Proceedings of the 13th NTCIR Conference on Evaluation of Information Access Technologies, December 5-8, 2017 Tokyo Japan

RUCIR at NTCIR-13 WWW Task

Ming Yue?, Zhicheng Dou
Beijing Key Laboratory of Big Data Management and Analysis Methods, China
Key Laboratory of Data Engineering and Knowledge Engineering, MOE, China
School of Information, Renmin University of China

{yomin,dou}@ruc.edu.cn

ABSTRACT

In this paper, we present our approach in the We Want
Web(WWW)[1] task of NTCIR-13, for both English and
Chinese languages. We implement a ranking model for tra-
ditional re-ranking problems based on learning to rank. We
first process the raw data and extract text features, match
features, embedding features and semantic features for each
query-document pair. Then we use LamdaMART[2] to train
the ranking model and rank the documents by the ranking
scores. Finally, we could get the ranking list.

Team Name
RUCIR

Subtasks
We Want Web (Chinese, English)

1. INTRODUCTION

In modern search engines, users type queries to a search
box and search engines return relevant results. Whether the
document list matches user’s queries becomes an important
issue. Thus document ranking is the core challenge for many
applications of information retrieval. In the ranking task,
given a set of web pages, we use a score function to get a
ranking list. The relative order of documents may reflect
their degrees of relevance to a user query.

There are two major approaches, which are traditional un-
supervised approaches and learning to rank methods, to deal
with the ranking problem. The traditional methods usually
define the score function heuristically, such as TF-IDF and
BM25[3] model. We only need to determine the function
parameters and then calculate the document ranking score
to create the final ranking list. The drawback of these mod-
els is that if a ranking function has only a small number
of parameters, performance tuning can be done manually.
However, if there are a large number of parameters, it will
become very difficult and time-consuming.

Learning to rank approaches make good performance when
applied to information retrieval. Assuming that each query
is associated with a set of documents with relevance judg-
ments. We could learn the parameters of a ranking function
using the training data, such that the model can precisely
score a document. When it comes to testing data, given a
new query, the ranking function is used to create a ranked
list based on scoring on the documents associated with that

query.

407

These learning to rank algorithms can successfully utilize
all kinds of features and automatically learn the optimal
parameters. Many approaches have been proposed such as
RankNet[4], ListNet[5] and so on. In recent years, neural
network methods are also applied to information retrieval
task. Such models e.g., ARC[6] and DSSM][7] focus on pro-
jecting the query and document to semantic vector space,
and a score function calculates the similarity score between
two vector embeddings.

In the We Want Web subtask[1], for both Chinese and
English task, the official data consists of 100 queries and
top 1,000 documents for each query, which are obtained by
baseline retrieval systems, based on Solr[12]. Our goal is to
use some training data to re-rank the baseline runs to get
better search results.

We choose to use learning to rank approaches to do the
We Want Web(WWW) task. In section 2, we illustrate algo-
rithm details on WWW task from data preparation to model
training and evaluation metrics. In section 3, we show eval-
uation results of our submitted runs and analyze the results.
In Section 4, we come to conclude about this WWW task.

2. WE WANT WEB TASK

In this section, we introduce our work on WWW task.
Data flow are described as follows. First, we need to pre-
pare the training data from previous TREC task and NT-
CIR task. Second, we extract four types of features for each
labeled query-document pair. Third, we use a popular learn-
ing to rank algorithm, named LambdaMART, to train and
validate the ranking model. Finally, we process the test data
and create the final ranking list. Figure 1 shows the whole

process.
f i
: Data ! —
i ‘eature

‘ M Extraction DAvicl
i 2 i =
i :
= i Feature

Data vectors

Preprocessing

N
|

i -
L, Predict
dy| | ds i Result
7 7 7 !

