Proceedings of the 13th NTCIR Conference on Evaluation of Information Access Technologies, December 5-8, 2017 Tokyo Japan

Nders at NTCIR-13 Short Text Conversation 2 Task

Han Ni Liansheng Lin Ge Xu
NetDragon Websoft Inc., NetDragon Websoft Inc., Minjiang University, China
, China China XuGeNLP@nd.com.cn
nihan@nd.com.cn Fuzhou University, China

linliansheng@nd.com.cn

ABSTRACT

This paper describes our retrieval-based approaches at NTCIR-
13 short text conversation 2 (STC-2) task (Chinese). For
a new post, our system firstly retrieves similar posts in
the repository and gets their corresponding comments, and
then finds the related comments directly from the reposi-
tory. Moreover, we devise two new methods. 1) LSTM-
Sen2Vec model to get the vector of sentence. 2) Pattern-IDF
to rerank the candidates from above. Our best run achieves
0.4780 for mean nG@1, 0.5497 for mean P+, and 0.5882
for mean nERR@10, and respectively rankes 4th, 5th, 5th
among 22 teams.

Team Name
Nders

Subtasks
Short Text Conversation 2 (Chinese)

Keywords

Short Text Conversation, LSA, LDA, Word2Vec, LSTM,
Pattern-IDF, Sen2Vec

1. INTRODUCTION

We participated in the NTCIR-13 Short Text Conversa-
tion 2 (STC-2) Chinese subtask. Given a new post, this task
aims to retrieve an appropriate comment from a large post-
comment repository (Retrieval-based method) or generate a
new appropriate comment (Generation-based method). Our
system chooses the retrieval-based method.

The retrieved or generated comment for the new post
is judged from four criteria: Coherent, Topically relevant,
Non-repetitive and Context independent[1][2]. The primary
criterion for a suitable comment we consider is topically rele-
vant. In other words, this comment should be talking about
the same topic with the given post. We train LSA[3] model
and LDA[4] model to obtain the degree of topic relateness,
Word2Vec[5] model to obtain the semantic similarity be-
tween new post and retrieved comment. By combining them
together, we proposed a simialrity score to search comment
candidates, and achieves a good performance.

Based on a hypothesis, similar posts has similar corre-
sponding comments, we try to find the similar posts to the
new post and get their corresponding comments as a sup-
plement for the candidates. In addition to Word2Vec model
and LSA model, we also introduce Sen2Vec model trained

215

Repository

Clean Text

| Eereprocessing

Word
Segmentation

Similairty
Feature

| New Post _,_: + * Ecanmdalns Generation
. Comment Comment .

Candidates Candidates
1

* Ranking
TextRank Pattern-IDF .

Figure 1: System Architecture

by LSTM][8][9][10] to compute similarity between two sen-
tences.

In the last step, we rank the candidates by TextRank and
Pattern-IDF. Results show that Pattern-IDF improves the
performance while TextRank deteriorates it instead.

The remainder of this paper is organized as follows: Sec-
tion 2 describes our systems in detail. Our experimental
results are presented in Section 3. We make conclusions in
Section 4.

2. SYSTEM ARCHITECTURE

The architecture of our system is described as Figure 1.

Proceedings of the 13th NTCIR Conference on Evaluation of Information Access Technologies, December 5-8, 2017 Tokyo Japan

2.1 Preprocessing

There are some traditional Chinese in raw text which will
cause incorrect word segmentation, so we convert traditional
Chinese to simplified Chinese with nstools'. Moreover, we
convert full-width characters into half-width ones. In addi-
tion, we replace all the number, datetime, url with token
<_NUM>, <_TIME>, <_URL> respectively.

Unlike English words in a sentence are separated by spaces,
Chinese short texts are written without any symbol between
characters. So the word segmentation becomes necessary.
We choose nlpir? to segment the chinese text. After seg-
mentation, our system filters meaningless words and sym-
bols according to Chinese stop words list in order to clean
the result.

The following example in Table 1 shows the raw text,
segmentation result without and with traditional-simplified
conversion (T-S conversion for short), and clean result.

