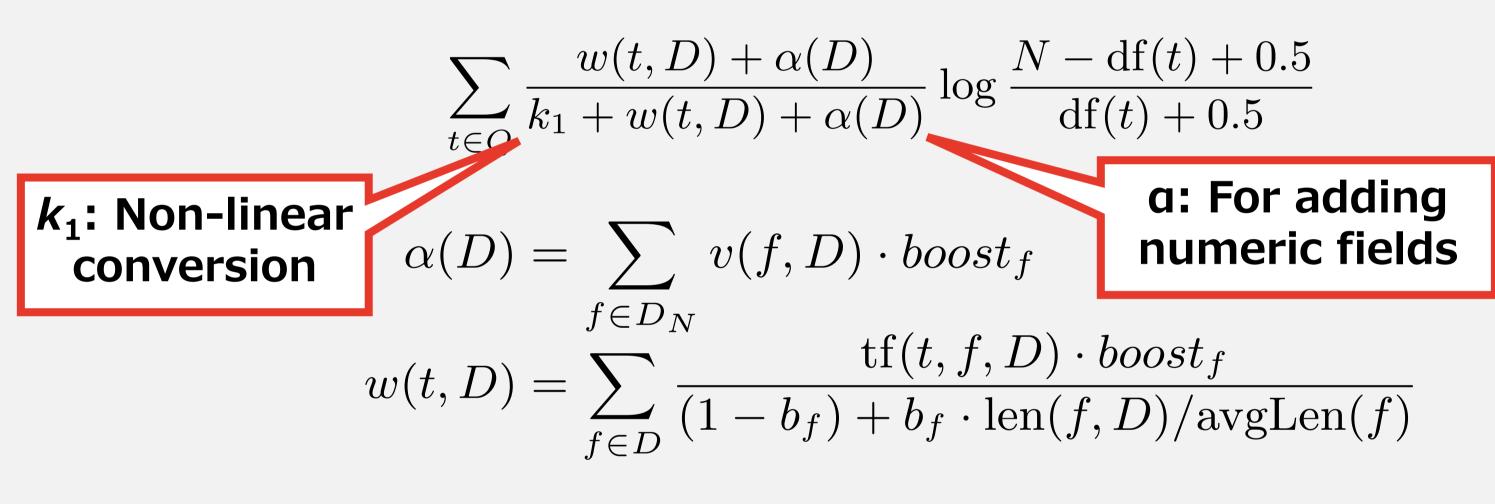
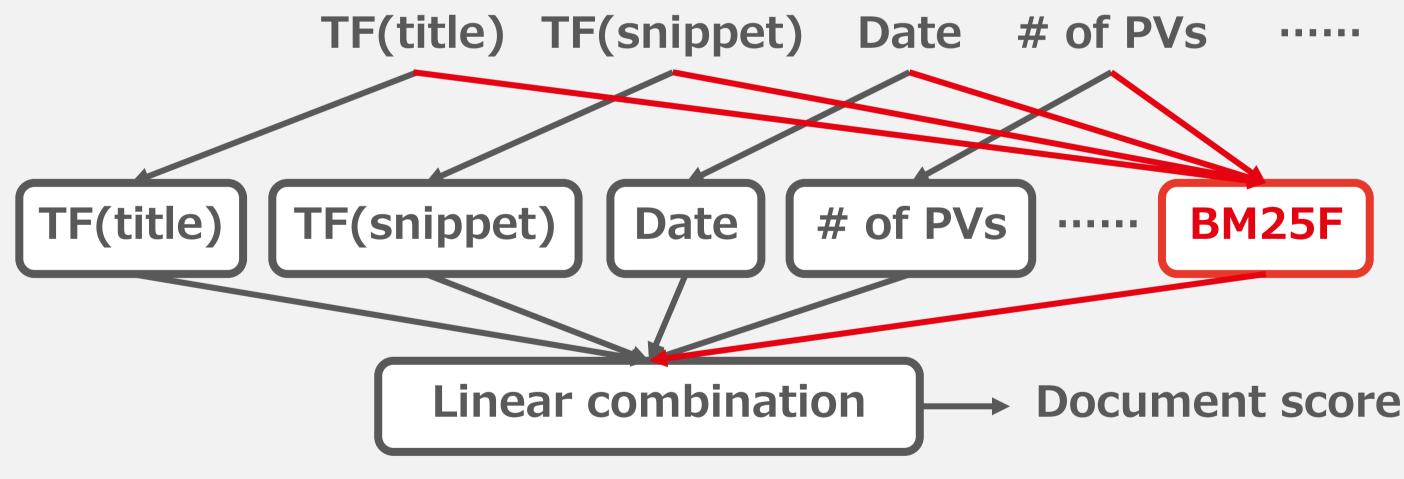
YJRS at the NTCIR-13 OpenLiveQ Task