(
i
i
1
i
1

Figure 1: Dataflow Overview

Proceedings of the 13th NTCIR Conference on Evaluation of Information Access Technologies, December 5-8, 2017 Tokyo Japan

2.1 Data Set

2.1.1 Official Dataset

We use the official datasets for this ranking task. For Chi-
nese Subtask, we use the SogouT-16[1] as the document col-
lection. SogouT-16[10] contains about 1.17B Web pages, but
we only index part of the “Category B” version of SogouT-
16. Although user behaviour data is available, due to the
tight schedule of the task, we do not use them in this ranking
task. For the English Task, we adopt the ClueWeb12-B13
as the document collection.

2.1.2 Training Dataset

Since official datasets do not include abundant training
data, we need to find some other data for supplement. For
English task, we use the labeled data from previous TREC
competitions. We collect about 200 queries and their rel-
evance judgment files from TREC09 to TREC14 competi-
tions. We parse and index Category A of ClueWeb09 docu-
ment collection, which contains about 50,000,000 web pages,
for basic search utilization and feature extraction. Simi-
larly we do the same thing on the Category B of ClueWeb12
dataset. Further, we also use the anchor text information,

spam collection and link graph of both ClueWeb09 and ClueWeb12

for more analysis. All the resources we use in English sub-
task are summarized as follows:

e Document Collection (ClueWeb09, ClueWeb12)
e Relevance Judgement (Trec09 - Trecl4)

e Anchor Text (ClueWeb09, ClueWeb12)

e Link Graph (ClueWeb09, ClueWeb12)

e Spam Collection (ClueWeb09, ClueWeb12)

For Chinese task, we only use the labeled data from previ-
ous NTCIR IMINE tasks and the official relevant judgments.
We randomly sample about 20,000,000 web pages from Cat-
egory B of SogouT-16 and merge a little part of SogouT-08
web pages together, indexing them by Solr for basic use. All
the resources are summarized as follows:

e Document Collection (SogouT-08, SogouT-16)
e Relevance Judgments (NTCIR09-11, Official)

2.2 Feature Extraction

Ranking task is somewhat a machine learning problem.
We need to extract various kinds of features to represent
a query-document pair for model training. Each training
sample is represented by a multi-dimensional feature vector,
and each dimension of the vector is a feature, which indi-
cates how important the document is with respect to the
query. We hope to cover as many features proposed in IR
papers and conferences as possible. In this paper, we use
four kinds of features, which are traditional text relevant
features, match features, embedding features and semantic
neural network features.

The format of the final feature file is the same as SVM-
Rank format. Each of the following lines represents one
training example and the line format is: relevance label and
query id, followed by feature id and its value, as shown in
Figure 2.

408

[A document - ~

Figure 2: Feature File Format

Table 1: Text Relevant Features

Names Description #Features
Boolean Boolean model 5
TF-IDF TF-IDF model 5
BM25 BM25 default parameters 5
LMIR Dirichlet smoothing 5
IDF Sum of IDF 5
TF Sum of term frequency 5
DL Document length 5
Spam Spam score 1
Pagerank PageRank score 1
Inlinks Number of inlinks 1
Outlinks Number of outlinks 1

2.2.1 Text Relevance Features

Text Relevance Features are the most traditional features
that can be used in the learning task. We classify the fea-
tures into two classes. One class is query-document features
which are dependent on both the query and the document,
such as BM25 feature. The other class is document features,
which means that the feature only depends on the document,
such as pagerank[11] and document length.

In addition, we consider five fields of a document: body,
anchor, title, URL and the whole document. Because we
think many score functions such as BM25 may have different
effects on different fields, which could affect the final ranking
result. Table 1 shows the most common traditional text
relevant features. The description column in Table 1 gives
a brief introduction on these features.

2.2.2 Match Features

Match features are corresponding to occurrence of query
items in the document. There are two match feature classes:
perfect match and complete match.

Perfect Match. As mentioned above, when a query is split
into several terms, we will find whether these terms occur in
the document. And at the same time, we focus on whether
these terms occur continuously as a integrated phrase in the
document. Supposing that we have a query “I like you”,
perfect match means whether we could find the substring “I
like you” in the document. This could be a strong signal
indicating that the document is relevant to the query.

