Proceedings of the 13th NTCIR Conference on Evaluation of Information Access Technologies, December 5-8, 2017 Tokyo Japan

YJTI at the NTCIR-13 STC Japanese Subtask

Toru Shimizu
Yahoo Japan Corporation_
toshimiz@yahoo-corp.jp

ABSTRACT

In this paper, we describe our participation in the NTCIR-13
STC Japanese Subtask, in which we develop systems with
the retrieval-based method. To retrieve reply texts for a
given comment text, our system generates vector representa-
tions of both the comment and candidate replies by a 3-layer
LSTM-RNN and evaluate distances between the comment
vector and the candidate reply vectors, selecting the top-k
nearest reply vectors and returning the corresponding reply
texts. We also take Theme and Genre into consideration
to decide the final ranking. In preparation of the candidate
reply texts, we utilize all the comments and replies in the
training set of Yahoo! News comments data. Our two runs
are based on two different LSTM-RNN models, one trained
over Twitter conversation data and the other mainly trained
over Yahoo! Chiebukuro QA data. Each dataset has no less
than 60 million pairs of text, and we aim to show how ef-
fective these combinations of large-scale datasets and large-
scale neural models are for developing dialog systems. In
addition, we had an assumption that the model of Twitter
conversation data would outperform that of Yahoo! Chie-
bukuro QA data as the task domain seemed to be more
similar to conversations in microblog services than social
question answering, but the reported results revealed that it
was not the case.

Team Name
YJTI

Subtasks
STC Japanese Subtask

Keywords

dialog systems, LSTM-RNN, social question answering, mi-
croblog

1. INTRODUCTION

This NTCIR-13 STC Japanese Subtask [11] is about de-
veloping dialogue systems which present reply texts to a
given comment taken from Yahoo! News comments data.
To realize such dialog systems, there are two well known
approaches: the generation-based method and the retrieval-
based method.

Vinyals and Le [16] proposed a generation-based system
using the neural encoder-decoder model [2, 14]. A sys-
tem built by such a model is supposed to be able to com-

223

pose responses highly flexibly, sequentially arranging char-
acters or words in the vocabulary freely. But in reality,
without countermeasures, this type of implementation tends
to lack diversity in responses, often producing trivial or
non-committal sentences like “I'm OK” or “I don’t know”
[7, 8]. Also, training and sentence generation processes of
typical, naively-implemented encoder-decoder models suffer
from various problems such as exposure bias, label bias, and
length bias [17, 12] which make it difficult to generate ap-
propriate, natural responses.

On the other hand, retrieval-based systems using human-
written text for candidate responses [9, 12] excel at providing
fluent text while they do not have inherent flexibility which
generation-based ones have. It is worth to note that the
retrieval-based method is free from various problems orig-
inating from sentence generation in the generation-based
method. Sountsov and Sarawagi [12] discussed a retrieval-
based approach as a means to avoid the encoder-decoder
model’s length bias problem.

In this subtask, we explored the retrieval-based method
with neural representation learning. Ome of our two as-
sumptions was that lack of flexibility in this approach would
not become a serious issue as the training set of the Yahoo!
News comments data, from which we can choose reply texts,
contains roughly 900k comment-reply pairs. The amount
of texts would alleviate the problem as long as the system
can find appropriate replies in the candidate set. The other
assumption was that large-scale neural models trained by
large-scale linguistic resources are essential to this kind of
tasks. We trained two such LSTM-RNN models trained by
two different datasets, Twitter conversation data and Chie-
bukuro QA data, each containing not less than 60 million
pairs of posts. To confirm and compare the effectiveness of
these resources (i.e. the models and the data behind them),
we submitted two runs, YJTI-J-R1 based on Twitter con-
versation and YJTI-J-R2 mainly based on Chiebukuro QA.
In this work, we demonstrate that a retrieval-based dialog
system can be effective and that the combinations of two el-
ements, a large-scale neural model and large-scale linguistic
resources for training, is crucial to develop such systems.