2.2 Similarity Features

In order to compute the degree of similarity or relate-
ness between two sentences, we convert text sentence into
continuous vector representations with some techniques in-
cluding LSA, LDA, Word2Vec, LSTM-Sen2Vec. While not
using TF-IDF as the similarity feature directly, it would
participate in training LDA, LSA models and calculate the
similarity score by using Word2Vec, see 2.2.5.

2.2.1 TF-IDF

In information retrieval, TF-IDF, short for term frequency
— inverse document frequency, is a numerical statistic that is
intended to reflect how important a word is to a document in
a collection or corpus. It is often used as a weighting factor
in information retrieval, text mining, and user modeling.

TF-IDF is the product of two statistics, term frequency
and inverse document frequency. Various ways for determin-
ing the exact values of both statistics exist.

In the case of the term frequency TF(t,d), the simplest
choice is to use the raw count of a term in a document, i.e.
the number of times that term ¢ occurs in document d.

The inverse document frequency is a measure of how much
information the word provides, that is, whether the term is
common or rare across all documents. It is the logarithmi-
cally scaled inverse fraction of the documents that contain
the word, obtained by dividing the total number of doc-
uments by the number of documents containing the term,
and then taking the logarithm of that quotient.

N

[DF(t’D):10g7|deD:ted|

1

Where, N refers to the total number of documents in the

corpus, N = |D|. |d € D :t € d| refers to the number of

documents where the term ¢ appears. If the term is not in

the corpus, this will lead to a division-by-zero. It is therefore

common to adjust the denominator to 1+ |d € D : ¢ € d|.
Then, TF-IDF is calculated as

TF — IDF(t,d, D) = TF(t,d) - IDF(t,D) (2)

2.2.2 LSA

"https://github.com/skydark /nstools
*http://ictclas.nlpir.org/

216

Latent semantic analysis (LSA) is a technique of analyz-
ing relationships between a set of documents and the terms
they contain by producing a set of concepts related to the
documents and terms. LSA assumes that words that are
close in meaning will occur in similar pieces of text (the dis-
tributional hypothesis). A matrix containing word counts
per paragraph (rows represent unique words and columns
represent each paragraph) is constructed from a large piece
of text and a mathematical technique called singular value
decomposition (SVD) is used to reduce the number of rows
while preserving the similarity structure among columns.[3]
We combine each post with its corresponding comments to
be a document, then we train LSA model (200 topics) on
these documents with gensim®. From trained model, we can
get vector for each chinese word. Then, we can get vector
representation of a sentence by Eq.3:

1 n
V:E.;m (3)

Here, capital V refers to vector of a sentence, v; refers to
vector of each word in the sentence, and n is the length of
the sentence.

2.2.3 LDA

Latent Dirichlet allocation (LDA) is a generative statisti-
cal model that allows sets of observations to be explained by
unobserved groups that explain why some parts of the data
are similar. For example, if observations are words collected
into documents, it posits that each document is a mixture
of a small number of topics and that each word’s creation is
attributable to one of the document’s topics.[4] Like train-
ing LSA model, we combine each post with its correspond-
ing comments to be a document, then we train LDA model
(200 topics) on these documents with gensim. With trained
LDA model, we can transform new, unseen documents into
LDA topic distributions. We regard a sentence(a post, or a
comment) as a document, convert it into plain bag-of-words
count vector, and then index LDA model to obtain a vector
representation of the sentence.

2.2.4 Cosine Similarity

After convert sentence into vectors, we compute similarity
of two sentences by cosine similarity:

Vi-Va

VilTval @)

Sim(s1,82) =
Here, Vi refers to vector representation of sentence si, Va
refers to vector representation of sentence sa.

With sentence vectors from different models, we get cor-
responding sentence similarity. We use Simrsa to denote
sentence similarity based on LSA model, and Simrpa to
denote sentence similarity based on LDA model.

