NTCIR13 MedWeb Task: Multi-label Classification of Tweets using an Ensemble of Neural Networks.

Hayate Iso, Camille Ruiz, Taichi Murayama, Katsuya Taguchi, Ryo Takeuchi, Hideya Yamamoto, Shoko Wakamiya and Eiji Aramaki Social Computing Lab, Nara Institute of Science and Technology

Overview

1. Make bootstrap samples

2. Build 6 models for every bootstrap sample

3. Average over all model outputs

- Our team tackled the MedWeb using neural networks that produced the best results with 88.0% accuracy.
- Our high-level modeling procedure is:
 - 1. Resampling: Create Bootstrap samples.
 - 2. Model: Learn Neural Network with 6 settings.
 - 3. Ensemble: Average over the model outputs.

Features representation

- In this paper, we utilized two neural network models based on both Hierarchical Attention Network (HAN) and Character-level Convolutional Networks (CharCNN).
- The goal is to encode the tweet sentence into a fixed size sentence vector *s*, which will eventually undergo multi-label classification.

Hierarchical Attention Network

- Given a sentence with words w_t where T is the total number of words in the sentence and embed these words through the embedding matrix W_e, x_t = W_ew_t.
- Given the encode bidirectional GRU to encode the tweet sequence $h_t = \text{BiGRU}(x_t)$.
- Compose the tweet vector s with attention mechanism:

$$u_{t} = \tanh \left(W_{w}h_{t} + b_{w}\right),$$
$$\alpha_{t} = \frac{\exp(u_{t}^{\top}u_{w})}{\sum_{t}\exp(u_{t}^{\top}u_{w})},$$
$$s = \sum_{t}\alpha_{t}h_{t}$$

Character-level Convolutional Network

- In contrast to the HAN, the CharCNN is the deep learning method to compose sentence vector from character sequences.
- To accelerate learning procedure, we adapt Batch Normalization.
- We define the above procedure as $\mathrm{C}\mathrm{N}\mathrm{N}$ and iterate $\mathrm{C}\mathrm{N}\mathrm{N}$ three times:

$$\begin{split} v_{1,1:T_{v,1}} &= \operatorname{CNN}(c_{1:T_c}) \\ v_{2,1:T_{v,2}} &= \operatorname{CNN}(v_{1,1:T_{v,1}}) \\ v_{3,1:T_{v,3}} &= \operatorname{CNN}(v_{2,1:T_{v,2}}) \end{split}$$

• Compose the sentence vector *s* the linear transformation for hidden features *v*₃ to compose the sentence vector:

$$s = W_v v_{3,1:T_{v,3}} + b_v.$$

Integrating all three tasks

• Although we generally need to learn the neural network model for each task, the MedWeb task consists of the same label set for the different language datasets.

Language Independent learning

• For each task, we build one neural network model.

Multi-language learning

• Represent the three tweets of each language in a single vector for multi-language learning:

$$s^{Multi} = [s^{ja}; s^{en}; s^{zh}]$$

Multi-label learning

• Since the task is to perform a multi-label classification of 8 diseases or symptoms per tweet, there are two ways to approach this:

Label-Independent learning

• Build the classifier for each label, respectively:

$$\hat{y}_c = w_c^\top s + b'_c \in \mathbb{R}$$

Multi-label learning

• Build one classifier for the 8 labels, simultaneously:

$$\hat{y} = W_c s + b_c \in \mathbb{R}^8$$

Loss functions

• To optimize the models, we experimented following three loss functions:

Negative Log-Likelihood

$$\mathcal{L}_{\mathsf{NLL}} = \sum_{i}^{N} \sum_{c=1}^{8} \ln(1 + \exp(-y_{c,i}\hat{y}_{c,i}))$$

Hinge

$$\mathcal{L}_{\mathsf{Hinge}} = \sum_{i}^{N} \sum_{c=1}^{8} \max(0, 1 - y_{c,i} \hat{y}_{c,i})$$

Hinge-Square

$$\mathcal{L}_{\mathsf{Hinge-sq}} = \sum_{i}^{N} \sum_{c=1}^{8} \max(0, 1 - y_{c,i} \hat{y}_{c,i})^2$$

Bagging ensemble

- Bagging is the ensemble strategy that averages over the outputs learned by resampled dataset.
- We made 20 resampled datasets for this purpose and use each dataset for training the HAN and CharCNN against the 3 loss functions, resulting in 6 methods.

Experiments: Label-independent v.s. Multi-label

	Target	Exact match accuracy			
		Label-Independent	Multi-Label		
	Influenza	0.977	0.988		
	Diarrhea	0.973	0.979		
	Hay Fever	0.971	0.975		
	Cough	0.988	0.991		
	Headache	0.979	0.981		
	Fever	0.931	0.929		
	Runny nose	0.948	0.952		
	Cold	0.944	0.965		
	Exact match	0.767	0.823		

Table: Comparison between label-independent or multi-label

Experiments: Multi-language and Model config

Table: Language Independent Learning vs. Multi-language Learning - This table shows that multi-language learning is more accurate than language independent learning in any of the languages and classifiers for this dataset. We also append the other team's results for each language, AKBL-ja-3, UE-en-1, TUA1-zh-3 for benchmark, respectively.

Setting		Exact match accuracy				
Encode	Loss	Language-Independent			Multi-Language	
		ja	en	zh	Single	Ensemble
Attention	NLL	0.823	0.791	0.789	0.823	0.841
	Hinge	0.823	0.795	0.809	0.844	0.841
	Hinge-sq	0.825	0.786	0.794	0.822	0.844
CharCNN	NLL	0.800	0.718	0.808	0.831	0.848
	Hinge	0.797	0.686	0.806	0.811	0.869
	Hinge-sq	0.772	0.670	0.784	0.811	0.866
Benchmark		0.805	0.789	0.786	-	-

Experiments: Ensemble results

Table: This table shows the results of our ensembles. Among the 9 ensembles we created, we submitted the last 3-particularly the ensembles using both HAN and CharCNN. Of the three, the ensemble with loss functions NLL and Hinge produced the highest accuracy: 88.0%.

Ense Encode	mble strategy Loss	Exact match
Attention	$\begin{array}{l} NLL\timesHinge\timesHinge\text{-}sq\\ NLL\timesHinge\\ NLL\timesHinge\text{-}sq \end{array}$	0.842 0.836 0.844
CNN	$\begin{array}{l} NLL\timesHinge\timesHinge-sq\\ NLL\timesHinge\\ NLL\timesHinge-sq \end{array}$	0.861 0.861 0.859
Attention \times CNN	$\begin{array}{l} NLL\timesHinge\timesHinge-sq\\ NLL\timesHinge\\ NLL\timesHinge-sq \end{array}$	0.877 0.880 0.878

Summary

- Integrate all tasks into a single neural network.
- Two neural networks-HAN and CharCNN-with multi-language learning are combined.
- Ensemble all models with Bagging.
- The ensemble using the NLL and hinge loss produced the best results with **88.0**% accuracy.