2. OUR SYSTEM

Considering our usage of the long short-term memory re-
current neural networks (LSTM-RNNs) [4] and methods to
train them, our overall approach can be referred as LSTM-
DSSM and is similar to prior work [10] in which LSTM-
RNNs are applied to the Deep Structured Semantic Model
(DSSM), a model structure for semantic matching in infor-

Proceedings of the 13th NTCIR Conference on Evaluation of Information Access Technologies, December 5-8, 2017 Tokyo Japan

Model training
stage
GRRETEE ST A, Runtime stage
i_encoder model i
{7 reply H JUETEE N, .
i_encoder model i 1 quety !
""""""" i__{comment) __
Reply text commdent :,-—--:
preparation and encoder L.
indexing stage :’“’E’o’rﬁh’e’ﬁt’“‘i
(" Candidate) e
1 replies f)
------ | | retriever
reply — ---- T)
encoder ___! | HeLobaecer
:""'56552'66""}
ot ____leplies____i
ata
o i ranker
+ component ,’""7[55__'16 ''''')
[] i _ranked replies_.

Figure 1: System overview

mation retrieval [5].

Our retrieval-based system has four components: two LSTM-

RNN encoder models to generate a vector representations for
a given text, a component to retrieve a list of replies on the
basis of distances between generated vectors, and a compo-
nent to determine a final selection of reply texts and their
ranking. We call the first two components the reply encoder
and the comment encoder, the third one the retriever, and
the last one the ranker. We first describe the overview of
the system into which these components are integrated, and
move on to the details of them in the following subsections.
Also, the overall system operations are separated into three
stages: the model training stage, the reply text preparation
and indexing stage, and the runtime stage. We train LSTM-
RNN encoder models in the model training stage, prepare
candidate reply comments and their search index in the re-
ply text preparation and indexing stage, and then produces
a set of up to 10 reply texts for a given comment in the
runtime stage.

The overall processing flow to prepare one submission
with our system is shown in Figure 1. First of all, in the
model training stage, we train two LSTM-RNN encoder
models, the comment encoder model and the reply encoder
model, using a corpus containing a large number of query-
document! pairs. The comment encoder model and the re-

Here, we use “query” and “document” as encompassing
terms for other pairs connected in a similar manner such as
comments and their replies, tweets and their reply tweets,
or questions and their answers.

224

ply encoder model are identical in the architecture and al-
most all the parameters but are different only in parameters
of the output layer. The trained models are built into the
comment encoder component and the reply encoder compo-
nent respectively for later use. In the reply text preparation
and indexing stage, we produce candidate reply texts from
the training set of Yahoo! News comments data containing
894,998 comment-reply pairs and their metadata. When we
first checked the data, our impression was that not only the
reply side but also the comment side can be used as can-
didate reply texts. So, we make two entries—one with the
comment text and the other with the reply text—from one
record in the original training set, copying the metadata to
both entries. After uniquing, we obtain 1,167,796 candidate
reply texts with metadata. Then, the reply encoder converts
all the texts into 1024-element vector representations, and
the retriever builds the index of the vectors for approximate
nearest neighbor search. In the runtime stage, the comment
encoder generates a 1024-element vector representation from
a given comment text. Using the vector as a query, the
retriever performs search over the indexed candidate reply
texts, selecting 200 replies with the nearest vectors from
that of the comment. The ranker evaluates the returned 200
replies considering the cosine similarity between vectors and
two metadata attributes, Theme and Genre, and finalizes a
top-10 ranked reply list. If there are multiple comments to
produce responses, the system repeats the runtime stage to
each of them.

Comparing YJTI-J-R1 and YJTI-J-R2, the methods are
different only in the model training stage, and we describe
their details in Sections 2.1.3 and 2.1.4 respectively. The
other aspects of the specifications are the same between
these two runs.

2.1 Encoder

This section explains the details about the comment en-
coder and the reply encoder.

2.1.1 Model architecture

We used 3-layer LSTM-RNN encoders to produce vector
representations of text. Figure 2a shows the structure of
the LSTM-RNN part of an encoder. The vocabulary size
is 6000, and each character token has a corresponding 256-
element embedding vector representation. The embedding
is fed to LSTM-RNN layers, each of which is the size of
1024. As in Figure 2b, the column of LSTM-RNN runs over
given text represented by character-based tokens and then
generates a 1024-element vector representation z through a
fully-connected layer called the output layer, which uses a
hidden layer vector at the last time step of the LSTM-RNN
as the input.