2.2.5 Word2Vec

Word2Vec is an efficient tool for computing continuous

distributed representations of words[5]. We train our Word2Vec

model on provided post-comment pairs in repository and
training data with skip-gram architecture where window size
is 7, vector length is 300 and min count is 5 to remove infre-
quent words. Vector representation for each chinese word is
directly obtained from trained model.

https://radimrehurek.com/gensim/index.html

Proceedings of the 13th NTCIR Conference on Evaluation of Information Access Technologies, December 5-8, 2017 Tokyo Japan

Table 1: The preprocessing result

Short Text ID test-post-10440

Raw Text

RERE - TRZHE | ERE T RKBRE~

Go to the USA, still eat Chinese food, Kung Pao Chicken, feeling like at home

Without T-S Conversion

ZEXBE AECHRI S RETROREAE -

With T-S Conversion

% B EE R PR ERET KK B -

Clean Result

% B RE L Z 2 PR BERNT K B R

Moreover, when using Word2Vec to calculate the sentence
vector, we normalize every word’s norm to its corresponding
square root of value of IDF. Sum all words within a sentence
and divede by its length, as below:

V;l.ivi.w (5)

p il

Here, capital V refers to vector of a sentence, v; refers to
vector of each word w; in the sentence, IDF(w;) refers to
inverse document frequence for word w;, and n is the length
of the sentence.

Then, we calculate Word2Vec similarity by Eq.4, denoted
as Simwoav.

2.2.6 LSTM-Sen2Vec

Word2Vec, LDA and LSA models capture the word mean-
ing by the word distribution of its context, which ignores the
order of words in a sentence. To take the order into account,
we design a new model which can calculate the sentence vec-
tor with the sequence information, we call it LSTM-Sen2Vec.

Long short-term memory (LSTM) is a recurrent neural
network (RNN) architecture that remembers values over ar-
bitrary intervals. Figure 2 shows the architecture of LSTM.
The C; represents the cell state at time ¢t and it is stored as
a vector, which can theoretically remember all the previous
information. The h; represents current hidden state, which
is also a output value at time t. The following equations
describe the details of the architecture:

fe=0Wy - [hir,z:] + bf) (6)
ic = (Wi - [heo1, x¢] + bi) (7)
Cy = tanh(We - [he—1, 2] + be) (8)
Cy = fe % Cro1 +ir % Cy (9)

0t = (Wo - [hi—1, 4] + bo) (10)
hy = oq * tanh(C}) (11)

Where Wy, Wi, We, Wo, bs, bi, be, by refer to corresponding
weights and bias.

Mikolov[6] and Zaremba et al.[7] use LSTM to predict the
next word given the previous words as input and achieve
a good perplexity. Inspired by their architecture of LSTM,
we can use the vector of the final cell state to represent a
sentence by feeding its words as input in sequence.

We train the model using unidirectional LSTM, whose
architecture is shown as Figure 3.

Before training the LSTM model, we train the Word2Vec
model as its word embedding vector and freeze it while the

217

Figure 2: The repeating module in an LSTM con-
tains four interacting layers.

A

A > A A

6 & b &

Figure 3: The unidirectional LSTM
We append an end token <FE> in the end of word sequence
to fix the length of input and output.
“FTFF—FEMFH. means: support the domestic mobile
phone.

Y
=

Y

whole training process. The hidden size of LSTM cell is 300
which is the same as Word2Vec’s dimension, and the total
layers are 3, the forget bias is set to 1.0, with SGD as the
optimizer and 0.95 decay every 2 epochs.

For a new post, we calculate its similarity with other post
by the value of cosine similarity. When observe the result, we
find that in the top-N similar posts, the last few words are
extremely similar. Which suggests that the unidirectional
LSTM model may assign much more weight to the end of a
sentence.

To overcome the unbalance, we replace unidirectional LSTM
with bidirectional LSTM. The traditional bidirectional LSTM
architecture is shown as Figure 4. However, it doesn’t make
sense if we concatenate the outputs of forward and backward
at the same time step , because at each time step both of
them predict different words given the same word (such as
“[E*” concatenated with “ZH#”, shown as Figure 4).

