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* Institute for Infocomm Research
(1°R), A*STAR, Singapore

Visual Computing
Human Language Tech
Data Analytics

Neural Biomedical Tech
etc.

* Visual Computing Department

Video/image analytics & search
Augmented visual intelligence
Visual inspection

Website: www.a-star.edu.sg/i2r/




LSAT Framework
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del Molino, et al., 2017, VC-I2R at ImageCLEF2017: Ensemble of deep learned features
for lifelog video summarization. CLEF Working Notes, CEUR.



1. Getting the Basic Semantics

CNN classifiers § ==

— Object: ResNet152 - ImageNet1K % 5 :3

— Place: ResNet152 - Place365 :BD g g
CNN detector EE =

— Faster R-CNN - MSCOCO (80) '
NTCIR-13 classifier ) 7

— VGG-16 - ImageNet1K e Ay
— Replace the last layer (1K neurons) with 634 neurons P,

— Sigmoid as the activation function

Human detection and counting
— Sighthound (https://www.sighthound.com) sl Common Objects in Contex




2. Aggregating & Weighing Features

Relevance mapping for each topic

Objects Places MSCOCO
Task Relevant Avoid Relevant Avoid Relevant
1 computer computer laptop
group meeting group meeting keyboard
etc.

2 television computer living room  conference room tv
food group meeting |television room lecture room remote
glass etc. etc. etc.

3 computer office coffee shop  conference room | laptop

group meeting living room office keyboard
etc. etc.

4 computer office living room  conference room | laptop
pencil hotel room office book

notebook etc. etc. etc.

5 food drum food court fork
glass white goods restaurant sandwich

menu’ etc. etc.

CRF for Feature weighing that
accommodates individual differences
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3. Temporal Smoothing

* Adjacent lifelog images may

share similar event.

Temporal smoothing is used
to ensure the semantic
coherence.

A triangular window of size
wis used. wis adaptive to
event tonics.
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4. Post-filtering

Increase diversity of retrieved
images (avoid retrieving
images of the same event)

Use time and location (GPS) to
filter images

Exclude images that are closer
in time and location.
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Result

e Official score (precision)
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Analysis (Fine-tuning)
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Effect of threshold for

relevant concept searching

Semantic concepts which
activation level is above the
threshold is considered relevant
to the query topic
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smoothing

Whether temporal smoothing
is performed or not
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Feature importance

Decrease in
performance when we
remove one type of
feature. The bigger the
decrease, the more
important the feature.
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Lifelog
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Retrieval

ntelligence in
Model Fine-
tuning

Email: gxu@i2r.a-star.edu.sg

A lot of fine-tuning and
manual intervention are
involved in the retrieval 2>
Over-fitting?

“Relevant” concepts may not
be contributing, and vice
verse.

Interactive retrieval is
probably a good intermediate
solution.