We have two embodiments of such encoders, the comment
encoder model and the reply encoder model as shown in
Figure 2c. For a comment text @) and a reply text D, we can
utilize the cosine similarity between their vectors to measure
the similarity:
zgz D
(@ D)= g anl
where ® denotes model parameters in the encoder pair.
Aiming to learn representations so that vectors of a pair
come close to each other, we consider a probability Pe (D|Q)
for Q and D being a pair when there are five choices {D*, ...,

(1)

Proceedings of the 13th NTCIR Conference on Evaluation of Information Access Technologies, December 5-8, 2017 Tokyo Japan

LSTM-RNN layer 3
(1024 elements)

> [@gooel->

LSTM-RNN layer 2
I => (1024 elements)
1‘ LSTM-RNN layer 1
-> -> (1024 elements)
1‘ embedding layer
MCNCNCN| (256 elements)
256 x 6000 matrix 4‘
with bias vector
char-based
token

(a) LSTM-RNN model structure

comment encoder ’D £49)
model

P N
0| ELE
Re(Q, D)

reply encoder ’D Zp
model

P .
D| smzY

(¢) Comment encoder model and reply encoder
model

output layer

LSTM-RNN 3 m»m» b >m>m>|:|
LSTM-RNN 2 . L P P P z
LSTM-RNN 1 E}E}Q%
embedding CoOoCoOC a0
tover <s>f= W F </s>

(b) LSTM-RNN encoder to process text and
produce a vector representation

output layer for
comment encoding

1024x 1024 matrix
with bias vector

1 2
comment/reply

encoder model >D z,
—

QorD

output layer for
reply encoding

1024x 1024 matrix
with bias vector

(d) Two encoders represented as one combined
model

Figure 2: Encoder model overview

D®} for actual D:

(D) = S b (BRe (Qr. D)

which is obtained by feeding values of Re(Q;, DF) with
k = 1,...,5 into the softmax function. The index i de-
notes that the pair (Q;, D}) is the ith record in a dataset,
and k = 1 always holds for a positive sample. We randomly
pick up negative samples {D?, D}, D}, D?} on the fly during
training. For the inverse temperature coefficient 5, we set it
to 10 to make the cross entropy loss discussed below large
enough. As the right choice among five D"s is always k = 1,
cross entropy loss [for the ith pair is written as

le(Qi, Di) = —log Po(D;|Q:). ®3)

Now, we can conduct training to find the optimal parameters
® minimizing the total loss L for all the pairs in the dataset:

(2)

©® = argmin Le 4)
)

= arg@l;nin Z lo(Qs, Dll) (5)

= argé)ninz {—log P@(DHQZ-)}. (6)

We used Adam [6] for parameter optimization.

The comment encoder model and the reply encoder model
are completely compatible with regard to the model archi-
tecture. They share parameters of the LSTM-RNN pipeline
consisting of the embedding layer and the three LSTM-RNN
layers but differ in parameters of the output layer. From a

225

different perspective, as depicted in Figure 2d, these two
models can be seen as one combined model comprising one
LSTM-RNN pipeline and two same-sized fully-connected out
put layers for comment encoding and reply encoding respec-
tively.

Concerning the details of the LSTM implementation, we
followed the formulation of Graves 2013 [3], and the result-
ing total number of parameters in a model became 27.8 mil-
lion. On a side note, we implemented the models with our
in-house codebase supporting experiments using neural net-
works, which was written on top of Theano [15] and Ten-
sorFlow [1] so that a model can be developed, trained, and
evaluated on both two frameworks compatibly.

2.1.2 Datasets

Table 1 lists datasets we used for training models.

For Twitter conversation data, we first collected 65.1M
Japanese reply tweets from the Firehose and then retrieved
their corresponding replied tweets. In this process, we fil-
tered out short-lived throwaway accounts and bots with the
following criteria.

e The account was at least 50 day old when the tweet
was posted.

e The location is set.

e The profile image is set.

e The number of friends is greater than or equal to 10.

e The number of followers is greater than or equal to 10.

e The number of favorite posts is greater than or equal
to 10.

