7/

Nders at NTCIR-13 Short Text Conversation R 1 R L8/ 5)

NNNNNN \GON WEBSOFT INC

Han Ni, Liansheng Lin, Ge Xu
NetDragon Websoft Inc.

Dec. 2017

System Architecture

Top-10 Comment TextRank
Similar Posts Candidates 1
" Word
Repository Clean Text (—»{ Sy ranTarion
Similairty Comment
Features Candidates 2 Pattern-IDF
Preprocessing Candidates Generation Ranking

Figure 1: System Architecture

Preprocessing

= Traditional-Simplified Chinese conversion
= Convert Full-width characters into half-width ones
= Word segmentation (PKU standard)

= Replace number, time, url with token <_NUM>, <_TIME>, <_URL>
respectively

= Filter meaningless words and special symbols

Short Text 1D

test-post-10440

Raw Text

ERER > BEPE | R T ROV~
Go to the USA, still eat Chinese food, Kung Pao Chicken, feeling like at home

Without T-S Conversion

FEER AR TRIBERET XWRE -

With T-S Conversion

% B E£E F E 2 TR BRET K K R -

Clean Result

% B EKE F Z 2 FE BERST K K B

Short Text ID

test-post-10640

Raw Text

DOINKHRFLE: 291 A\VEG IS TH BRI -

9th Anniversary of Wenchuan Earthquake: 29 moments making people tearful

Without token replacement

DUI K #0E 9 JF4E - 29 4 ik A VRIS) A -

With token replacement

PO K HE < NUM> JE4E : < NUM> 4> ik A JERIBE 1 B -

Clean Result

DI K #E < NUM> JEE < NUM> A ik A BT 7 B

Similarity Features

= TF-IDF

= LSA (Latent Semantic Analysis)
= LDA (Latent Dirichlet Allocation)
= Word2Vec (skip-gram)

= LSTM-Sen2Vec

We combine each post with its corresponding comments to be a document, then train
LSA and LDA models on these documents.

fe=0(Ws- [h—1,] + by) (1) ,
i = O’(Wi - [htfh $t] + bl) (2) C, N\ G
Cy = tanh(We - [h—1, m) + be) (3) e
Ci = fi* Coq + iy * C; (4) ' [e]

h:—l J J ht

o =0 (Ws - [he—1, z¢] + by) (5) Y J
X
hy = oy % tanh(Cy) (6)

Figure 2: The LSTM Cell

Mikolov, Toma's. Statistical Language Models Based on Neural Networks. Ph.D. thesis, Brno University of Technology.(2012)

Zaremba, Wojciech, |. Sutskever, and O. Vinyals. Recurrent Neural Network Regularization. Eprint Arxiv (2014).

Attention weight

— forward — forward
backward
—— average(bidirectional)

weight distribution
weight distribution

sentence length sentence length

Figure 3: Unidirectional weight distribution Figure 4: bidirectional weight distribution

LSTM-Sen2Vec

Y

O— = 0

P]
&

Figure 5: The Unidirectional LSTM Figure 6: The Traditional Bidirectional LSTM

O > —0

O— = —O®
O— = —®
CenlT

LSTM-Sen2Vec

Figure 7: The Modified Bidirectional LSTM

Candidates Generation

= Similar Posts

Scorey (g, p) = Simppa(q, p) * Simwav(g, p) * Simpsra(q, p) (7)

Score, (q, p) = Simpsa(q, p) * Simwzv(q, p) * SimpsTi(g, p) (8)

= Comment Candidates

Score (g, ¢) = Simpsa(q, c) * Simyny(g, c) (9)

Score (Q7) SimLDA(Q? C) * SszQ V(qv C) (10)

Ranking

= TextRank (Words as vertices)
= Pattern-IDF
= Pattern-IDF + TextRank (Sentences as vertices)

TextRank - A graph-based ranking model

Formally, let G = (V; E) be a undirected graph with the set of vertices V and and set
of edges F, where E is a subset of V x V. For a given V,, let link(V;) be the set of
vertices that linked with it. The score of a vertex Vi is define as follow:

WS(Vi)=(1—d)+dx Y wyx WSV (11)
jelink(V;)

Where d is a damping factor'that is usually set to 0.85.

!Brin, Sergey, and L. Page. The anatomy of a large-scale hypertextual Web search engine.
International Conference on World Wide Web Elsevier Science Publishers B. V. 1998:107-117.

10

TextRank - Vertices and Edges

= Vertices: each unique word in candidates
= Edges: a co-occurrence relation

= Weighted by: word2vec similarity between two words and the number of their
cooccurrences

11

TextRank - Calculate Iteratively

For N candidates, k words in total, we construct k£ x k matrix M.
M;; = ent x sim(D;, D;). Then we compute iteratively

(1-4d)/k My M2 Mz ... My
4 My, My My ... M
R(t+1) = ()/ k L .21 .22 -23 -2k R(1)
(1 - d)/k Mkl ng ng Mkk

Stop when |R(t+ 1) — R(t)| <€, e =107".
Here, cnt refers to the number of co-ocurrences within a sentence for D; and D;.