Tomohiro Manabe Akiomi Nishida Sumio Fujita Yahoo Japan Corporation {tomanabe, anishida, sufujita}@yahoo-corp.jp

- We started from the baseline method.
- Our modifications are:
 - Extended BM25F as additional features
 - Five-fold cross validation
 - nDCG@10 as the objective function


Our Approaches


Baseline Method

- Linear combination of 77 features
 - 4 fields x 17 textual features, e.g. TF, LM, BM25, ···
 - 9 numeric features, e.g. # of answers/PVs, date, ···
- Weights are optimized by Coordinate Ascent (CA).

Extended BM25F as Ranking Features

- The BM25F is a non-linear function so that adding it as features may improve the model. (cf. neural net.)
 - Moreover we use numeric fields as well as TFs.

- We tried 3 settings of BM25F. (Naïve: All fields, SERP: Fields on SERPs, SERP+: Fields prominent on SERPs)
- Adding the 3 settings as features more or less improved the offline score. (On nDCG@10, ~+10%)

Cross Validation

• Five-fold cross validation improved the offline score. $(.380 \rightarrow .412 \text{ on nDCG}@10, +8.4\%)$

nDCG@10 as Objective Function

- Initially we used MAP as the objective function of CA.
 - Because quality of lower-ranked documents may be important in the greedy optimization process.
- Finally directly using nDCG@10 improved its score. (.396 \rightarrow .419 on nDCG@10, +5.7%)

Evaluations

Feature Importance

- Setting 0.0 to the weight of each feature, we recalculated nDCG@10 scores of the resulting rankings.
- The lower the score is, the more important the feature is.

Rank	nDCG	Feature	Rank	nDCG	Feature
1	.193	Number of PVs	6	.2112	Length of title
2	.2087	Log(Number of answers)			
3	.2091	Number of answers	25	.2143	BM25F(SERP)
4	.210	Log(NormTF(Snippets))	33	.2144	BM25F(Naive)
5	.2111	Date of last modification	62	.215	BM25F(SERP+)

Offline Test Results

Rank	nDCG@10	Team	ERR@10	Team	Q-measure	Team
1	.445	OKSAT	.276	OKSAT	.713	YJRS
2	.419	YJRS	.264	cdlab	.707*	Erler
3	.418	cdlab	.254	YJRS	.702*	ORG
4	.413	ORG	.249	ORG	.700*	OKSAT
5	.406	Erler	.245	Erler	.697*	cdlab

- *: Statistically significant (*p* < 0.05) difference from YJRS based on Student's paired *t*-test
- Our run achieved the 2nd-best nDCG@10, 3rd-best ERR@10, and best Q-measure scores.
 - The differences on Q were statistically significant.

Online Test Results

Rank	Credit	Team
1	22.35k	Erler
2	22.31k	YJRS
3	21.3k*	ORG
4	20.0k*	cdlab
5	18.9k*	N-ANS

PVs we won	PVs we lost	Win-loss ratio	Team
35.9k	30.8k	.538*	Erler
40.5k	31.5k	.563*	cdlab
37.0k	28.5k	.565*	ORG
43.5k	24.7k	.637*	N-ANS
46.1k	24.8k	.650*	TUA1

- *: Statistically significant (p < 0.05) difference from YJRS based on the t-test/Pearson's chi-square test
- Our method achieved the 2nd-largest total credit.
 - Difference from the 1st was not stat. significant whereas one from the 3rd was.
- Our run consistently achieved the win-loss ratios better than 0.5 against all the other runs.
 - In stat. significantly larger number of PVs, our run won.

Conclusions

- Our method performed well due to its robustness.
- The BM25F is useful as learning-to-rank features.
- Well-known classical techniques, namely Coordinate Ascent and cross validation, are still useful.