Proceedings of the 13th NTCIR Conference on Evaluation of Information Access Technologies, December 5-8, 2017 Tokyo Japan

name type no. of
training
records
Twitter language | posts 100.0M
model data posts
Twitter conversation | pairs of | 65.1M
data tweets and | pairs
their replies
Yahoo! Chiebukuro | questions and | 202.0M
language model data | answers inter- | posts
mingled
Yahoo! Chiebukuro | pairs of ques- | 66.3M
QA data tions and | pairs
their answers

Table 1: Datasets used in the training process

e The source (a channel from which the tweet was posted)
is included in our white list.

Satisfying these criteria suggests that the account is oper-
ated by a non-spamming human. We prepared the source
white list checking the top-150 most frequent sources whether
they are safe to include or not, obtaining 108 entries in the
resulting list. In the postprocessing, URLs contained in the
text were replaced with a fixed short string “[u]” which rep-
resent a URL’s existence. Similarly, user mentions such as
“@QNTCIR” were replaced with “[m]” which represents a user
mention’s existence as these details are not essential to mod-
eling conversations. We prepared Twitter language model
data intermingling both sides of pairs into a list and sam-
pling 100M tweets from it.

For Yahoo! Chiebukuro QA data, we used pairs of ques-
tions and their best answers posted from Jan. 2010 to May
2017. URLs contained in the text were replaced with a fixed
short string “[u]” which represents a URL’s existence. Ya-
hoo! Chiebukuro language model data contains some an-
swers which are not the best answers in addition to all the
questions and the answers in Chiebukuro QA data.

While both datasets themselves, the Twitter conversation
data and the Chiebukuro QA data, are proprietary to Ya-
hoo Japan Corporation and not opened to public, there are
ways to obtain equivalent datasets. T'witter’s sample stream
includes a sizable number of Japanese reply tweets, and
researchers willing to build a conversational tweet corpus
can collect them and also bulk-retrieve their corresponding
replied tweets from a REST API which takes a list of tweet
IDs as an argument and returns a list of the corresponding
tweets. As for Chiebukuro’s questions and answers, Yahoo!
Chiebukuro data (2nd edition)? containing 16M questions
and 50M answers is available for research purposes.

2.1.3 Model training for YJTI-J-R1

For our first submission YJTI-J-R1, we trained the com-
ment encoder model and the reply encoder model over Twit-
ter conversation data including 65.1 million pairs of posts as
the training set. The model applied to this subtask achieved
an accuracy of 0.835 in a matching task using the validation

*http://www.nii.ac.jp/dsc/idr/en/yahoo/chiebkr2/Y_
chiebukuro.html

226

data to find a corresponding reply tweet of a given tweet
from five choices including four negative samples. The ac-
curacy of a similar matching task using the validation set
of Chiebukuro QA data was 0.864. It was trained over 2.1
million iterations with the batch size 64, and the number of
records the model went through is 135 million, which corre-
sponds to 2.1 epochs of the training data. Table 2 summa-
rizes the above mentioned details.

From our experience in training DSSM-like semantic match-
ing models, the progress tends to be slow and takes weeks or
months to reach convergence. To expedite the process, we
usually start a training process with language modeling and
then move on to a main task. In this case, we started the
model training with language modeling using Twitter lan-
guage model data and continued it for two epochs. When
the model is trained as a language model, the LSTM-RNN
column has two extra layers as in Figure 3a: the LM readout
layer and the LM output layer. It is applied to a character-
token sequence as shown in Figure 3b. After that, trans-
ferring parameters in the embedding layer and LSTM-RNN
layers, we proceeded to the main task, which is DSSM train-
ing over the Twitter conversation data.

The intuition behind introducing language model pretrain-
ing is as follows. In the DSSM model training, the feedback
signal is given only from the output layers connected to the
last time step of an LSTM-RNN’s sequence, and the back-
propagation paths tend to be considerably long, spreading
over the sequence. That makes credit assignment hard. Ad-
ditionally, the feedback signals are “highly summarized” in
a sense that it only tells the model which direction and how
far a vector generated from a whole comment or reply should
move. When a model is trained from scratch, it may require
a large number of iterations to learn the vocabulary from
such summarized signals. On the other hand, with language
model training, a model receives feedback signals at all the
time steps, and backpropagation paths from weight parame-
ters to their nearest sources of feedback signals tend to be far
shorter than those of DSSM training. That arguably leads
to easier credit assignment. As the result, a model should be
able to quickly learn the vocabulary guided by such “atten-
tive” teaching signals even when it is trained from scratch.
In future work, we will investigate the effectiveness of this
approach quantitatively.

