VCI²R at the NTCIR-13 Lifelog-2 LSAT Task

Presented by: Qianli Xu

Co-authors: Jie Lin, Ana del Molino, Qianli Xu, Fen Fang, V. Subbaraju, Joo-Hwee Lim, Liyuan Li, V. Chandrasekhar Organization: Institute for Infocomm Research, A*STAR, Singapore

About VCI²R

- Institute for Infocomm Research (I²R), A*STAR, Singapore
 - Visual Computing
 - Human Language Tech
 - Data Analytics
 - Neural Biomedical Tech
 - etc.
- Visual Computing Department
 - Video/image analytics & search
 - Augmented visual intelligence
 - Visual inspection

Website: www.a-star.edu.sg/i2r/

LSAT Framework

- **Relevant concepts**: What are the CNN predications relevant to query topics?
- Feature weighting: Which features contribute the most?
- **Temporal smoothing**: Temporal coherence, remove outliers
- **Post filtering**: refine search using location (GPS) and Time

del Molino, et al., 2017, VC-I2R at ImageCLEF2017: Ensemble of deep learned features for lifelog video summarization. *CLEF Working Notes, CEUR*.

1. Getting the Basic Semantics

- CNN classifiers
 - Object: ResNet152 ImageNet1K
 - Place: ResNet152 Place365
- CNN detector
 - Faster R-CNN MSCOCO (80)
- NTCIR-13 classifier
 - VGG-16 ImageNet1K
 - Replace the last layer (1K neurons) with 634 neurons
 - Sigmoid as the activation function
- Human detection and counting
 - Sighthound (https://www.sighthound.com)

Relevance mapping for each topic

	Objects		Places		MSCOCO
Task	Relevant	Avoid	Relevant	Avoid	Relevant
1	computer	-	computer	-	laptop
	group meeting		group meeting		keyboard
			etc.		
2	television	computer	living room	conference room	tv
	food	group meeting	television room	lecture room	remote
	glass		etc.	etc.	etc.
3	computer	office	coffee shop	conference room	laptop
	group meeting		living room	office	keyboard
			etc.	etc.	
4	computer	office	living room	conference room	laptop
	pencil		hotel room	office	book
	notebook		etc.	etc.	etc.
5	food	drum	food court	-	fork
	glass	white goods	restaurant		sandwich
		menu'	etc.		etc.

CRF for Feature weighing that accommodates individual differences

Veighing Features

3. Temporal Smoothing

- Adjacent lifelog images may share similar event.
- Temporal smoothing is used to ensure the semantic coherence.
- A triangular window of size
 w is used. *w* is adaptive to event topics.

4. Post-filtering

- Increase diversity of retrieved images (avoid retrieving images of the same event)
- Use time and location (GPS) to filter images
- Exclude images that are closer in time and location.

Result

• Official score (precision): 57.6%

Analysis (Fine-tuning)

Effect of threshold for relevant concept searching

Semantic concepts which activation level is above the threshold is considered relevant to the query topic

Effect of temporal smoothing

Whether temporal smoothing is performed or not

Feature importance

Decrease in performance when we remove one type of feature. The bigger the decrease, the more important the feature.

Summary

- A lot of fine-tuning and manual intervention are involved in the retrieval → Over-fitting?
- "Relevant" concepts may not be contributing, and vice verse.
- Interactive retrieval is probably a good intermediate solution.