So we modify to make the concatenation rational, shown
as Figure 5. Then we concatenate the outputs of both direc-

Proceedings of the 13th NTCIR Conference on Evaluation of Information Access Technologies, December 5-8, 2017 Tokyo Japan

® ©®© o e
otet ot o

A A
A, A e A, | Ay

Ar > Af

Y

Af > Af

& &

Figure 4: The Traditional Bidirectional LSTM
“TFF—TFEFH.” means: support the domestic mobile
phone.

Table 2: Word-level perplexity on the Penn Tree
Bank Dataset

Validation set Test set
Unidirectional LSTM 71.9 68.7
Modified Bidirectional LSTM 68.4 66.9

tions at each time step, which is 600-dimension. Through
a full connection layer, it is reduced to dimension 300. We
calculate the Euclidean distance of each output and its vec-
tor of Word2Vec model as the cost of neural networks. The
word-level perplexity of our model on the Penn Tree Bank
Dataset is shown as Table 2.

Finally, we concatenate the final cell states of two di-
rection as the vector of the input sentence which is 600-
dimension.

2.3 Candidates Generation

2.3.1 Similar Posts

Based on a hypothesis that similar posts has similar cor-
responding comments, we firstly find top-10 similar posts
with a ranking score combining LSA, LDA, Word2Vec, and
LSTM model:

Scoreq (g, p) = Simpp (g, p)xSimwav (¢, p)*Simrsru (g, p)

(12)

Scoreg,p(q,p) = Simrsa (q,p)*Simwgv(q,p)*SimLSTM((q7)p)

13
Here, ¢ denotes the query(the new post) p denote the post
from repository.

Then, we get corresponding comments to the top-10 sim-
ilar posts by Eq.12 as first comment candidates, denoted as
C1, and corresponding comments by Eq.13 as second com-
ment candidates, denoted as Cs.

2.3.2 Comment Candidates

Since Word2Vec model captures semantic similarity, LSA
or LDA reflects topic relateness, we combine LSA or LDA
with Word2Vec respectively to directly retrieve top-N appro-
priate comments to the new post from all comments in the
repository. N is equal to the number of comment candidates
Cl or Cz.

Score;, .(q,¢) = Simrpa(q,c) * Simwav (g, ¢) (14)

Scoregyc(q, c) = Simrsa(g,c) * Simwav (g, c) (15)

218

Here, g denotes the query(the new post), ¢ denotes the com-
ment from repository.

We combine the retrived top-N comments by Eq.14 with
candidates C as our first final candidates. Then we rank
them with Score;c(q,c) and get top-10 comments as our
results of Nders-C-R5.

We combine the retrived top-N comments by Eq.15 with
candidates C> as our second final candidates. Then we rank
them with 5'007"6270(117 ¢) and get top-10 comments as our
results of Nders-C-R4.

Our results of R3, R2, R1 are based on the second final
candidates from R4.

2.4 Ranking

2.4.1 TextRank

TextRank[11] is a graph-based ranking model for text pro-
cessing. Graph-based ranking algorithms are essentially a
way of deciding the importance of a vertex within a graph,
based on global information recursively drawn from the en-
tire graph. The basic idea implemented by a graph-based
ranking model is that of voting or recommendation. When
one vertex links to another one, it is basically casting a vote
for that other vertex. The higher the number of votes that
are cast for a vertex, the higher the importance of the vertex.
Moreover, the importance of the vertex casting the vote de-
termines how important the vote itself is, and this informa-
tion is also taken into account by the ranking model. Hence,
the score associated with a vertex is determined based on the
votes that are cast for it, and the score of the vertices casting
these votes.

We consider an undirected weighted TextRank algorithm
in our system. Formally, let G = (V, E) be a undirected
graph with the set of vertices V and and set of edges E,
where E is a subset of V x V. For a given V;, let link(V;) be
the set of vertices that linked with it. The score of a vertex
Vi is define as follow:

WS(Vi)=(1—d)+dx >

jElink(V;)

wi; * WS(V;) (16)

where d is a damping factor[12] that is usually set to 0.85.