12

TextRank - Ranking

Since we get the score R(D;) for each word D; in candidates, the score for each
comment candidate c¢ is calculated as:

ZDiEC R(DZ>

Rankregtrank(c) = len(c)

Here, len(c) refers to the number of words in comment c.

13

Pattern-IDF

For word D; (minor word) in corresponding comment given word D; (major word) in
the post, we define (D;,D;) as a pattern.

Inspired by the IDF, we calculate the Pattern-IDF as:

countc(D;) * count,(D;)
countpaiT(Di, Dj)

PI(Di| Dj) = 1/ logy (13)

Here count, refers to the number of occurrence in comments, count, in posts,

countyq;y in post-comment pair. The Pl whose countyq(D;, Dj) less than 3 are
eliminated.

14

Pattern-IDF

__ countc(Dj)*county(D;)
Let X = Coumpm(DiD’;) L, then X € [1,00).

2.00
35
175
3.0
150
251
1.259
_ 2.0 =
x =
‘g" E 1.00
=15 =
0.754
104
0.50
0.5
0.25
0.0
0.00
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
X X
Figure 8: log(X) Figure 9: 1/log(x)

15

Pl - Example

Table 1: The example of Pattern-IDF Table 2: The entropy of Pattern-IDF for each Major Word
Major Word MinorWord PI MajorWord H
shE# 3 (China Mobile) #Ei8 (connect) 0.071725 AR#% (eye disease) 0.889971
FEREH cmec 0.067261 FIGLE (harvest year) 0.988191
hE®H &% (charges) 0.062408 13 (plasma) 1.033668
FEBH E\LFF (business hall) 0.059949 BHHEZNY (vertebrate) 1.083438
hEEh 8 (roamimg) 0.059234 Jk#}iE (gouache painting) 1.180993
P ERE & (me) 0.028889 LZE (now) 9.767768
P E#E 2 (be) 0.027642 ft4 (what) 10.219045
hE®E #y (of) 0.026346 £ (be) 10.934950
PI(D,|D))
Ploorm(D;i| D) = ————2— (14)
norm 1 J ZLZI PI(DZ‘D])
n
H(Dj) = - Z PITI(]TTIL(DZ‘D]) 10g2 PInnT‘m(Di|Dj) (15)

i=1 16

Pl - Ranking

For each comment c in candidates, given a query (new post) ¢, we calculate the score
by PI as follow:

2_pjeq 2opiec PIDI| D))

Scorepy(q, ¢) =

16
len(c) * len(q) (16)
Then we define rank score as follow:
Scorepy(q, ¢)) .
kpr = (1 17
Rankpr = (1 + s Beaamna C)) * Simywav(g, ¢) * Simpsa(q,) (17)

17

TextRank 4 Pattern-IDF

In this method, We add each comment sentence in candidates as a vertex in the graph
and use sentence Word2Vec similarity as edges between vertices in the graph.

For N candidates, we construct N x N matrix M.
M = Simyp,(candidate;, candidate;).

At time t = 0, We initiate a N-dimension vector P, here N is the number of comment
candidates. And each entry of P is defined as the score of Pattern-IDF between the

query (new post) ¢ and corresponding comment ¢; in candidates:

P; = Scorep(q, c;) (18)

18

TextRank 4 Pattern-IDF

Then we compute iteratively

(1—d)/N My My Mg ... My
—d)/N Mo Moy Mo ... Moy

R(t+1) = NI 4 g Lo 1 Ry
(1_d)/N MN1 MN2 MNg MNN

Stop when |R(t+1) — R(t)| <€, e =107

Finally, we get the score P; for each comment in candidates.

19

Experiment

= Nders-C-R5:
= Nders-C-R4:
= Nders-C-Ra3:
= Nders-C-R2:
= Nders-C-R1:

LDA + Word2Vec + LSTM-Sen2Vec

LSA + Word2Vec + LSTM-Sen2Vec

R4 + TextRank (Words as vertices)

R4 + Pattern-IDF

R4 + Pattern-IDF + TextRank (Sentences as vertices)

20

Official Result

Table 3: The official results of five runs for Nders team

Run Mean nG@1 | Mean P+ | Mean nERR@10
Nders-C-R1 0.4593 0.5394 0.5805
Nders-C-R2 0.4743 0.5497 0.5882
Nders-C-R3 0.4647 0.5317 0.5768
Nders-C-R4 0.4780 0.5338 0.5809
Nders-C-R5 0.4550 0.5495 0.5868
R2 vs. R4 10.77% 12.98% 11.26%

21

Questions?