Complete Match. Different from perfect match, complete
match has weak conditions on whether query terms must
occur as an integrated phrase. Taking query “I like you” as

Proceedings of the 13th NTCIR Conference on Evaluation of Information Access Technologies, December 5-8, 2017 Tokyo Japan

an example, complete match requires that terms “I”, “like”
and “you” should occur in the document, but there could
be span words between them. The document “I really like
somebody and you.” holds this scenario. Complete match
somewhat likes the span-based feature, so that we calculate
the maximum span between query terms. We use 10 buckets
to convert continuous span value to category value according
to span value statistics. Thus, we could get one-hot encoded
complete features for further use.

In the experiment, we find the perfect match and complete
match in the title and body field. For English task, we also
calculate the perfect match feature in the URL and anchor
text.

2.2.3 Embedding Features

Although text relevant features and match features are
useful in ranking task, but they lack the semantic meanings
of query and document. So we introduce the embedding
features and semantic neural network features next section
to represent the query and document in a semantic vector
space. Embedding features in this section focus on word
vector representation, such as Word2vec[8] and Doc2vec[9].
The following two parts introduce how we use these embed-
ding models to extract features in detail.

Word2vec. Word2vec was created by a team of researchers
led by Tomas Mikolov at Google. Word2vec uses two-layer
neural networks to train a large corpus to get high dimen-
sional word vectors, typically of several hundred dimensions,
by using rich context information.

Here, we first get each word vector from corpus, then we
create the distributed representations of queries and docu-
ments, and finally we calculate the similarity score between
each query and document pair as one embedding feature.

Initially we use the Word2vec tool from Google to train
word vectors both on title and body using our huge docu-
ment collection, as mentioned in Section 2.1.

Next, we use pre-trained word vectors to obtain the dis-
tributed representation of the query or document. Because
documents are composed of terms, and each term can be rep-
resented by its vector, we use mean, max, min function on
terms to get document embedding vectors. We use Vz; € R™
to note the final representation, which the ¢ — th dimension
would be calculated as follows:

Vai = maz(Term;;),j € [1...n]

Vai = min(Termy;),j € [1...n]

where n means the number of terms in the document; T'erm;
denotes the ith position of the word vector T'erm;. Because
the number of terms in one document is too large, we extract
several snippets to replace the whole document.

Finally, we use cosine distance as the similarity score be-
tween each query and document pair. After we get repre-
sentations of the query and document, noted as V; and Vg,
we can calculated feature value as follows:

score(q, d) = cosine(Vy, Vy)

Doc2vec. An extension model of the Word2vec to con-
struct embeddings from entire documents, rather than the

409

individual words, has been proposed. This extension is called
Paragraph2vec or Doc2vec.

As shown in Figure 3, every document is mapped to a fixed
length vector, represented by a column in matrix D and ev-
ery word is also mapped to a unique vector, represented by
a column in matrix W. The document vector and word vec-
tors are averaged or concatenated to predict the next word
in a context. The contexts are fixed-length sliding window
sentences and sample from the document. The document
vector is shared across all contexts generated from the same
document but not across documents. We can consider a
document vector as a specific word vector that “stores” the
missing information from current context.

The document vectors and word vectors are trained using
stochastic gradient descent and the gradient is obtained via
back propagation. Then the following calculating feature
value steps are exactly the same as what Word2vec method
does mentioned before.

Classifier [on |

(NREERN]

AN

Average/Concatenate

Paragraph the cat sat
id

Figure 3: Doc2vec Framework

2.2.4 Semantic Neural Network Features

In previous section, we use Word2vec or Doc2vec to obtain
the distributed representation of a document. Currently, we
use deep learning models, such as CNN and RNN, to get
deep semantic relationships between word sequences.