We add each unique word in candidates as a vertex in
the graph and use a co-occurrence relation as edges between
vertices in the graph. The edge is weighted by word2vec
similarity between two words and the number of their co-
occurrence. Here co-occurrence means two words co-occur
within a window of maximum W words, where the window
size W is set to be 5 in our system.

In our system, the TextRank value for each vertex refers
to the importance of the word in candidates. We compute
the TextRank value iteratively.

Firstly, for comment candidates, we create a dictionary
D, a mapping between words and their integer ids. Such
that, each unique word is mapped to a integer range from 0
to k —1, k is the size of the dictionary. We use D; to denote
a word whose id is 3.

Therefore, the w;; is defined as

wi; = ent * Sim(Dy, Dj) (17)

When we scan the candidates sentence by sentence, if the
word D; and D; co-occur within the window, the count for
them increases by 1. The cnt in Eq.17 refers to the total
count after scanning.

Proceedings of the 13th NTCIR Conference on Evaluation of Information Access Technologies, December 5-8, 2017 Tokyo Japan

A
&

A

2>
A

}

Y

;

Y
-« >
Y

)

Figure 5: The Modified Bidirectional LSTM

In order to align the outputs of forward and backward direction, we append the first output value (indicates start token
<8>) of backward direction to the outputs of forward, and append the last output value (indicates end token <E>) of
forward direction to the outputs of backward.“3 ff— N E ™ FH1” means: support the domestic mobile phone.

Then, we construct a k x k matrix M, defined as

Wi
Mj=< "
~{s

At time t = 0, We initiate a k-dimension vector R, where
each entry is defined as the inverse document frequency
(IDF) of the word:

J € link(D;)

. (18)
otherwise

R; = IDF(Dy) (19)
At each time step, the computation yields:
1-d
R(t+1)=dMR(t) + —1 (20)

k

The computation ends when for some small €, |[R(t+1) —
R(t) < €|, Where we set e = 107"

Since we get the score R(D;) for each word Dj;, the score
for each comment candidate c is calculated as:

2 pyec UDi)

len(c) (21)

RankTaztRank (C) =

where, len(c) refers to the number of words in comment c.

Finally, we use Rankregztrank to rank the comment can-
didates and get top-10 comments as our Nders-C-R3 results
for each given new post.

2.4.2 Pattern-IDF

Consider the hypothesis, similar posts have similar corre-
sponding comments. In other words, for the corresponding
comments of similar posts, the word distribution may also
be similar. Therefore, we can use word distribution of the
corresponding comments of post in the repository to infer
that of the new post. We present a new model, Pattern-IDF
(PI).

219

Table 3: The examples of Pattern-IDF

D; D; PI
HE#3) (China Mobile) i (connect) 0.071725
T ERT) cmce 0.067261
HEZD) %% (Charges) 0.062408
HEZ ‘ST (business Hall) 0.059949
TEZ) EBF (roam) 0.059234
TERD) & (me) 0.028889
TE®ZD) & (be) 0.027642
HEZD) #) (of) 0.026346

For word D; in corresponding comment given word D; in

the post, we define PI as:

countc(D;) * county,(D;)

pair\i, LVj

(22)

Here count. refers to the number of occurrence in comments,
count, in posts, countpqir in post-comment pair. The PI
whose countpaqir less than 3 are eliminated. Table 3 shows
some examples of Pattern-IDF'.

For each comment ¢ in candidates, given a query (new
post) g, we calculate the score by Pattern-IDF as follow:

ZDjeq ZDiec PI(DZ‘DJ)
len(c) x len(q)

Scorepi(q,c) =

Then we define rank score as follow:

Scorepi(q,c)

Rankpr = (1
ankpr = (+maxc Scorepr(q,c)

(24)

Finally, we use Rankpr to rank the comment candidates

and get top-10 comments as our Nders-C-R2 results for each
given new post.

