTEMAXIMUMPOINT(tdd_list, T)
Q = tdd_list[-T:0] tdd_list[-2T:-T] tdd_list[-

3T:-2T]

phase = mean(argmax(q.freq).week - q[0].week for
q in Q)

if PMQ_UP <= phase:

time_gap = T – phase

elif PMQ_DOWN <= phase <= PMQ_UP:

time_gap = -phase

elif phase < PMQ_DOWN:

time_gap = 0

return time_gap

COMPUTEPEAKPOINT(tdd_list)
peak_point = argmax(tdd_list)
time_gap = tdd_list[-1].week-peak_point.week
return time_gap

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

270

from temporal in the first step and handle the rest three categories
later.

Table 4. Classification errors in RUN1

 System Standard

Query P R F A P R F A

wind turbine 0.04 0.02 0.89 0.05 0.00 0.00 0.00 1.00

civil action 0.91 0.03 0.02 0.03 0.00 0.00 0.00 1.00

what time is
inauguration 0.73 0.05 0.03 0.19 0.00 0.40 0.40 0.20

When Is
Thanksgiving 0.79 0.02 0.13 0.06 0.00 0.00 0.90 0.10

famous events
in the 20th
century

0.09 0.50 0.12 0.29 1.00 0.00 0.00 0.00

life in the
future 0.09 0.51 0.16 0.24 0.00 0.00 0.70 0.30

We list some samples with the cosine value less than 0.25 in Table
4. “wind turbine” and “civil action” are wrongly classified because
of the misleading value of feature word temporal probability. The
training data is so sparse that it makes the probability distribution
of “wind” and “civil” biased to specific samples like “weather for
tomorrow wind” and “when did civil war end” in training data,
whereas “turbine” and “action” are out-of-vocabulary words. For
“what time is inauguration”, feature trigger_word_atemporal is
right assigned “TRUE”, verb_tense right assigned “VBZ”, and for
“When Is Thanksgiving”, feature explicit_time_gap_future is right
assigned “TRUE”, but the results are also affected by stop words
“in” and “is” etc. in feature word temporal probability. The
situation is similar to the rest two examples “famous events in the
20th century” and “life in the future”. It indicates that word
temporal probability is a high-quality feature only on the condition
of large samples and removing stop words.

5. CONCLUSION
We participated in the TID subtask of the NTCIR-12 Temporalia
task and submitted three runs. The temporal intent probability
distribution of the four categories of the 300 test queries are
predicted through logistic regression in all the three runs. In RUN1,
four groups of features are used including trigger word, word POS,
explicit time gap, temporal probability of words. Implicit time gap
is added in the form of rule-based time gap in RUN2 and in the
form of time-series statistics in RUN3. RUN2 performs slightly
better than the rest two runs with AvgCosine of 0.732 and
AvgAbsLoss of 0.210.

We discovered two promising features for TID, i.e. temporal
probability of words and query search time-series. The future work
may lie in three directions. The first direction is to discriminate the
atemporal queries with temporal ones in the early step and then to
classify the rest three one. Currently, temporal probability of words
is limited by small training data, causing too much bias to training
samples and too many out-of-vocabulary words. We may solve the
problem by extending the probability distribution of a word to that

of its synonyms using methods like WordNet or word embedding.
Finally, the time-series data of queries need to be preprocessed such
as removing long-term trends and seasonal changes.

6. ACKNOWLEDGMENTS
This work was supported by the National Nature Science
Foundation of China (No. 61173100 61272375) and National
Social Science Foundation of China (No. 15BYY175).

7. REFERENCES
[1] Nunes, S., Ribeiro, C., & David, G. 2008. Use of temporal

expressions in web search. In: ECIR 2008, pp.580-584.
[2] Joho, H., Jatowt, A., Blanco, R., Yu, H., & Yamamoto, S.

2016. Overview of NTCIR-12 Temporal Information Access
(Temporalia-2) Task, In Proceedings of the NTCIR-12
Conference on Evaluation of Information Access
Technologies.

[3] Joho, H., Kishida, K. 2014. Overview of NTCIR-11. In
Proceedings of the 11th NTCIR Conference, Tokyo, Japan.

[4] Campos, R., Dias, G., Jorge, A. M., & Jatowt, A. 2015.
Survey of temporal information retrieval and related
applications. ACM Computing Surveys (CSUR), 47(2), 15.

[5] Kanhabua, N., Blanco, R., & Nørvåg, K. 2015. Temporal
information retrieval. Foundations and Trends in
Information Retrieval, 9(2), 91-208.

[6] Yu, H., Kang, X. & Ren, F. 2014. TUTA1 at the NTCIR-11
Temporalia Task. In Proceedings of the 11th NTCIR
Conference, Tokyo, Japan.

[7] Hasanuzzaman, M., Dias, G. & Ferrari, S. 2014. HULTECH
at the NTCIR-11 Temporalia Task: Ensemble Learning for
Temporal Query Intent Classication. In Proceedings of the
11th NTCIR Conference, Tokyo, Japan.

[8] Shah, A., Shah, D., & Majumder, P. 2014. Andd7 @ NTCIR-
11 Temporal Information Access Task. In Proceedings of the
11th NTCIR Conference, Tokyo, Japan.

[9] Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J. R.,
Bethard, S., & McClosky, D. 2014. The Stanford CoreNLP
Natural Language Processing Toolkit. In ACL (System
Demonstrations) (pp. 55-60).

[10] Cryer, J. D., Chan, K. 2008. Time series analysis with
applications in R (second edition).Springer-Verlag New
York.

[11] Aho, A. V., & Corasick, M. J. 1975. Efficient string
matching: an aid to bibliographic search. Communications of
the ACM, 18(6), 333-340.

[12] Ren, P., Chen, Z., Song, X., Li, B., Yang, H., & Ma, J. 2013.
Understanding temporal intent of user query based on time-
based query classification. In Natural Language Processing
and Chinese Computing (pp. 334-345). Springer Berlin
Heidelberg.

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

271