This paper[6] proposed a new convolutional architecture
for modeling sentences. It takes the embedding vectors of
words in the sentence as input, and summarizes the mean-
ing of a sentence through layers of convolution and pool-
ing. Finally we could get a fixed length vector represen-
tation in the final layer. Based on this new architecture,
they propose a related convolutional architecture, namely
Architecture-I(ARC-I), for matching two sentences. ARC-I,
as illustrated in Figure 4, takes a conventional approach: It
first generates the representation of each sentence, and then
compares the representations for the two sentences with a
multi-layer perceptron. We use this model to calculate the
semantic similarity score as our features.

2.3 Model Training

There are a lot of learning to rank algorithms that can
perfectly solve this task. Due to limited time, we simply
just take LambdaMART, a very stable approach which can
directly optimize evaluation metrics, to train, validate and
test on the dataset. We use a third-party package, Ranklib,
to implement our offline re-ranking system.

We partition the training data into five equal parts for 5-
fold cross validation. We select 4 folds for training and the

Proceedings of the 13th NTCIR Conference on Evaluation of Information Access Technologies, December 5-8, 2017 Tokyo Japan

sentence S,
AYARVARV ARV

Matching
Degree

jﬂ%;m

E

sentence Sy

Figure 4: ARC-I Architecture

other as validation data each time. The training set is used
to learn ranking models. The validation set is used to tune
the hyper parameters of the learning algorithms, such as the
number of iterations in LambdaMART. After obtaining the
hyper parameters, we finally train a model on these five folds
for further testing.

Feature selection has been proved useful for improving the
model performance. However, feature selection is a time-
consuming engineering. Thus, we do not leverage feature
selection in this task.

2.4 Evaluation Metrics

In both Chinese and English tasks, we use nDCG@QK for
evaluation, which is the most common metric used in the
ranking task. nDCG@k is a measure for evaluating top k
positions of a ranked list using multiple levels of relevance
judgment. It is defined as follows:

n
nDCG@k = N, Y g(r;)d(j)
j=1
where k means the top k results of ranking list, N denotes
the maximum of >37 | g(r;)d(j), r; denotes the relevance
level of the document ranked at the j-th position; g(r;) de-
notes a gain and d(j) denotes a discount function. In the
experiment, we adopt nDCG@1, nDCG@Q5, nDCG@10 to
evaluate the ranking result. For selecting the best parame-
ter, we use the mean average of the above three metrics.

2.5 Experiments

2.5.1 submitted runs

We submit the following five runs for both Chinese and
English We Want Web task:

e RUCIR-C/E-NU-Base-1: text relevant features.

e RUCIR-C/E-NU-Base-2: text relevant features, match
features.

e RUCIR-C/E-NU-Base-3: text relevant features, match
features, embedding features.

e RUCIR-C/E-NU-Base-4: text relevant features, match

features, semantic neural network features.

e RUCIR-C/E-NU-Base-5: text relevant features, match
features, embedding features, semantic neural network
features.

410

2.5.2 Experimental Results

Table 2 and Table 3 show the evaluation results of our
submitted runs. We see that the traditional text relevance
features achieve the best performance in both Chinese and
English tasks. In Chinese task, we are one of the top per-
formance teams.

RUCIR-*-NU-Base-1 vs. RUCIR-*-NU-Base-2. The re-
sult shows that text relevant features are proved to be effi-
cient for ranking tasks. Perfect match features shows strong
relevant signal when we debug on the ranking algorithm.
While complete match features’ performance seems to be
not stable when validating on different datasets. Maybe we
should look more into the span distance partition algorithm
in complete match method.

RUCIR-*-NU-Base-2 vs. RUCIR-*-NU-Base-3. We find
that it may not perform well when using word embedding
features in both Chinese and English tasks. We randomly
select several similar document pairs to test the pre-trained
embeddings. We find that both the doc2vec and word2vec
vectors similarity scores are not as high as expectation. The
possible reason is that there is much noise when we parse
the raw web pages to plain text.

RUCIR-*-NU-Base-3 vs. RUCIR-*-NU-Base-4. We can
see that semantic neural network features really do some
work on improving the results. ARC-I network structure
could be considered as another distributed representation
of documents. Although we find that the word vectors we
trained are not as good as we expect, ARC-I captures more
information on interaction between document pairs such as
click behaviour. And thus it could perform better than pure
embedding methods.