2.1.4 Model training for YJTI-J-R2

For our second submission YJTI-J-R2, we trained the
comment encoder model and the reply encoder model in
multitask settings. The main task is to learn an LSTM-
DSSM semantic matching model using Yahoo! Chiebukuro
QA data including 66.3 million pairs of questions and an-
swers. In addition, there are two auxiliary tasks: one is to
learn a language model over questions and answers inter-
mingled, and the other is to learn an LSTM-RNN DSSM
model over Twitter conversation data. The latter is identi-
cal to the training method for YJTI-J-R1 described in Sec-
tion 2.1.3. Models in all the three tasks share parameters of
the LSTM-RNN layers and the embedding layer, but they
differ in parameters of the other parts.

In one iteration of this multitask training, the model goes
through four inner iterations of language modeling, two in-
ner iterations for the LSTM-DSSM on Twitter conversation
data, and two inner iterations for the LSTM-DSSM on Chie-
bukuro QA data, as listed below.

Proceedings of the 13th NTCIR Conference on Evaluation of Information Access Technologies, December 5-8, 2017 Tokyo Japan

256 x 6000 matrix
with bias vector,
activation function:
softmax

3072 x 512 matrix
with bias vector,
activation function:
maxout (512 - 256)

6000 x 256 matrix
with bias vector

IOC0C0O000]

LM output layer
(6000 elements)

LM readout layer
(256 elements)

-> LSTM-RNN layer 3
'T‘ (1024 elements)
> LSTM-RNN layer 2
/ (1024 elements)
1‘ LSTM-RNN layer 1
-> (1024 elements)
1‘ embedding layer
IZZ'T‘ZZ] (256 elements)
char-based
token

(a) LSTM-RNN model structure for language modeling

= £ W F </s>
e el
OB B Ed

LM output layer
LM readout layer

s s EREDEREM
LSTM-RNN 2 g I > >
LSTM-RNN 1
embedding [[J[C J[C []
layer
<s>f= WL E

(b) Language model to predict the next charac-
ter for a given input character token

Figure 3: Language model overview

model | training batch | iterations | records epochs
type data size con-
sumed
DSSM | Twitter 64 2.1M 135.0M | 2.07
conver-
sation
data
Table 2: DSSM training for YJTI-J-R1
model | training batch | inner it- | records | epochs
type data size erations con-
sumed
lang. Chiebukuro| 64 2.TM 171.5M | 0.85
mod- | language
eling model
data
DSSM | Twitter 64 1.3M 85.8M 1.32
conver-
sation
data
DSSM | Chiebukuro| 32 1.3M 42.9M 0.65
QA data

Table 3: Multitask training for YJTI-J-R2

227

LM output layer

LM readout layer

output layer for
tweet encoding

output layer for
reply tweet encoding

comment/reply

encoder model =S
1 gchie
’D 1 output layer for
,D i zchie question encoding
_______ - ——— e |

output layer for
answer encoding

Figure 4: Components for the multitask training as one com-
bined model

Language model training using Chiebukuro language
model data (1)

Language model training using Chiebukuro language
model data (2)

Language model training using Chiebukuro language
model data (3)

Language model training using Chiebukuro language
model data (4)

LSTM-DSSM training using Twitter conversation data
(1)
LSTM-DSSM training using Twitter conversation data
2)
LSTM-DSSM training using Chiebukuro QA data (1)
LSTM-DSSM training using Chiebukuro QA data (2)

The model was trained over 670k such encompassing itera-
tions. Further details are described in Table 3. Also in this
case, we started the model training with language modeling
using Chiebukuro language model data and then moved on

Proceedings of the 13th NTCIR Conference on Evaluation of Information Access Technologies, December 5-8, 2017 Tokyo Japan

to the multitask settings.

