


dataset, the dimensionality depends on the domain of the
provided data. The time domain features, which is provided
with 34 channels and time-samples at a rate of 50Hz be-
tween 0.5 seconds pre-stimulus to 1.5 seconds post-stimulus
(34 x 100, 3400 features), and the two time-frequency do-
main features, both of which provide 32 channels, each with
6 frequencies (1 to 12 Hz in 2Hz steps) and either a mean or
ratio of 2 second periods for each frequency in each channel
between 0.5 seconds pre-stimulus to 1.5 seconds post stim-
ulus (32 x 6 x 20, 3840 features). Therefore, it is vital to
decrease the dimensionality by feature selection or reduction
before classification, as well as using various pre-processing
techniques to minimise noise.

Based on initial investigations into the best combination of
filtering technique and down-sampling ratio to maximize the
SNR for the time domain features provided, we apply a mov-
ing average filter, a low pass Finite Impulse Response filter
to smooth data, with a window size of 5, and down-sample
the data by a factor of 2 to a sampling rate of 25Hz. Based
on research into the varying latency of the P300 signal, time
samples are selected from 0ms to 800ms post-stimulus for
all feature types.

2.2 Feature Selection
To further reduce the dimensionality of the data, a pro-

cess of feature selection is undertaken using the so-called Re-
cursive Channel Elimination (RCE) method. This method,
initially proposed by Lal and Schröder [9] for a BCI dataset
based on the motor imagery paradigm, modifies the tradi-
tional Recursive Feature Elimination method to eliminate
channel by channel, rather than on an individual feature
basis, both decreasing computation time and maintaining
more neurophysiological interpretability. It has shown suc-
cess across BCI paradigms, including those based on the
P300 ERP. The original method involves repeatedly training
a support vector machine (SVM), using the amount each fea-
ture influences the margin to determine feature importance,
and removing n of the least important features. In the RCE
version, this is modified to use the importance of a channel
by computing the average score for each channel. Once a
channel is eliminated, it is removed from the set of channels
and the process is re-run with the smaller subset until a set
number of channels remain, the number of which is treated
as a hyper-parameter and selected via a grid search.

For the time-frequency domain features, this process is
modified to sum all features across all frequencies for each
channel before finding the average.

Despite the computational gains afforded by removing a
channel at a time rather than a single feature, repeatedly
running RCE as part of cross validation and a grid-search
is computationally expensive. Rather than complete a run
of the algorithm within each fold, we instead propose com-
puting the cross-validated average ranking for each channel
for each subject. This is done via ten-fold cross validation
(see section 2.5 for more details on evaluation methodology),
where a ranking for the channels is computed in each run
by running the recursive channel elimination algorithm until
one channel remains, and finally the ranks are summed for
each channel and averaged over the ten runs. This allows
us to determine a preset ranking of channels for each sub-
ject, and these rankings are then later used to keep only the
top n channels determined by a grid-search. We determine
a separate set of best channels for each domain of features.

Figure 1: Basic machine learning pipeline. c and n

are determined by grid search.

For the results of these rankings, see section 3.1.

2.3 Classifier
The classifier used is a linear support vector machine (SVM).

Before the selected features can be used for training the SVM
algorithm, they are first normalized to have zero mean and
unit variance, and each sample is flattened to the single-
dimensional vector required for classification. To deal with
the inherent class imbalance in this type of data, rather than
using the commonly applied sampling methods, we instead
add a penalty for the majority class to the parameter C that
allows the minority class (the target images) to have a higher
penalty for misclassification.