Table 2: Chinese We Want Web results. Mean score
of each Metric.

Run name nDCGQ@10 | Q@10 | nERRQ10
RUCIR-C-NU-Base-1 0.6323 0.6449 0.7771
RUCIR-C-NU-Base-2 0.6241 0.6448 0.7597
RUCIR-C-NU-Base-3 0.5361 0.5407 0.6767
RUCIR-C-NU-Base-4 0.5873 0.6049 0.7217
RUCIR-C-NU-Base-5 0.5827 0.5890 0.7132

Table 3: English We Want Web results. Mean score
of each Metric

Run name nDCGQ10 | Q@10 | nERRQ10
RUCIR-E-NU-Base-1 0.5254 0.5135 0.6988
RUCIR-E-NU-Base-2 0.4207 0.4050 0.5795
RUCIR-E-NU-Base-3 0.4516 0.4402 0.5917
RUCIR-E-NU-Base-4 0.3843 0.3859 0.5343
RUCIR-E-NU-Base-5 0.3885 0.3813 0.5292

3. CONCLUSIONS

In this paper, we describe our approaches for the WWW
task in NTCIR-13. In Chinese subtask, we achieve great
performances on nDCG@10, Q@10 and nERR@10. How-
ever, some enhanced methods performed not as well as our
expect. The reason is that embedding and neural network
approaches need large training data while we do not have
enough data. In the future we will do more work to handle
this problem.

Proceedings of the 13th NTCIR Conference on Evaluation of Information Access Technologies, December 5-8, 2017 Tokyo Japan

7]

REFERENCES
C Luo, T Sakai, Y Liu, Z Dou, C Xiong, J Xu.

Overview of the NTCIR-13 We Want Web Task. In
Proceedings of NTCIR-13 workshop , 2017

Burges, Chris J. C. From RankNet to LambdaRank to
LambdaMART: An Overview. Microsoft Research,
June 2010.

S. E. Robertson, S. Walker, S. Jones, M. M.
Hancock-Beaulieu, and M. Gatford. Okapi at trec-3.
In Proc. the 3rd TREC 1994, pages 109-126, 1995.
C.J.C. Burges, T. Shaked, E. Renshaw, A. Lazier,
M. Deeds, N. Hamilton and G. Hullender Learning
to Rank using Gradient Descent. In Proceedings of the
Twenty Second International Conference on Machine
Learning, 2005.

Z. Cao, T. Qin, T. Liu, M. Tsai, H. Li. Learning to
Rank: From Pairwise Approach to Listwise Approach
In ICML, 2009.

Hu B, Lu Z, Li H, Chen Q. Convolutional neural
network architectures for matching natural language
sentences. In Advances in neural information
processing systems(pp. 2042-2050).

Huang PS, He X, Gao J, Deng L, Acero A, Heck

411

8]

[9]

(10]

(1]

(12]

L. Learning deep structured semantic models for web
search using clickthrough data. In Proceedings of the
22nd ACM international conference on Conference on
information & knowledge management, 2013

Mikolov T, Sutskever I, Chen K, Corrado GS, Dean
J. Distributed representations of words and phrases
and their compositionality. In Advances in neural
information processing systems, 2013

Le Q, Mikolov T. Distributed representations of
sentences and documents. In Proceedings of the 31st
International Conference on Machine Learning , 2014
C Luo, Y Zheng, Y Liu, X Wang, J Xu, M Zhang,
S Ma. SogouT-16: A New Web Corpus to Embrace
IR Research. In In Proceedings of the 40th
International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR
’17), ACM, New York, NY, USA, 1233-1236.

Page, Lawrence and Brin, Sergey and Motwani,
Rajeev and Winograd, Terry The PageRank Citation
Ranking: Bringing Order to the Web. In Stanford
InfoLab, 1999

http://lucene.apache.org/solr/