This model achieved an accuracy of 0.967 in a matching
task using the validation set of Chiebukuro QA data in which
the model finds a corresponding answer of a given question
from five choices including four negative samples. At the
same time, the validation accuracy for Twitter conversation
of the same model ended up at 0.759.

The overview of this multitask model comparable to Fig-
ure 2d of YJTI-J-R1 is shown in Figure 4. Each DSSM
output layer consists of a 1024 x 1024 weight matrix and
a bias vector. In the subsequent stages of YJTI-J-R2, we
used parameters in the LSTM-DSSM model of Chiebukuro
QA, which corresponds to the area enclosed by the dashed
lines in Figure 4, for a comment encoder model and a reply
encoder model.

Because of time constraints we had in participation to
the NTCIR-13 STC Japanese Subtask, these two pretrained
models of YJTI-J-R1 and YJTI-J-R2 were not trained from
scratch but taken from existing training pipelines set up for
other purposes, for which the configurations and the proce-
dures had been fully recorded for reproducibility. Some un-
intended differences between pretrained models of YJTI-J-
R1 and YJTI-J-R2, e.g. the latter was trained in the multi-
task settings whereas the former was not, are due to this
circumstance.

2.2 Retriever

To conduct search over a large number of high-dimensional
vectors of candidate reply texts, we utilize NGT?, which im-
plements a graph-based approximate similarity search method
and is known to be achieving both precision and low latency
[13]. In the nearest neighbor search, we use the L2-distance
of vectors as the metric while it is practically equivalent to
the cosine similarity as all the comment text and reply text
vectors are restricted to have the unit length and can be con-
sidered as lying on a unit 1023-sphere in a 1024-dimensional
space.

In the reply text preparation and indexing stage, NGT
generates an index for 1.2 million texts taken from comments
and replies in the training set of Yahoo! News comments
data. In the runtime stage, the retriever receives a comment
vector from the comment encoder, retrieves the 200 nearest
replies from the index, and returns a list of them sorted in
descending order of cosine similarity. Each item in the list
is actually a tuple of four attributes: the comment text id,
a list of Themes, the Genre, and the comment text itself.

2.3 Ranker

The ranker generates the ranking of the top-10 reply texts
in a tiered manner. Here, we have three tiers each of which
contains a partial ranked reply list: THEME, GENRE, and OTHER.
When finalizing the ranking, we combine these tiers in the
order of THEME, GENRE, and OTHER. As a result, THEME al-
ways occupy the top of the ranking, then those in GENRE
follow, and items in OTHER fill the remaining slots. Also, a
tier has its own scoring scheme, and replies within the tier
are sorted in descending order of the score. The order is
preserved when tiers are combined.

If the incoming comment text has one or multiple Themes,
the ranker checks whether each reply text has any Theme

matching with those of the comment or not, and bring matched

reply texts into THEME. We calculate the score of these

Shttps:/ /research-lab.yahoo.co.jp/software/ngt/

228

matched entries considering both the cosine similarity and
the degree of matching of Themes. More specifically, we
define the score s; for ¢th item in the list as

s; = sim? Z idfy (7)

keM;

where sim; is the cosine similarity between the incoming
query comment and the ith reply, M; is a set of indices of
Themes that are shared between the query comment and the
ith reply, and idfy denotes the inverted document frequency
(IDF) score of a Theme t;. The IDF scores were calculated
from the training set of Yahoo! News comments data for
all the Themes found in it {¢1,...,¢tx}. The score (7) can
be interpreted as follows: the more and rarer the matched
Themes are, the higher we rank the reply while also con-
sidering the cosine similarity. As for cosine similarity, we
use the squared form of it to make the factor more effective
than the linear form. It does not work as intended if the
similarity is negative, but as far as we observe, the values
are always positive in the current settings. After the score
calculation and sorting, we truncate the reply list of THEME
so as to make the length up to three.

If the incoming comment text has its Genre, the ranker
deals with matched replies in GENRE. Within the tier, replies
are simply sorted in descending order of the cosine similarity
score. After the sort, we truncate the reply list of GENRE so
as to make the length up to three.

The rest of replies go into OTHER and are sorted in de-
scending order of the cosine similarity score. Table 4 shows
summarized specifications of these three tiers.