)xSimwav (g, c)*Simrsa(g,c)

Proceedings of the 13th NTCIR Conference on Evaluation of Information Access Technologies, December 5-8, 2017 Tokyo Japan

2.4.3 TextRank + Pattern-IDF

In this method, We add each comment sentence in candi-
dates as a vertex in the graph and use Word2Vec similarity
as edges between vertices in the graph.

At time t = 0, We initiate a I-dimension vector P, here
[is the number of comment candidates. And each entry of
P is defined as the score of Pattern-IDF between the query
(new post) g and corresponding comment ¢; in candidates:

P; = Scorepr(q,ci) (25)
Then, we construct a [X [matrix M, defined as
Ml'j = Simwzv (Ci,Cj) (26)
At each time step, the computation yields:
P(0)
P(t+1)=dMP(t)+ (1—-d) (27)
[P(0)]

The computation ends when for some small €, |P(t+1) —
P(t) < ¢|, Where we set e = 107",

Finally, we get the score P; for each comment in candi-
dates. After sorting, the top-10 comments are obtained as
our Nders-C-R2 results.

3. EXPERIMENTS

3.1 Data Set

The repository consist of 219,174 Weibo posts and the cor-
responding 4,305,706 comments. There are 4,433,949 post-
comment pairs in total. So each post has 20 different com-
ments on average, and one comment can be used to respond
to multiple different posts.

There are 769 query posts in training data, each of which
has about 15 candidate comments. Totally, there are 11,535
comments labeled with suitable, neutral, and unsuitable. Suit-
able means that the comment is clearly a suitable comment
to the post, neutral means that the comment can be a com-
ment to the post in a specific scenario, while unsuitable
means it is not the two former cases.

100 query posts are used for test. Each team is permitted
to submit five runs to the task. In each run, a ranking list
of ten comments for each test query is requested.

3.2 Evaluation Measures

Following the NTCIR-12 STC-1 Chinese subtask, three
evaluation measures are used: nGQ1 (normalised gain at
cut-off 1), P+, and nERR@10 (normalised expected recip-
rocal rank at cut-off 10)[1][2].

nG@1 shows the quantity of effective result in the re-
trieved candidates.

P+ depends most on the position of the best effective
result in the ranking list of retrieved candidates. It gives
the top ranked result the most ratio.

nERR@10 shows the rank correctness of the candidates
ranking, which means that the more effective result should
be ranked as more front of the ranking list of retrieved can-
didates.

3.3 Experimental Results
We submitted five runs for comparison and analysis:
1. Nders-C-R5: Use LDA, Word2Vec and LSTM-Sen2Vec

to retrieve similar posts and get corresponding com-
ments, LDA and Word2Vec to retrieve appropriate

220

Table 4: The official results of five runs for Nders

team
Run Mean nG@1 | Mean P+ | Mean nERRQ10
Nders-C-R1 0.4593 0.5394 0.5805
Nders-C-R2 0.4743 0.5497 0.5882
Nders-C-R3 0.4647 0.5317 0.5768
Nders-C-R4 0.4780 0.5338 0.5809
Nders-C-R5 0.4550 0.5495 0.5868

comments from all comments, combine and rank them
with Scoretlm(q7 ¢) and get top-10 comments as results.

2. Nders-C-R4: Use LSA, Word2Vec and LSTM-Sen2Vec
to retrieve similar posts and get corresponding com-
ments, LSA and Word2Vec to retrieve appropriate com-
ments from all comments, combine and rank them with
Score? .(q,c) and get top-10 comments as results.

3. Nders-C-R3: Use graph-based algorithm TextRank
with words as vertices in the graph, and use score
Rankreztrank to rank the comment candidates from
R4 and get top-10 comments.

4. Nders-C-R2: Use Rankp; as a ranking score to rank
comment candidates from R4 and get top-10 comments.

5. Nders-C-R1: Use graph-based algorithm TextRank
with comments as vertices in the graph and Pattern-
IDF as initiate score for each comment to rank the
comment candidates from R4 and get top-10 comments.