2.4 Ensemble Methods
In this paper we assess two ensemble methods, one using

the bagging method, and one using a stacked ensemble. Bag-
ging, also known as bootstrap aggregating, is an ensemble
method where the original training dataset is randomly sam-
pled with replacement to create multiple new training sets,
each of which is used to train a classifier. These classifiers are
then used to make predictions, and via either voting or aver-
aging of the predictions, a final prediction is made. See figure
2 for a visualization of the model. Stacking is the process of
combining several different classifiers, typically trained on
the same data, and training a final aggregator model on the
predictions from the earlier models, in the hopes of improv-
ing accuracy. Stacking of two classifiers using different fea-
ture domains (time and time-frequency features) has shown
success in an approach determined by Bigdely-Shamlo [1],
which stacked two FLDA classifiers and aggregated them
via a Naive Bayes classifiers, showing improvements over
the two individual models. Here we propose combining the
three feature domains provided by the NAILS organisers,
and training a final Naive Bayes model on a small left out
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Figure 2: Bagging ensemble. e (number of models)
and p (percent of data in each bootstrap sample)
are determined by grid search.

Figure 3: Stacked ensemble

set of data (10% in this case) to aggregate the predictions
from these underlying models (see figure 3).

As well as the two ensemble methods, we test two baseline
SVM classifiers for comparison with the same classification
pipeline, with and without recursive channel elimination.
For the version without RCE, six channels are selected based
upon the recommendations determined by Krusienski [7], a
commonly used combination of traditional P300 channels
and posteriorly located channels. The final base pipeline
can be seen in figure 1.

2.5 Model Evaluation
Methods are evaluated using ten-fold cross validation. K-

fold cross validation involves splitting the dataset into ten
disjoint parts, typically using a stratified method that en-
sures classes are distributed evenly between each fold. In
this case, while the main class we are concerned with is
the target or non-target class, we also stratify on the image
search task being completed, as initial investigations sug-

gested ERP responses may differ between the tasks. The
model is then trained 10 times, with each fold being treated
as the test set once, with the other nine folds used for train-
ing. The choice of hyper-parameters is evaluated on a ran-
domly selected stratified validation set of 30% within each
fold via a grid-search of the hyper parameters. Initial inves-
tigations suggested that using n-fold cross validation within
the outer cross-validation loop for hyper-parameter selection
had minor impacts on bias and variance, while resulting in
an exponential increase in computation time, so a single run
of grid-search is used here. Results are evaluated via bal-
anced accuracy (BA), which is the arithmetic mean of the
sensitivity and specificity.

3. RESULTS

3.1 Channel Selection Results
See figure 4 for the results of RCE to create channel rank-

ings for each subject. The variation between subjects is clear
here, although some posteriorly located channels that cor-
respond to the commonly used Krusienski [7] set are fairly
common across subjects. Interestingly, when we compare
these time feature channel selections to the channels selected
for the time-frequency domain, we can see some difference
in top ranked channels (see figure 5).

3.2 Main
See table 1 for the full results, compared using 10-fold

cross validation with the balanced accuracy reported as well
as the standard deviation. The best performing model uses
the bagging ensemble, which also results in a statistically
significant decrease in variance in the folds, suggesting that
it may be a more stable model. Interestingly, this model
achieved a balanced accuracy score of 85.2% during the eval-
uation run on the test set left out by the NTCIR-13 NAILS
organisers, a higher accuracy than estimated by our cross-
validation procedure. This may suggest that the ensemble
model is robust to overfitting the training set, compared
to the stacked model, which achieved a result of 82.8% on
the final test set, suggesting that it may have overfit to the
training set. While we see some improvement using ensem-
ble models for this task, the results do not appear to be as
strong as similar methods achieved on similar competition
datasets for the P300 Speller paradigm, suggesting that this
may be a more complex classification problem than the tra-
ditional Speller system. However, further investigation is
needed to determine this, and comparison to other team’s
results on the system should make the complexities of the
problem clearer.
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Figure 4: Channel rankings for each subject for
time features, where darker colours correspond to
a higher channel ranking (eliminated less often dur-
ing RCE).
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Figure 5: Channel rankings for the first four sub-
jects for each feature type, where darker colours cor-
respond to a higher channel ranking (eliminated less
often during RCE).
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