Comparing the Theme and the Genre, the number of
unique Themes extracted from the training set are 11,538
whereas that of unique Genres are 8. Given that the granu-
larity of Themes is significantly finer than that of Genres, it
is safe enough to say that replies in THEME have stronger
signals for relevance than those in GENRE when it comes
to metadata matching, therefore THEME should be ranked
higher than GENRE. Nevertheless, while testing over the de-
velopment set, we observed cases in which replies in lower
tiers seemed to be more appropriate though overall the or-
der THEME, GENRE, OTHER seemed to be right. To give replies
in lower tiers chances to be included in the top-10 list, we
restrict the maximum depth of THEME and GENRE to three,
preventing those in THEME or GENRE from filling all the avail-
able slots, and ensure diversity of the selection criteria for a
result set.

In addition to the procedure explained above, we pose a
constraint on the final top-10 replies: the length of a com-
ment text must be within a range of 10 to 45. A com-
ment text with less than 10 characters might lack meaning-
ful content. Conversely, a comment text with greater than
45 characters might be too specific to be relevant to a given
comment. Lastly, we combine the lists of three tiers as de-
scribed earlier, apply the text length constraint, unique the
comment text, and truncate the items so that up to 10 of
them remain in the list. The resulting list represents the
system’s final output for a given query comment.

The ranker’s specifications were determined by trial and
error over the development set of the Yahoo! News com-
ments data without any quantitative analysis. Further ex-
ploration for more flexible, sophisticated blending and rank-
ing algorithms using data-driven approaches is left as future
work.

Proceedings of the 13th NTCIR Conference on Evaluation of Information Access Technologies, December 5-8, 2017 Tokyo Japan

tier | priority score no. of replies
THEME | Ist |simi >, idfs 3

GENRE 2nd simy; 3

OTHER | 3rd sim; (no truncation)

Table 4: Specifications of the three tiers

metric YJTI-J-R1 | YJTI-J-R2
Mean nG@Q1 0.4322 0.4893
Mean nERRQ@2 0.4731 0.5468
Mean Accr,@1 0.1860 0.2040
Mean Accr2@2 0.1490 0.2030
Mean Accri,2@1 0.6480 0.7620
Mean Accri1,12@2 0.6210 0.7310

Table 5: Official STC results of our runs (Rule-1)

metric YJTI-J-R1 | YJTI-J-R2
Mean nGQ1 0.4171 0.4726
Mean nERRQ2 0.4544 0.5288
Mean Accr2@1 0.1860 0.2040
Mean Accr2@2 0.1490 0.2030
Mean Accri1,r2@1 0.6100 0.7200
Mean Accr1,r,2@2 0.5750 0.6900

Table 6: Official STC results of our runs (Rule-2)

3. EXPERIMENTS AND ANALSYSIS
3.1 Submitted Results

During the participation, we submitted two runs for the
subtask.

e YJTI-J-R1: 3-layer LSTM-DSMM model mainly trained
over Twitter conversation data

e YJTI-J-R2: 3-layer LSTM-DSSM model mainly trained
over Chiebukuro QA data

In Tables 5 and 6, we excerpt the test run results of our
submissions. The winning side of each metric is in bold-
face. Considering that our two runs have almost identical
model structures and that YJTI-J-R1 shows a higher accu-
racy for Twitter conversation matching task, it is surprising
that YJTI-J-R2 outperformed YJTI-J-R1 on all the avail-
able metrics.
Moreover, as these two runs performed competitively among

the submitted runs, we can see that the overall approach we
took to develop this system is reasonable.

3.2 Analysis

As for the matching task performances in Twitter con-
versation data and Chiebukuro QA data, which is to find
the counterpart of a pair among five choices, accuracies by
the model of YJTI-J-R1 trained by Twitter conversation

229

matching task YJTI-J-R1 | YJTI-J-R2
Twitter conversation 0.835 0.759
Chiebukuro QA 0.864 0.967

Table 7: Comparison of matching task performances

data were 0.835 and 0.864 respectively, and accuracies by
the model of YJTI-J-R2 mainly trained by Chiebukuro QA
data were 0.759 and 0.967 respectively. In this comparison,
we see a clear contrast in which excels at which as in Ta-
ble 7. Given that YJTI-J-R2 won against YJTI-J-R1 in the
official run, we can infer that Chiebukuro QA data was more
effective than Twitter conversation data in this task.