The official results of our five runs are shown in Table
5. Which shows that, with the use of Word2Vec and LSA
model, R4 achieves best result in our five runs for Mean
nG@1, that ranks 4th among 22 teams.

The best results in our runs for Mean P+ and Mean
nERR@10 are both R2, which introduces Pattern-IDF to
rank the comment candidates generated by Word2Vec and
LSA model(R4). The result of R2 improves against R4 by
2.02% for mean P+ and 1.26% for mean nERR@10 and both
ranks 5th among 22 teams, with 0.77% slightly decreased for
mean nG@Q1. It proves the effectiveness of the Pattern-IDF
we devised.

However, the results of R3 are worse than that of R4 for
all three metrics, which shows TextRank is not helpful for
candidates ranking in this task.

Moreover, we conduct a per-topic analysis. We classify
100 test posts according to their topics, including animal,
philosophy, weather, entertainment, emotion, travel, tech-
nology, sports, art, diet and others. Then, for each topic,
we calculate the mean value of each run for three evaluation
metrics respectively, shown as Table5-Table7.

Results show that, the standard deviation of R5 (with
LDA model) is bigger than R4 (with LSA model) and other
runs. Though in some topics such as animal, sports, and
diet, the mean value for each metric is significantly high
than other topic, however, in other topics, the mean value
is rather small. It is because that the LDA vector is sparse,
that is, most of entries of the vector is zero. Which results
that the cosine similarity of two LDA vector is either close
to 1 (high topic related) or close to 0 (topic not related).

It suggests that LDA model is unstable over topics. Which
is also why we choose the candidates from R4 for further
ranking by R1, R2 and R3.

Proceedings of the 13th NTCIR Conference on Evaluation of Information Access Technologies, December 5-8, 2017 Tokyo Japan

4. CONCLUSIONS

In this paper, we propose an approach for STC-2 task of
NTCIR-13. The LSA, Word2Vec and LSTM-Sen2Vec model
are used to find similar posts. The LSA and Word2Vec
model are used to retrieve comment candidates. A graph-
based algorithm TextRank and the Pattern-IDF we devised
are applied to rank the candidates. Results show that the
Pattern-IDF we devised is effective for ranking while Tex-
tRank not, and LDA model outperforms LSA model in re-
trieving candidates. Finally, our best run achieves 0.4780(R4)
for mean nG@1, 0.5497(R2) for mean P+, and 0.5882(R2)
for mean nERR@10, which respectively rankes 4th, 5th, 5th
among 22 teams.

5. REFERENCES

[1] Lifeng Shang, Tetsuya Sakai, Zhengdong Lu, Hang Li,
Ryuichiro Higashinaka, and Yusuke Miyao. Overview of
the NTCIR-12 Short Text Conversation Task,
Proceedings of NTCIR-12, 2016.

Lifeng Shang, Tetsuya Sakai, Hang Li, Ryuichiro

Higashinaka, Yusuke Miyao, Yuki Arase, and Masako

Nomoto. Overview of the NTCIR-13 Short Text

Conversation Task, Proceedings of NTCIR-13, 2017.

[3] Susan T. Dumais (2005). Latent Semantic Analysis.
Annual Review of Information Science and Technology.
38: 188-230.

[4] Blei, David M, A. Y. Ng, and M. 1. Jordan. Latent
dirichlet allocation. Journal of Machine Learning
Research 3(2003):993-1022.

[5] Mikolov, Tomas, et al. Efficient Estimation of Word
Representations in Vector Space. Computer Science
(2013).

[6] Mikolov, Toma’s. Statistical Language Models Based on
Neural Networks. Ph.D. thesis, Brno University of
Technology.(2012)

[7] Zaremba, Wojciech, I. Sutskever, and O. Vinyals.
Recurrent Neural Network Regularization. Eprint Arxiv
(2014).

[8] Hochreiter, S., & Schmidhuber, J. (1997). Long
short-term memory. Neural computation, 9(8),
1735-1780.