4. CONCLUSIONS

Considering the competitiveness of our systems among
submitted runs [11], it is confirmed that a retrieval-based
system with a large-scale model trained over plentiful of lin-
guistic resources can be particularly effective. Contrary to
our anticipation that YJTI-J-R1 would outperform YJTI-J-
R2 as conversational corpora would be more appropriate for
dialog systems’ training data than social question answering
corpora, the results [11] indicate that YJTI-J-R1 based on
Chiebukuro QA outperforms YJTI-J-R2 based on Twitter
conversation in all the available metrics. This work suggests
that social question answering data can be useful to learn
models of topic-oriented conversations seen in Yahoo! News
comments data.

S. REFERENCES

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo,
Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, S. Ghemawat, I. J. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jézefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. G. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. A.
Tucker, V. Vanhoucke, V. Vasudevan, F. B. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng. Tensorflow: Large-scale machine
learning on heterogeneous distributed systems. CoRR,
abs/1603.04467, 2016.

[2] K. Cho, B. van Merrienboer, ¢. Giilgehre,
F. Bougares, H. Schwenk, and Y. Bengio. Learning
phrase representations using RNN encoder-decoder for
statistical machine translation. CoRR, abs/1406.1078,
2014.

[3] A. Graves. Generating Sequences With Recurrent
Neural Networks. CoRR, abs/1308.0850, 2013.

[4] S. Hochreiter and J. Schmidhuber. Long Short-Term
Memory. Neural Computation, 9(8):1735-1780, 1997.

[5] P. Huang, X. He, J. Gao, L. Deng, A. Acero, and
L. Heck. Learning deep structured semantic models for
web search using clickthrough data. In Proceedings of
the 22nd ACM international conference on Conference
on information & knowledge management, CIKM ’13,
pages 2333-2338, New York, NY, USA, 2013. ACM.

[6] D. P. Kingma and J. Ba. Adam: A method for
stochastic optimization. CoRR, abs/1412.6980, 2014.

Proceedings of the 13th NTCIR Conference on Evaluation of Information Access Technologies, December 5-8, 2017 Tokyo Japan

[7]

[14]

[15]

J. Li, M. Galley, C. Brockett, J. Gao, and B. Dolan. A
diversity-promoting objective function for neural
conversation models. CoRR, abs/1510.03055, 2015.

J. Li, W. Monroe, T. Shi, A. Ritter, and D. Jurafsky.
Adversarial learning for neural dialogue generation.
CoRR, abs/1701.06547, 2017.

R. Lowe, N. Pow, I. Serban, and J. Pineau. The
ubuntu dialogue corpus: A large dataset for research
in unstructured multi-turn dialogue systems. CoRR,
abs/1506.08909, 2015.

H. Palangi, L. Deng, Y. Shen, J. Gao, X. He, J. Chen,
X. Song, and R. K. Ward. Semantic modelling with
long-short-term memory for information retrieval.
CoRR, abs/1412.6629, 2014.

L. Shang, T. Sakai, H. Li, R. Higashinaka, Y. Miyao,
Y. Arase, and M. Nomoto. Overview of the NTCIR-13
short text conversation task. In Proceedings of
NTCIR-13, 2017.

P. Sountsov and S. Sarawagi. Length bias in encoder
decoder models and a case for global conditioning.
CoRR, abs/1606.03402, 2016.

K. Sugawara, H. Kobayashi, and M. Iwasaki. On
approximately searching for similar word embeddings.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 2265-2275. Association for
Computational Linguistics, 2016.

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to
sequence learning with neural networks. CoRR,
abs/1409.3215, 2014.

Theano Development Team. Theano: A Python
framework for fast computation of mathematical
expressions. arXiv e-prints, abs/1605.02688, May
2016.

O. Vinyals and Q. V. Le. A neural conversational
model. CoRR, abs/1506.05869, 2015.

S. Wiseman and A. M. Rush. Sequence-to-sequence
learning as beam-search optimization. CoRR,
abs/1606.02960, 2016.

230