[9] Sundermeyer, Martin, R. Schliiter, and H. Ney. LSTM
Neural Networks for Language Modeling. Interspeech
2012:601-608.

[10] Graves, Alex. Generating Sequences With Recurrent
Neural Networks. Computer Science (2013).

[11] Mihalcea, Rada, and P. Tarau. TextRank: Bringing
Order into Texts. Unt Scholarly Works (2004):404-411.

[12] Brin, Sergey, and L. Page. The anatomy of a
large-scale hypertextual Web search engine.
International Conference on World Wide Web Elsevier
Science Publishers B. V. 1998:107-117.

[2

221

Proceedings of the 13th NTCIR Conference on Evaluation of Information Access Technologies, December 5-8, 2017 Tokyo Japan

Table 5: Per-topic analysis for mean nG@1

Topic Nders-C-R1 Nders-C-R2 Nders-C-R3 Nders-C-R4 Nders-C-R5
animal(4) 0.5000 0.4167 0.5417 0.5417 0.6667
philosophy(7) 0.3333 0.4286 0.3333 0.3333 0.1667
weather(3) 0.2778 0.2778 0.2778 0.2778 0.2778
entertainment(2) 0.4167 0.4167 0.3333 0.3333 0.1667
emotion(23) 0.4768 0.5493 0.5130 0.5275 0.5130
travel(4) 0.5834 0.5000 0.5000 0.5000 0.4583
technology(9) 0.3889 0.2963 0.3704 0.3704 0.2482
sports(5) 0.2867 0.4533 0.3600 0.3933 0.6933
art(5) 0.5000 0.5000 0.4000 0.5667 0.4333
diet(16) 0.5000 0.5000 0.5521 0.5521 0.6771
other(22) 0.5091 0.5015 0.4864 0.4864 0.3712
std. 0.1007 0.0865 0.0965 0.1040 0.1980

Table 6: Per-topic analysis for mean nERR@10

Topic Nders-C-R1 Nders-C-R2 Nders-C-R3 Nders-C-R4 Nders-C-R5
animal(4) 0.6143 0.5868 0.6344 0.6359 0.7459
philosophy(7) 0.5015 0.5489 0.4704 0.4735 0.3721
weather(3) 0.4089 0.4034 0.4000 0.4000 0.4893
entertainment(2) 0.4932 0.4988 0.4551 0.4509 0.3394
emotion(23) 0.5854 0.6297 0.6050 0.6076 0.6432
travel(4) 0.6811 0.6487 0.6385 0.6435 0.5768
technology(9) 0.5052 0.4518 0.4532 0.4545 0.4465
sports(5) 0.4854 0.5466 0.5091 0.5203 0.7779
art(5) 0.6475 0.6864 0.5828 0.6726 0.6399
diet(16) 0.6537 0.6504 0.6976 0.6862 0.7716
other(22) 0.5912 0.5777 0.5715 0.5703 0.4722
std. 0.0867 0.0881 0.0949 0.1006 0.1577

Table 7: Per-topic analysis for mean P+

Topic Nders-C-R1 Nders-C-R2 Nders-C-R3 Nders-C-R4 Nders-C-R5
animal(4) 0.5594 0.5082 0.5507 0.5655 0.6805
philosophy(7) 0.4711 0.5295 0.4256 0.4370 0.3556
weather(3) 0.3927 0.3910 0.3869 0.3869 0.4749
entertainment(2) 0.4087 0.3745 0.3517 0.3478 0.2511
emotion(23) 0.5500 0.5959 0.5526 0.5561 0.6101
travel(4) 0.6352 0.5919 0.5870 0.5870 0.5149
technology(9) 0.5078 0.4475 0.4106 0.4081 0.4057
sports(5) 0.4275 0.5312 0.4523 0.4647 0.7344
art(5) 0.5887 0.6624 0.5566 0.6512 0.5929
diet(16) 0.6080 0.6057 0.6580 0.6408 0.6923
other(22) 0.5383 0.5251 0.5362 0.5253 0.4705
std. 0.0825 0.0904 0.0964 0.1036 0.1521

222

